首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple sclerosis is an inflammatory disease of the CNS that involves immune reactivity against myelin oligodendrocyte glycoprotein (MOG), a type I transmembrane protein located at the outer surface of CNS myelin. The epitope MOG92-106 is a DR4-restricted Th cell epitope and a target for demyelinating autoantibodies. In this study, we show that the immune response elicited by immunization with this epitope is qualitatively different from immune responses induced by the well-defined epitopes myelin basic protein (MBP) 84-96 and proteolipid protein (PLP) 139-151. Mice with MOG92-106-, but not with MBP84-96- or PLP139-151-induced experimental autoimmune encephalomyelitis developed extensive B cell reactivity against secondary myelin Ags. These secondary Abs were directed against a set of encephalitogenic peptide Ags derived from MBP and PLP as well as a broad range of epitopes spanning the complete MBP sequence. The observed diversification of the B cell reactivity represents a simultaneous spread toward a broad range of antigenic epitopes and differs markedly from T cell epitope spreading that follows a sequential cascade. The Abs were of the isotypes IgG1 and IgG2b, indicating that endogenously recruited B cells receive help from activated T cells. In sharp contrast, B cell reactivity in MBP84-96- and PLP139-151-induced experimental autoimmune encephalomyelitis was directed against the disease-inducing Ag only. These data provide direct evidence that the nature of the endogenously acquired immune reactivity during organ-specific autoimmunity critically depends on the disease-inducing Ag. They further demonstrate that the epitope MOG92-106 has the specific capacity to induce a widespread autoimmune response.  相似文献   

2.
CNS myelin was isolated from the spinal cord of the African lungfish Protopterus dolloi. Its proteins consisted of (1) two basic proteins (16,000 and 18,500 apparent Mr) that reacted with anti-human CNS myelin basic protein antibodies and (2) a major protein (29,000 apparent Mr) that stained with concanavalin A-horseradish peroxidase and bound to anti-rat CNS myelin proteolipid protein (PLP) antibodies. This dominant 29,000 Mr protein showed no reaction with antibodies against the major bovine PNS myelin glycoprotein P0. Following treatment with endoglycosidase F the 29,000 Mr protein was reduced in size to a 26,000 apparent Mr component that no longer bound concanavalin A but retained the anti-PLP reactivity. These results agree with a concanavalin A-binding oligosaccharide linked through asparagine to a protein backbone of PLP homology. The major 29,000 Mr lungfish CNS myelin protein was therefore termed g-PLP (glycosylated proteolipid protein). This is the first report demonstrating the occurrence of a PLP-cross-reactive protein in CNS myelin of a fish. It attests to the close phylogenetic relationship of lungfishes to amphibians. Amphibians were previously recognized as the oldest class bearing PLP in its CNS myelin.  相似文献   

3.
T cell lines specific for bovine myelin proteolipid apoprotein (PLP) were established from SJL/J mice. The line cells bore surface phenotypes of T helper/inducer cells (Lyt-1+, Lyt-2-, L3T4+) and responded well to bovine, rat, and guinea pig PLP but not to myelin basic protein. One line responded to major PLP, and another responded to both major PLP and DM-20, which are the two major intrinsic membrane proteins of the central nervous system (CNS) myelin. Intraperitoneal inoculation of 4 to 30 X 10(6) PLP-activated line cells followed by injection of pertussis vaccine induced acute inflammatory disease of the CNS, with typical clinical signs of EAE mostly in a week in recipient mice that had been treated with low-dose irradiation. Almost all animals recovered completely, and two of the 12 animals relapsed 42 or 75 days after inoculation. The lesions were restricted to the CNS and were characterized by perivascular and parenchymal infiltration of inflammatory cells, fibrin deposit, and demyelination. In the severe lesions, axons were also damaged. These observations suggest that PLP is a definite encephalitogen, and PLP-sensitized effector T cells induce inflammatory demyelination in the CNS.  相似文献   

4.
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the CNS. The numbers of autoimmune T cells and Abs specific for proteins of CNS myelin are increased in the blood in some patients with MS. The aim of this study was to investigate whether there are correlations between the specificity of the autoimmune responses in the blood, the HLA molecules carried by the patient, and the clinical features of MS, because studies on experimental autoimmune encephalomyelitis, an animal model of MS, indicate that autoimmune responses targeting particular myelin proteins and the genetic background of the animal play a role in determining the pattern of lesion distribution. We tested blood T cell immunoreactivity to myelin proteins in 100 MS patients, 70 healthy controls, and 48 patients with other neurological disorders. Forty MS patients had strongly increased T cell reactivity to one or more myelin Ags. In these 40 patients, the most robust correlation was between CD4(+) T cell reactivity to myelin proteolipid protein residues 184-209 (PLP(184-209)) and development of lesions in the brainstem and cerebellum. Furthermore, carriage of HLA-DR4, -DR7, or -DR13 molecules by MS patients correlated with increased blood T cell immunoreactivity to PLP(184-209), as well as the development of lesions in the brainstem and cerebellum. Levels of PLP(190-209)-specific Abs in the blood also correlated with the presence of cerebellar lesions. These findings show that circulating T cells and Abs reactive against specific myelin Ags can correlate with lesion distribution in MS and suggest that they are of pathogenic relevance.  相似文献   

5.
The factors contributing to chronic relapsing inflammatory disease processes of the central nervous system (CNS) and demyelination are poorly understood. In addition to cellular immune reactions, humoral factors such as antibodies might quantitatively or qualitatively influence the disease process. We therefore investigated the effects of administration of a monoclonal antibody specific for a CNS autoantigen on both acute and chronic experimental autoimmune encephalomyelitis (EAE) in mice and rats. This monoclonal antibody, 8-18C5, specific for a myelin/oligodendrocyte glycoprotein, was observed to accelerate clinical and pathologic changes of CNS autoimmune disease. In SJL mice with chronic relapsing EAE, injection of antibody into animals recovering from an attack induced fatal relapses; in Lewis rats, acute EAE was enhanced and associated with a hyperacute inflammatory response with demyelination, a feature not commonly seen in acute EAE. The demonstration that relapses and demyelination can be induced by administration of a white matter-reactive monoclonal antibody offers new possibilities to study processes resulting in CNS damage during autoimmune disease. Furthermore, these findings support the immunopathogenic potential of antibody to myelin components in inflammatory CNS disease processes and, specifically, in causing demyelination.  相似文献   

6.
Proteolipid protein (PLP) is a major structural component of central nervous system (CNS) myelin. Evidence exists that PLP or the related splice variant DM-20 protein may also play a role in early development of oligodendrocytes (OLs), the cells that form CNS myelin. There are several naturally occurring mutations of the PLP gene that have been used to study the roles of PLP both in myelination and in OL differentiation. The PLP mutation in the jimpy (jp) mouse has been extensively characterized. These mutants produce no detectable PLP and exhibit an almost total lack of CNS myelin. Additionally, most OLs in affected animals die prematurely, before producing myelin sheaths. We have studied cultures of jp CNS in order to understand whether OL survival and myelin formation require production of normal PLP. When grown in primary cultures, jp OLs mimic the relatively undifferentiated phenotype of jp OLs in vivo. They produce little myelin basic protein (MBP), never immunostain for PLP, and rarely elaborate myelin-like membranes. We report here that jp OLs grown in medium conditioned by normal astrocytes synthesize MBP and incorporate it into membrane expansions. Some jp OLs grown in this way stain with PLP antibodies, including an antibody to a peptide sequence specific for the mutant jp PLP. This study shows that: (1) an absence of PLP does not necessarily lead to dysmyelination or OL death; (2) OLs are capable of translating at least a portion of the predicted jp PLP; (3) the abnormal PLP made in the cultured jp cells is not toxic to OLs. These results also highlight the importance of environmental factors in controlling OL phenotype. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Membrane fractions and chloroform-methanol (C-M) extracts ofjimpy (jp) and normal CNS at 17–20 days were examined by immunoblot and sequence analysis to determine whether myelin proteolipid protein (PLP) or DM-20 could be detected in jp CNS. No reactivity was detected in jp samples with several PLP antibodies (Abs) except with one Ab to amino acids 109–128 of normal PLP. Proteins in the immunoreactive bands 26 Mr comigrating with PLP were sequenced for the first 10–12 residues. A sequence corresponding to PLP was found in normal CNS, as expected, but not in the band from jp CNS. Our results provide no evidence for an aberrant form of PLP in jp CNS at 17–20 days. This and other studies suggest that the abnormalities in jp brain are not due to toxicity of the mutant jp PLP/DM-20 proteins. Interestingly, a sequence identical to the amino terminus of the mature proton channel subunit 9 of mitochondrial F0 ATPase was detected in the immunoreactive bands 26 Mr in both normal and jp samples. This identification was supported by reactivity with an Ab to the F0 subunit and by labeling with dicyclohexylcarbodiimide (DCCD). In contrast to PLP isolated from whole CNS, PLP isolated from myelin was devoid of F0 subunit 9 based on sequence analysis and lack of reactivity with an Ab to the F0 subunit, yet still reacted with DCCD. This finding rules out the possibility that contaminating F0 ATPase gives rise to the DCCD binding exhibited by PLP and confirms the possibility that PLP has proton channel activity, as suggested by Lin and Lees (1,2).Abbreviations used Ab antibody - CM conditioned medium - C M chloroform-methanol - DCCD dicyclohexylcarbodiimide - jp jimpy - Mr mobility (apparent m.w×10–3) - PLP proteolipid protein - PVDF polyvinylidene difluoride  相似文献   

8.
Proteolipid protein (PLP) is the most abundant protein of CNS myelin, and is posttranslationally acylated by covalent attachment of palmitic acid to cysteine residues viaa thioester linkage. It was previously shown that thiopalmitoylation of encephalitogenic PLP T-cell epitopes enhanced immune responses as well as the development and chronicity of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). To understand how the thiopalmitoylated peptides (S-palm peptide) can play a role in the development of autoreactivity in EAE and MS, the mechanism by which they are taken up by antigen presenting cells (APC) and presented to the immune system must be determined. This paper describes the solid-phase synthesis and purification of biotin-labelled thiopalmitoylated PLP(139–151) for use in studying the uptake of S-palm peptides by macrophages using flow cytometry analysis. Our aim was to obtain the labelled lipopeptide after on-resin biotinylation and palmitoylation, but, due to the reactivity of biotin towards acylation, we had to modify the conditions of thiopalmitoylation we had previously described, i.e. palmitic acid activated ester instead of palmitoyl chloride. Using flow cytometry analysis, we were able to show that the entry of S-palm peptide in the macrophages is very rapid compared to the non-palmitoylated peptide, and that the lipopeptide is taken up more efficiently into the macrophages.  相似文献   

9.
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disorder of the central nervous system (CNS) of unknown etiology. Several studies have shown that demyelination in MS is caused by proinflammatory mediators which are released by perivascular infiltrates and/or activated glial cells. To understand if proinflammatory mediators such as IL (interleukin)-1beta and TNF (tumor necrosis factor)-alpha are capable of modulating the expression of myelin-specific genes, we investigated the effect of these cytokines on the expression of myelin basic protein (MBP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), myelin oligodendrocyte glycoprotein (MOG), and proteolipid protein (PLP) in human primary oligodendrocytes. Interestingly, both IL-1beta and TNF-alpha markedly inhibited the expression of MOG, CNPase, and PLP but not MBP, the effect that was blocked by antioxidants such as N-acetylcysteine (NAC) and pyrrolidine dithiocarbamate (PDTC). Consistently, oxidants and prooxidants like H(2)O(2) and diamide also markedly inhibited the expression of MOG, CNPase, and PLP. Furthermore, both IL-1beta and TNF-alpha induced the production of H(2)O(2). Taken together, these studies suggest that proinflammatory cytokines inhibit the expression of myelin genes in human primary oligodendrocytes through the alteration of cellular redox.  相似文献   

10.
Tolerization of SJL/J mice with splenocytes coupled with proteolipid protein (PLP), the major protein component of central nervous system myelin, resulted in dramatic inhibition of relapsing experimental autoimmune encephalomyelitis (R-EAE) induced by mouse spinal cord homogenate (MSCH). Mice tolerized with splenocytes coupled with MSCH (a complex mixture of neuroantigens) or with purified PLP, but not purified myelin basic protein, were resistant to the development of clinical and histologic R-EAE. In addition, mice rendered tolerant to an encephalitogenic peptide of PLP were significantly protected, whereas mice tolerized to a nonencephalitogenic peptide of PLP were highly susceptible, to the induction of MSCH-induced R-EAE. Thus, immune responses directed against encephalitogenic regions of PLP appear to play a major role in the development of R-EAE induced by MSCH in SJL/J mice. These results also indicate that determinant-specific immune tolerance is a feasible approach to the regulation of a disease that involves autoimmune responses to a variety of Ag.  相似文献   

11.
Multiple sclerosis (MS) is a chronic inflammatory disease resulting in demyelination and axonal loss within the CNS. An autoimmune reaction directed against myelin antigens contributes to the disease process. As the CNS has long been considered an immune privileged site, how such an immune response can develop locally has remained enigmatic. Recent data, mostly based on the study of animal models for MS, have shown that the CNS is in fact more permissive to the development of immune responses than previously thought. This observation is counterbalanced by the fact that immune tolerance to myelin antigens can be induced outside the CNS. This review focuses on the mechanisms preventing CNS autoimmunity, which act in three separate tissues. In the thymus, expression of CNS autoantigens promotes partial protection, notably through elimination of autoreactive T cells. In the secondary lymphoid organs, the remaining autoreactive T cells are kept under control by the naturally occurring regulatory T cells of the CD4(+)Foxp3(+) phenotype. In the CNS, multiple mechanisms including the local activation of regulatory T cells further limit autoimmunity. A better understanding of the induction of regulatory T cells, of their mechanisms of action, and of approaches to manipulate them in vivo may offer new therapeutic opportunities for MS patients.  相似文献   

12.
The central nervous system (CNS) of terrestrial vertebrates underwent a prominent molecular change when a tetraspan membrane protein, myelin proteolipid protein (PLP), replaced the type I integral membrane protein, P0, as the major protein of myelin. To investigate possible reasons for this molecular switch, we genetically engineered mice to express P0 instead of PLP in CNS myelin. In the absence of PLP, the ancestral P0 provided a periodicity to mouse compact CNS myelin that was identical to mouse PNS myelin, where P0 is the major structural protein today. The PLP-P0 shift resulted in reduced myelin internode length, degeneration of myelinated axons, severe neurological disability, and a 50% reduction in lifespan. Mice with equal amounts of P0 and PLP in CNS myelin had a normal lifespan and no axonal degeneration. These data support the hypothesis that the P0-PLP shift during vertebrate evolution provided a vital neuroprotective function to myelin-forming CNS glia.  相似文献   

13.
Molecular mimicry is the process by which T cells activated in response to determinants on an infecting microorganism cross-react with self epitopes, leading to an autoimmune disease. Normally, infection of SJL/J mice with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) results in a persistent CNS infection, leading to a chronic progressive, CD4(+) T cell-mediated demyelinating disease. Myelin damage is initiated by T cell responses to virus persisting in CNS APCs, and progressive demyelinating disease (50 days postinfection) is perpetuated by myelin epitope-specific CD4(+) T cells activated by epitope spreading. We developed an infectious model of molecular mimicry by inserting a sequence encompassing the immunodominant myelin epitope, proteolipid protein (PLP) 139-151, into the coding region of a nonpathogenic TMEV variant. PLP139-TMEV-infected mice developed a rapid onset paralytic inflammatory, demyelinating disease paralleled by the activation of PLP139-151-specific CD4(+) Th1 responses within 10-14 days postinfection. The current studies demonstrate that the early onset demyelinating disease induced by PLP139-TMEV is the direct result of autoreactive PLP139-151-specific CD4(+) T cell responses. PLP139-151-specific CD4(+) T cells from PLP139-TMEV-infected mice transferred demyelinating disease to naive recipients and PLP139-151-specific tolerance before infection prevented clinical disease. Finally, infection with the mimic virus at sites peripheral to the CNS induced early demyelinating disease, suggesting that the PLP139-151-specific CD4(+) T cells could be activated in the periphery and traffic to the CNS. Collectively, infection with PLP139-151 mimic encoding TMEV serves as an excellent model for molecular mimicry by inducing pathologic myelin-specific CD4(+) T cells via a natural virus infection.  相似文献   

14.
The protein and glycoprotein compositions of CNS myelin from the living coelacanth (Latimeria chalumnae) were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An unglycosylated component of 25 kilodaltons showed substantially stronger immunoblot reactivity with antibodies against mammalian proteolipid protein (PLP) than lungfish glycosylated PLP. DM-20 (intermediate protein) was not detectable in either fish. The presence of unglycosylated PLP in CNS myelin of the actinistian coelacanth contradicts an association with cartilaginous fishes but supports tetrapod affinities closer than those of lungfish.  相似文献   

15.
The 4e transgenic mouse is characterized by overexpression of the PLP gene. Heterozygous littermates containing three PLP gene copies develop and myelinate normally. However, a progressive CNS demyelination begins at 3-4 months of age. Despite focal demyelination, these animals survive for one year with hind limb paralysis. We used this CNS demyelination model to determine if grafts of CG4 oligodendrocyte progenitors would survive and myelinate the adult CNS. Either CG4 cells, or co-grafts of CG4/B104 cells 11:1 ratio respectively) were performed. Grafted cells survived and migrated in the normal and transgenic brain. Non-treated transgenic animals revealed extensive lack of myelin. Three months post-transplant hosts with CG4 or co-transplants displayed a near normal myelin pattern. Double immunofluorescence for neurofilament and myelin basic protein revealed the presence of many naked axons in non-grafted transgenic animals. Those grafted with progenitor CG4 cells or cografts displayed a clear increase in remyelination. This data provides a new direction for the development of cell replacement therapies in demyelinating diseases.  相似文献   

16.
Proteolipid protein (PLP) is the most abundant protein of CNS myelin, and is posttranslationally acylated by covalent attachment of long chain fatty acids to cysteine residues via a thioester linkage. Two of the acylation sites are within epitopes of PLP that are encephalitogenic in SJL/J mice (PLP(104-117) and PLP(139-151)) and against which increased immune responses have been detected in some multiple sclerosis patients. It is known that attachment of certain types of lipid side chains to peptides can result in their enhanced immunogenicity. The aim of this study was to determine whether thioacylated PLP peptides, as occur in the native protein, are more immunogenic than their nonacylated counterparts, and whether thioacylation influences the development of autoreactivity and experimental autoimmune encephalomyelitis. The results show that in comparison with nonacylated peptides, thioacylated PLP lipopeptides can induce greater T cell and Ab responses to both the acylated and nonacylated peptides. They also enhanced the development and chronicity of experimental autoimmune encephalomyelitis. Synthetic peptides in which the fatty acid was attached via an amide linkage at the N terminus were not encephalitogenic, and they induced greater proportions of CD8+ cells in initial in vitro stimulation. Therefore, the lability and the site of the linkage between the peptide and fatty acid may be important for induction of encephalitogenic CD4+ T cells. These results suggest that immune responses induced by endogenous thioacylated lipopeptides may contribute to the immunopathogenesis of chronic experimental demyelinating diseases and multiple sclerosis.  相似文献   

17.
Relapsing experimental autoimmune encephalomyelitis (R-EAE) is a CD4+ T cell-mediated demyelinating disease model for multiple sclerosis. Myelin destruction during the initial relapsing phase of R-EAE in SJL mice initiated by immunization with the proteolipid protein (PLP) epitope PLP139-151 is associated with activation of T cells specific for the endogenous, non-cross-reactive PLP178-191 epitope (intramolecular epitope spreading), while relapses in R-EAE induced with the myelin basic protein (MBP) epitope MBP84-104 are associated with PLP139-151-specific responses (intermolecular epitope spreading). Here, we demonstrate that T cells specific for endogenous myelin epitopes play the major pathologic role in mediating clinical relapses. T cells specific for relapse-associated epitopes can serially transfer disease to naive recipients and are demonstrable in the CNS of mice with chronic R-EAE. More importantly, induction of myelin-specific tolerance to relapse-associated epitopes, by i.v. injection of ethylene carbodiimide-fixed peptide-pulsed APCs, either before disease initiation or during remission from acute disease effectively blocks the expression of the initial disease relapse. Further, blockade of B7-1-mediated costimulation with anti-B7-1 F(ab) during disease remission from acute PLP139-151-induced disease prevents clinical relapses by inhibiting activation of PLP178-191-specific T cells. The protective effects of anti-B7-1 F(ab) treatment are long-lasting and highly effective even when administered following the initial relapsing episode wherein spreading to a MBP epitope (MBP84-104) is inhibited. Collectively, these data indicate that epitope spreading is B7-1 dependent, plays a major pathologic role in disease progression, and follows a hierarchical order associated with the relative encephalitogenic dominance of the myelin epitopes (PLP139-151 > PLP178-191 > MBP84-104).  相似文献   

18.
19.
Following intracerebral inoculation of Theiler's murine encephalomyelitis virus (TMEV), susceptible mouse strains develop a chronic demyelinating disease characterized by mononuclear cell-rich infiltrates in the central nervous system. Current evidence strongly supports an immune-mediated basis for myelin breakdown, with an effector role proposed for TMEV-specific, major histocompatibility class II-restricted delayed-type hypersensitivity, which temporally correlates with disease onset and remains chronically elevated in susceptible mice. This study examined the fine specificity of class II-restricted T cell responses in TMEV-infected mice to better define the relevant virus-encoded T cell determinant(s) responsible for triggering the demyelinating process, and to determine if class II-restricted neuroantigen-specific autoimmune responses could be detected in mice with TMEV-induced demyelination. The data clearly show that T cell responses in TMEV-infected mice are directed against determinants shared by closely related TMEV strains and are cross-reactive with related picornaviruses, such as encephalomyocarditis virus. In contrast, class II-restricted autoimmune responses against syngeneic mouse spinal cord homogenate and the two major protein components of myelin, myelin basic protein and proteolipid protein, are not demonstrable in susceptible SJL/J mice undergoing chronic TMEV-induced demyelinating disease, but are readily seen in SJL/J mice displaying chronic, relapsing experimental allergic encephalomyelitis. Cross-reactivity (or lack thereof), as determined by functional T cell analyses, was found to correlate with the extent of exact amino acid homology between the TMEV capsid proteins, the two neuroantigens, and related picornaviruses. The data thus do not support a major role for autoimmune responses against myelin proteins in TMEV-induced demyelinating disease, but are consistent with our previously proposed hypothesis that TMEV-specific T cell responses constitute a major effector mechanism of myelin breakdown.  相似文献   

20.
The role of myelin proteolipid apoprotein (PLP) in the central nervous system (CNS) immune response of rabbits has been investigated by analyzing the immunopathology of chronic experimental allergic encephalomyelitis (EAE) induced by sensitization with PLP. Clinical disease occurred in seven out of nine rabbits sensitized with bovine PLP and monitored for up to 6 mo. Positive delayed hypersensitivity skin test reactions to PLP occurred in all but one of the PLP-sensitized animals. All PLP-sensitized animals had meningeal and CNS parenchymal inflammation that correlated with disease severity. Serial blood samples were stained with a panel of antibodies to rabbit T and B cells, as well as Ia, and large and small mononuclear cell populations were analyzed by flow cytometry. Peripheral leukocyte population staining did not correlate with clinical signs or sensitization to PLP. Cryostat CNS tissue sections were stained with the same set of antibodies by using an immunoperoxidase technique, and positive cells and vessels were counted. T cells and macrophages were numerous and in equal numbers in perivascular parenchymal inflammatory infiltrates, whereas B cells were less numerous (p less than 0.001). T cells also diffusely infiltrated the parenchyma. Most perivascular inflammatory cells and many scattered parenchymal cells were Ia+; Ia vascular expression was increased over controls (p less than 0.001), and also correlated with disease severity. The immunopathology of this chronic EAE model is the same as that of whole CNS tissue- and myelin basic protein-induced EAE in other species, and is similar to that of multiple sclerosis. Cellular immune responses to PLP may therefore contribute to systemic and in situ responses in CNS tissue demyelinating diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号