首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Leptospira spp., the causative agents of leptospirosis, adhere to components of the extracellular matrix, a pivotal role for colonization of host tissues during infection. Previously, we and others have shown that Leptospira immunoglobulin-like proteins (Lig) of Leptospira spp. bind to fibronectin, laminin, collagen, and fibrinogen. In this study, we report that Leptospira can be immobilized by human tropoelastin (HTE) or elastin from different tissues, including lung, skin, and blood vessels, and that Lig proteins can bind to HTE or elastin. Moreover, both elastin and HTE bind to the same LigB immunoglobulin-like domains, including LigBCon4, LigBCen7′–8, LigBCen9, and LigBCen12 as demonstrated by enzyme-linked immunosorbent assay (ELISA) and competition ELISAs. The LigB immunoglobulin-like domain binds to the 17th to 27th exons of HTE (17–27HTE) as determined by ELISA (LigBCon4, KD = 0.50 μm; LigBCen7′–8, KD = 0.82 μm; LigBCen9, KD = 1.54 μm; and LigBCen12, KD = 0.73 μm). The interaction of LigBCon4 and 17–27HTE was further confirmed by steady state fluorescence spectroscopy (KD = 0.49 μm) and ITC (KD = 0.54 μm). Furthermore, the binding was enthalpy-driven and affected by environmental pH, indicating it is a charge-charge interaction. The binding affinity of LigBCon4D341N to 17–27HTE was 4.6-fold less than that of wild type LigBCon4. In summary, we show that Lig proteins of Leptospira spp. interact with elastin and HTE, and we conclude this interaction may contribute to Leptospira adhesion to host tissues during infection.Pathogenic Leptospira spp. are spirochetes that cause leptospirosis, a serious infectious disease of people and animals (1, 2). Weil syndrome, the severe form of leptospiral infection, leads to multiorgan damage, including liver failure (jaundice), renal failure (nephritis), pulmonary hemorrhage, meningitis, abortion, and uveitis (3, 4). Furthermore, this disease is not only prevalent in many developing countries, it is reemerging in the United States (3). Although leptospirosis is a serious worldwide zoonotic disease, the pathogenic mechanisms of Leptospira infection remain enigmatic. Recent breakthroughs in applying genetic tools to Leptospira may facilitate studies on the molecular pathogenesis of leptospirosis (58).The attachment of pathogenic Leptospira spp. to host tissues is critical in the early phase of Leptospira infection. Leptospira spp. adhere to host tissues to overcome mechanical defense systems at tissue surfaces and to initiate colonization of specific tissues, such as the lung, kidney, and liver. Leptospira invade hosts tissues through mucous membranes or injured epidermis, coming in contact with subepithelial tissues. Here, certain bacterial outer surface proteins serve as microbial surface components recognizing adhesive matrix molecules (MSCRAMMs)2 to mediate the binding of bacteria to different extracellular matrices (ECMs) of host cells (9). Several leptospiral MSCRAMMs have been identified (1018), and we speculate that more will be identified in the near future.Lig proteins are distributed on the outer surface of pathogenic Leptospira, and the expression of Lig protein is only found in low passage strains (14, 16, 17), probably induced by environmental cues such as osmotic or temperature changes (19). Lig proteins can bind to fibrinogen and a variety of ECMs, including fibronectin (Fn), laminin, and collagen, thereby mediating adhesion to host cells (2023). Lig proteins also constitute good vaccine candidates (2426).Elastin is a component of ECM critical to tissue elasticity and resilience and is abundant in skin, lung, blood vessels, placenta, uterus, and other tissues (2729). Tropoelastin is the soluble precursor of elastin (28). During the major phase of elastogenesis, multiple tropoelastin molecules associate through coacervation (3032). Because of the abundance of elastin or tropoelastin on the surface of host cells, several bacterial MSCRAMMs use elastin and/or tropoelastin to mediate adhesion during the infection process (3335).Because leptospiral infection is known to cause severe pulmonary hemorrhage (36, 37) and abortion (38), we hypothesize that some leptospiral MSCRAMMs may interact with elastin and/or tropoelastin in these elastin-rich tissues. This is the first report that Lig proteins of Leptospira interact with elastin and tropoelastin, and the interactions are mediated by several specific immunoglobulin-like domains of Lig proteins, including LigBCon4, LigBCen7′–8, LigBCen9, and LigBCen12, which bind to the 17th to 27th exons of human tropoelastin (HTE).  相似文献   

2.
The process of salvaging sugars released from extracellular matrix, during plant cell growth and development, is not well understood, and many molecular components remain to be identified. Here we identify and functionally characterize a unique Arabidopsis gene encoding an α-d-galacturonic acid-1-phosphate kinase (GalAK) and compare it with galactokinase. The GalAK gene appeared to be expressed in all tissues implicating that glycose salvage is a common catabolic pathway. GalAK catalyzes the ATP-dependent conversion of α-d-galacturonic acid (d-GalA) to α-d-galacturonic acid-1-phosphate (GalA-1-P). This sugar phosphate is then converted to UDP-GalA by a UDP-sugar pyrophosphorylase as determined by a real-time 1H NMR-based assay. GalAK is a distinct member of the GHMP kinase family that includes galactokinase (G), homoserine kinase (H), mevalonate kinase (M), and phosphomevalonate kinase (P). Although these kinases have conserved motifs for sugar binding, nucleotide binding, and catalysis, they do have subtle difference. For example, GalAK has an additional domain near the sugar-binding motif. Using site-directed mutagenesis we established that mutation in A368S reduces phosphorylation activity by 40%; A41E mutation completely abolishes GalAK activity; Y250F alters sugar specificity and allows phosphorylation of d-glucuronic acid, the 4-epimer of GalA. Unlike many plant genes that undergo duplication, GalAK occurs as a single copy gene in vascular plants. We suggest that GalAK generates GalA-1-P from the salvaged GalA that is released during growth-dependent cell wall restructuring, or from storage tissue. The GalA-1-P itself is then available for use in the formation of UDP-GalA required for glycan synthesis.d-Galacturonic acid (d-GalA)3 is a quantitatively major glycose present in numerous plant polysaccharides including pectins and arabinogalactan proteins (1, 2). The synthesis of these polysaccharides requires a large number of glycosyltransferases and diverse nucleotide-sugar (NDP-sugar) donors (1, 3). Some of these NDP-sugars are formed by interconversion of pre-existing NDP-sugars and by salvage pathways. For example, the main pathway for UDP-GalA formation is the 4-epimerization of UDP-GlcA, a reaction catalyzed by UDP-GlcA 4-epimerase (46). However, in ripening Fragaria fruit d-GalA is incorporated into pectin (7). It is likely that a sugar kinase converts the d-GalA to GalA-1-P (8), which is then converted to UDP-GalA by a nonspecific UDP-sugar pyrophosphorylase (9). Myo-inositol may also be a source of GalA for polysaccharide biosynthesis (10).Galacturonic acid is likely to be generated by enzyme-catalyzed hydrolysis of pectic polysaccharides in plant tissues. Polysaccharide hydrolase activities are present in germinating seeds (11, 12), in germinating and elongating pollen (1315), and in ripening fruit (14). Thus, monosaccharide salvage pathways may be required for normal plant growth and development.Numerous sugar-1-P kinases, including d-Gal-1-P kinase (16), l-Ara-1-P kinase (17), and l-Fuc-1-P kinase (18), have been described (19), but no d-GalA-1-P kinase has been identified in any species to account for the hydrolysis and recycle of pectic polymers. The subsequent pyrophosphorylation of UDP-sugars could be carried out by UDP-sugar pyrophosphorylases (20).Here, we report the identification and characterization of a functional galacturonic acid kinase (GalAK). We compared the activity of GalAK with a previously uncharacterized Arabidopsis GalK and discussed the evolution of these sugar kinase members of the GHMP kinase.  相似文献   

3.
Bacillus anthracis elaborates a poly-γ-d-glutamic acid capsule that protects bacilli from phagocytic killing during infection. The enzyme CapD generates amide bonds with peptidoglycan cross-bridges to anchor capsular material within the cell wall envelope of B. anthracis. The capsular biosynthetic pathway is essential for virulence during anthrax infections and can be targeted for anti-infective inhibition with small molecules. Here, we present the crystal structures of the γ-glutamyltranspeptidase CapD with and without α-l-Glu-l-Glu dipeptide, a non-hydrolyzable analog of poly-γ-d-glutamic acid, in the active site. Purified CapD displays transpeptidation activity in vitro, and its structure reveals an active site broadly accessible for poly-γ-glutamate binding and processing. Using structural and biochemical information, we derive a mechanistic model for CapD catalysis whereby Pro427, Gly428, and Gly429 activate the catalytic residue of the enzyme, Thr352, and stabilize an oxyanion hole via main chain amide hydrogen bonds.Spores of Bacillus anthracis are the causative agents of anthrax disease (1). Upon entry into their hosts, spores germinate and replicate as vegetative bacilli (1). The formation of a thick capsule encasing vegetative forms enables bacilli to escape granulocyte0 and macrophage-mediated phagocytosis, and the pathogen eventually disseminates throughout all tissues of an infected host (2, 3). Bacilli secrete lethal and edema toxins, which cause macrophage necrosis and precipitate anthrax death (47). The genes providing for toxin and capsule formation are carried on two large virulence plasmids, pXO1 and pXO2, respectively (8, 9). Loss of any one plasmid leads to virulence attenuation, a feature that has been exploited for the generation of vaccine-type strains (1014).Unlike polysaccharide-based capsules that are commonly found in bacterial pathogens, the capsular material of B. anthracis is composed of poly-γ-d-glutamic acid (PDGA)3 (3). All the genes necessary for capsule biogenesis are located in the capBCADE gene cluster on plasmid pXO2 (1519). CapD is the only protein of this cluster that is located on the bacterial surface (16). CapD shares sequence similarity with bacterial and mammalian γ-glutamyl transpeptidases (GGTs; EC 2.3.2.2) (17). GGTs belong to the N-terminal nucleophile hydrolases (Ntn) family (Protein Structure Classification (Class (C), Architecture (A), Topology (T) and Homologous superfamily (H)) (CATH) id 3.60.60.10) (20). These enzymes assemble as a single polypeptide chain and acquire activity by undergoing autocatalytic processing to heterodimer.Bacterial GGTs catalyze the first step in glutathione degradation. For example, Helicobacter pylori GGT removes glutamate from glutathione tripeptide via the formation of a γ-glutamyl acyl enzyme. This intermediate is resolved by the nucleophilic attack of a water molecule, causing the release of γ-glutamate (21, 22). Mammalian enzymes transfer the γ-glutamyl intermediate to the amino group of a peptide, thereby completing a transpeptidation reaction (23). The B. anthracis CapD precursor is also programmed for autocatalytic cleavage (17). Similar to mammalian GGTs, CapD also catalyzes a transpeptidation reaction; however, this reaction promotes the covalent linkage of PDGA to the bacterial envelope (16, 24). We have recently demonstrated the cell wall anchor structure of capsule filaments in the envelope of B. anthracis, identifying an amide bond between the terminal carboxyl group of PDGA and the side amino group of m-diaminopimelic acid cross-bridges within muropeptides (24). The CapD-catalyzed transpeptidation reaction could be recapitulated in vitro using purified recombinant CapD, γ-d-Glun peptide, and muropeptide substrates (24). In the absence of the physiological nucleophile (muropeptides), CapD acyl intermediates can be resolved by the nucleophilic attack of water to generate hydrolysis products.Here, we report the high resolution crystal structure of CapD in the absence and presence of a glutamate dipeptide and compare it with the known structures of H. pylori and Escherichia coli GGTs. By combining structural, genetic, and biochemical approaches, we identify the unique features of CapD that distinguish the protein from GGTs and detect several residues that are important for CapD autocatalytic cleavage and PDGA processing. This structural information will further the development of small molecule inhibitors that disrupt CapD activity and that may be useful as anti-infective therapies for anthrax.  相似文献   

4.
Suspension-cultured Chenopodium album L. cells are capable of continuous, long-term growth on a boron-deficient medium. Compared with cultures grown with boron, these cultures contained more enlarged and detached cells, had increased turbidity due to the rupture of a small number of cells, and contained cells with an increased cell wall pore size. These characteristics were reversed by the addition of boric acid (≥7 μm) to the boron-deficient cells. C. album cells grown in the presence of 100 μm boric acid entered the stationary phase when they were not subcultured, and remained viable for at least 3 weeks. The transition from the growth phase to the stationary phase was accompanied by a decrease in the wall pore size. Cells grown without boric acid or with 7 μm boric acid were not able to reduce their wall pore size at the transition to the stationary phase. These cells could not be kept viable in the stationary phase, because they continued to expand and died as a result of wall rupture. The addition of 100 μm boric acid prevented wall rupture and the wall pore size was reduced to normal values. We conclude that boron is required to maintain the normal pore structure of the wall matrix and to mechanically stabilize the wall at growth termination.The ultrastructure and physical properties of plant cell walls are known to be affected by boron deficiency (Kouchi and Kumazawa, 1976; Hirsch and Torrey, 1980; Fischer and Hecht-Buchholz, 1985; Matoh et al., 1992; Hu and Brown, 1994; Findeklee and Goldbach, 1996). Moreover, boron is predominantly localized in the cell wall when plants are grown with suboptimal boron (Loomis and Durst, 1991; Matoh et al., 1992; Hu and Brown, 1994; Hu et al., 1996). In radish, >80% of the cell wall boron is present in the pectic polysaccharide RG-II (Matoh et al., 1993; Kobayashi et al., 1996), which is now known to exist as a dimer that is cross-linked by a borate ester between two apiosyl residues (Kobayashi et al., 1996; O''Neill et al., 1996). Dimeric RG-II is unusually stable at low pH and is present in a large number of plant species (Ishii and Matsunaga, 1996; Kobayashi et al., 1996, 1997; Matoh et al., 1996; O''Neill et al., 1996; Pellerin et al., 1996; Kaneko et al., 1997). The widespread occurrence and conserved structure of RG-II (Darvill et al., 1978; O''Neill et al., 1990) have led to the suggestion that borate ester cross-linked RG-II is required for the development of a normal cell wall (O''Neill et al., 1996; Matoh, 1997).One approach for determining the function of boron in plant cell walls is to compare the responses to boron deficiency of growing plant cells that are dividing and synthesizing primary cell walls with those of growth-limited plant cells in which the synthesis of primary cell walls is negligible. Suspension-cultured cells are well suited for this purpose because they may be reversibly transferred from a growth phase to a stationary phase. Continuous cell growth phase is maintained by frequent transfer of the cells into new growth medium (King, 1981; Kandarakov et al., 1994), whereas a stationary cell population is obtained by feeding the cells with Suc and by not subculturing them. Cells in the stationary phase are characterized by mechanically stabilized primary walls and reduced biosynthetic activity. Here we describe the responses of suspension-cultured Chenopodium album L. cells in the growth and stationary phases to boron deficiency. These cells have a high specific-growth rate, no significant lag phase, and reproducible changes in their wall pore size during the transition from the growth phase to the stationary phase (Titel et al., 1997).  相似文献   

5.
Lysophosphatidic acid (LPA), a bioactive phospholipid, induces a wide range of cellular effects, including gene expression, cytoskeletal rearrangement, and cell survival. We have previously shown that LPA stimulates secretion of pro- and anti-inflammatory cytokines in bronchial epithelial cells. This study provides evidence that LPA enhances pulmonary epithelial barrier integrity through protein kinase C (PKC) δ- and ζ-mediated E-cadherin accumulation at cell-cell junctions. Treatment of human bronchial epithelial cells (HBEpCs) with LPA increased transepithelial electrical resistance (TER) by ∼2.0-fold and enhanced accumulation of E-cadherin to the cell-cell junctions through Gαi-coupled LPA receptors. Knockdown of E-cadherin with E-cadherin small interfering RNA or pretreatment with EGTA (0.1 mm) prior to LPA (1 μm) treatment attenuated LPA-induced increases in TER in HBEpCs. Furthermore, LPA induced tyrosine phosphorylation of focal adhesion kinase (FAK) and overexpression of the FAK inhibitor, and FAK-related non-kinase-attenuated LPA induced increases in TER and E-cadherin accumulation at cell-cell junctions. Overexpression of dominant negative protein kinase δ and ζ attenuated LPA-induced phosphorylation of FAK, accumulation of E-cadherin at cell-cell junctions, and an increase in TER. Additionally, lipopolysaccharide decreased TER and induced E-cadherin relocalization from cell-cell junctions to cytoplasm in a dose-dependent fashion, which was restored by LPA post-treatment in HBEpCs. Intratracheal post-treatment with LPA (5 μm) reduced LPS-induced neutrophil influx, protein leak, and E-cadherin shedding in bronchoalveolar lavage fluids in a murine model of acute lung injury. These data suggest a protective role of LPA in airway inflammation and remodeling.The airway epithelium is the site of first contact for inhaled environmental stimuli, functions as a physical barrier to environmental insult, and is an essential part of innate immunity. Epithelial barrier disruption is caused by inhaled allergens, dust, and irritants, resulting in inflammation, bronchoconstriction, and edema as seen in asthma and other respiratory diseases (14). Furthermore, increased epithelial permeability also results in para-cellular leakage of large proteins, such as albumin, immunoglobulin G, and polymeric immunoglobulin A, into the airway lumen (5, 6). The epithelial cell-cell junctional complex is composed of tight junctions, adherens junctions, and desmosomes. These adherens junctions play a pivotal role in regulating the activity of the entire junctional complex because the formation of adherens junctions subsequently leads to the formation of other cell-cell junctions (79). The major adhesion molecules in the adherens junctions are the cadherins. E-cadherin is a member of the cadherin family that mediates calcium-dependent cell-cell adhesion. The N-terminal ectodomain of E-cadherin contains homophilic interaction specificity, and the cytoplasmic domain binds to catenins, which interact with actin (1013). Plasma membrane localization of E-cadherin is critical for the maintenance of epithelial cell-cell junctions and airway epithelium integrity (7, 10, 14). A decrease of adhesive properties of E-cadherin is related to the loss of differentiation and the subsequent acquisition of a higher motility and invasiveness of epithelial cells (10, 14, 15). Dislocation or shedding of E-cadherin in the airway epithelium induces epithelial shedding and increases airway permeability in lung airway diseases (10, 14, 16). In an ovalbumin-challenged guinea pig model of asthma, it has been demonstrated that E-cadherin is dislocated from the lateral margins of epithelial cells (10). Histamine increases airway para-cellular permeability and results in an increased susceptibility of airway epithelial cells to adenovirus infection by interrupting E-cadherin adhesion (14). Serine phosphorylation of E-cadherin by casein kinase II, GSK-3β, and PKD1/PKC2 μ enhanced E-cadherin-mediated cell-cell adhesion in NIH3T3 fibroblasts and LNCaP prostate cancer cells (11, 17). However, the regulation and mechanism by which E-cadherin is localized within the pulmonary epithelium is not fully known, particularly during airway remodeling.LPA, a naturally occurring bioactive lipid, is present in body fluids, such as plasma, saliva, follicular fluid, malignant effusions, and bronchoalveolar lavage (BAL) fluids (1820). Six distinct high affinity cell-surface LPA receptors, LPA-R1–6, have been cloned and described in mammals (2126). Extracellular activities of LPA include cell proliferation, motility, and cell survival (2730). LPA exhibits a wide range of effects on differing cell types, including pulmonary epithelial, smooth muscle, fibroblasts, and T cells (3135). LPA augments migration and cytokine synthesis in lymphocytes and induces chemotaxis of Jurkat T cells through Matrigel membranes (34). LPA induces airway smooth muscle cell contractility, proliferation, and airway repair and remodeling (35, 36). LPA also potently stimulates IL-8 (31, 3739), IL-13 receptor α2 (IL-13Rα2) (40), and COX-2 gene expression and prostaglandin E2 release (41) in HBEpCs. Prostaglandin E2 and IL-13Rα2 have anti-inflammatory properties in pulmonary inflammation (42, 43). These results suggest that LPA may play a protective role in lung disease by stimulating an innate immune response while simultaneously attenuating the adaptive immune response. Furthermore, intravenous injection with LPA attenuated bacterial endotoxin-induced plasma tumor necrosis factor-α production and myeloperoxidase activity in the lungs of mice (44), suggesting an anti-inflammatory role for LPA in a murine model of sepsis.We have reported that LPA induces E-cadherin/c-Met accumulation in cell-cell contacts and increases TER in HBEpCs (45). Here, for the first time, we report that LPA-induced increases in TER are dependent on PKCδ, PKCζ, and FAK-mediated E-cadherin accumulation at cell-cell junctions. Furthermore, we demonstrate that post-treatment of LPA rescues LPS-induced airway epithelial disruption in vitro and reduces E-cadherin shedding in a murine model of ALI. This study identifies the molecular mechanisms linking the LPA and LPA receptors to maintaining normal pulmonary epithelium barrier function, which is critical in developing novel therapies directed at ameliorating pulmonary diseases.  相似文献   

6.
7.
8.
The orphan G-protein-coupled receptor GPR109B is the result of a recent gene duplication of the nicotinic acid and ketone body receptor GPR109A being found in humans but not in rodents. Like GPR109A, GPR109B is predominantly expressed in adipocytes and is supposed to mediate antilipolytic effects. Here we show that GPR109B serves as a receptor for the β-oxidation intermediate 3-OH-octanoic acid, which has antilipolytic activity on human but not on murine adipocytes. GPR109B is coupled to Gi-type G-proteins and is activated by 2- and 3-OH-octanoic acid with EC50 values of about 4 and 8 μm, respectively. Interestingly, 3-OH-octanoic acid plasma concentrations reach micromolar concentrations under conditions of increased β-oxidation rates, like in diabetic ketoacidosis or under a ketogenic diet. These data suggest that the ligand receptor pair 3-OH-octanoic acid/GPR109B mediates in humans a negative feedback regulation of adipocyte lipolysis to counteract prolipolytic influences under conditions of physiological or pathological increases in β-oxidation rates.Triacylglycerols stored in the white adipose tissue serve as the major energy reserve in higher eukaryotes (1). Although they are constantly turned over by lipolysis and re-esterification, their mobilization and storage are precisely balanced by various hormones and other factors depending on the nutritional state (2). The net rate of lipolysis is increased during fasting or periods of increased energy demand. Fatty acids generated via lipolysis undergo β-oxidation in the muscle and liver to serve directly as a source of energy or as a precursor for ketone bodies (3). The major intracellular regulator of lipolysis is cyclic AMP, which stimulates cAMP-dependent kinase to activate lipolytic enzymes (2, 46). This lipolytic pathway is induced, for example, via β-adrenergic receptors that couple to the G-protein Gs and thereby stimulate adenylyl cyclase (7, 8). To adjust lipolysis at the appropriate rate, the effects of prolipolytic stimuli are balanced by various antilipolytic influences. Besides insulin, which promotes the degradation of cAMP via activation of phosphodiesterase 3B (2, 5, 7), several antilipolytic stimuli decrease cAMP levels by activation of Gi-coupled receptors, which mediate an inhibition of adenylyl cyclase (5, 8). One of these receptors, GPR109A, has recently been shown to mediate the anti-lipolytic effects of high concentrations of the ketone body 3-OH-butyrate thereby providing a negative feedback mechanism during fasting (9, 10). GPR109A also binds nicotinic acid (1113) and mediates the anti-lipolytic effects of this anti-dyslipidemic drug (12).GPR109B, a close relative of GPR109A, is the result of a recent gene duplication being present in humans but not in rodents and most other mammals (14). GPR109B differs from GPR109A in an extended C-terminal tail as well as in 16 amino acids (11, 13). Despite its high homology to GPR109A, GPR109B does not bind nicotinic acid or 3-OH-butyrate with reasonable affinity (10, 11, 13). Because GPR109A and GPR109B have very similar expression patterns (11, 13, 15) and are likely to have the same basic signaling properties, agonists of GPR109B are expected to have physiological and pharmacological effects comparable with those of the GPR109A agonist 3-OH-butyrate and nicotinic acid, respectively. Recently, several synthetic compounds as well as various aromatic d-amino acids have been shown to be selective agonists at GPR109B (1618). However, endogenous physiological anti-lipolytic ligands of GPR109B are unknown.In this study we tested endogenous carboxylic acids for their ability to activate GPR109B. We found that the fatty acid β-oxidation intermediate 3-OH-octanoic acid is a highly specific agonist of GPR109B. 3-OH-octanoic acid has anti-lipolytic activity, and its plasma concentration in humans reflects the β-oxidation flux. Our data suggest that 3-OH-octanoic acid and GPR109B mediate a negative feedback regulation of adipocyte lipolysis.  相似文献   

9.
Protein degradation provides an important regulatory mechanism used to control cell cycle progression and many other cellular pathways. To comprehensively analyze the spatial control of protein degradation in U2OS osteosarcoma cells, we have combined drug treatment and SILAC-based quantitative mass spectrometry with subcellular and protein fractionation. The resulting data set analyzed more than 74,000 peptides, corresponding to ∼5000 proteins, from nuclear, cytosolic, membrane, and cytoskeletal compartments. These data identified rapidly degraded proteasome targets, such as PRR11 and highlighted a feedback mechanism resulting in translation inhibition, induced by blocking the proteasome. We show this is mediated by activation of the unfolded protein response. We observed compartment-specific differences in protein degradation, including proteins that would not have been characterized as rapidly degraded through analysis of whole cell lysates. Bioinformatic analysis of the entire data set is presented in the Encyclopedia of Proteome Dynamics, a web-based resource, with proteins annotated for stability and subcellular distribution.Targeted protein degradation is an important regulatory mechanism that allows co-ordination of cellular pathways in response to environmental and temporal stimuli (1). The control of diverse biochemical pathways, including cell cycle progression and the response to DNA damage, is mediated, at least in part, by dynamic alterations in protein degradation (2). Previous large scale proteomics studies in mammalian cells have shown that the rate of protein degradation can vary from the timescale of minutes, to essentially infinite stability for metastable proteins (38).Most intracellular proteins have similar degradation rates, with a half-life approximating the cell doubling rate. Under 5% of proteins display degradation rates more than threefold faster than the proteome average (35, 7). However, degradation rates for individual proteins can change, for example depending on either the cell cycle stage, or signaling events, and can also vary depending on subcellular localization. Disruption of such regulated protein stability underlies the disease mechanisms responsible for forms of cancer, e.g. p53 (9, 10) and the proto-oncogene c-Myc (11).Detection of rapidly degraded proteins can be difficult because of their low abundance. However, advances in mass spectrometry based proteomics have enabled in-depth quantitative analysis of cellular proteomes (1214). Stable isotope labeling by amino acids in cell culture (SILAC)1 (15), has been widely used to measure protein properties such as abundance, interactions, modifications, turnover, and subcellular localization under different conditions (16). Subcellular fractionation and protein size separation are also powerful techniques that enhance in-depth analysis of cellular proteomes. Not only do these fractionation techniques increase total proteome coverage, they also provide biological insight regarding how protein behavior differs between subcellular compartments. For example, subcellular fractionation has highlighted differences in the rate of ribosomal protein degradation between the nucleus and cytoplasm, (7, 17). Other studies have also demonstrated the benefit of in-depth subcellular fractionation and created methods for the characterization of how proteomes are localized in organelles (1820).In this study we have used SILAC-based quantitative mass spectrometry combined with extensive subcellular and protein-level fractionation to identify rapidly degraded proteins in human U2OS cells. We provide a proteome level characterization of a major feedback mechanism involving inhibition of protein translation when the proteasome is inhibited. We also present the Encyclopedia of Proteome Dynamics, a user-friendly online resource providing access to the entire data set.  相似文献   

10.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

11.
In this study, we report that the purified wild-type FANCI (Fanconi anemia complementation group I) protein directly binds to a variety of DNA substrates. The DNA binding domain roughly encompasses residues 200–1000, as suggested by the truncation study. When co-expressed in insect cells, a small fraction of FANCI forms a stable complex with FANCD2 (Fanconi anemia complementation group D2). Intriguingly, the purified FANCI-FANCD2 complex preferentially binds to the branched DNA structures when compared with either FANCI or FANCD2 alone. Co-immunoprecipitation with purified proteins indicates that FANCI interacts with FANCD2 through its C-terminal amino acid 1001–1328 fragment. Although the C terminus of FANCI is dispensable for direct DNA binding, it seems to be involved in the regulation of DNA binding activity. This notion is further enhanced by two C-terminal point mutations, R1285Q and D1301A, which showed differentiated DNA binding activity. We also demonstrate that FANCI forms discrete nuclear foci in HeLa cells in the absence or presence of exogenous DNA damage. The FANCI foci are colocalized perfectly with FANCD2 and partially with proliferating cell nuclear antigen irrespective of mitomycin C treatment. An increased number of FANCI foci form and become resistant to Triton X extraction in response to mitomycin C treatment. Our data suggest that the FANCI-FANCD2 complex may participate in repair of damaged replication forks through its preferential recognition of branched structures.Fanconi anemia (FA)3 is a genetic disorder characterized by chromosome instability, predisposition to cancer, hypersensitivity to DNA cross-linking agents, developmental abnormalities, and bone marrow failure (19). There are at least 13 distinct FA complementation groups, each of which is associated with an identified gene (2, 9, 10). Eight of them are components of the FA core complex (FANC A, B, C, E, F, G, L, and M) that is epistatic to the monoubiquitination of both FANCI and FANCD2, a key event to initiate interstrand cross-link (ICL) repair (2, 9, 11). Downstream of or parallel to the FANCI and FANCD2 monoubiquitination are the proteins involved in double strand break repair and breast cancer susceptibility (i.e. FANCD1/BRCA2, FANCJ/BRIP1, and FANCN/PALB2) (2, 9).FANCI is the most recently identified FA gene (1113). FANCI protein is believed to form a FANCI-FANCD2 (ID) complex with FANCD2, because they co-immunoprecipitate with each other from cell lysates and their stabilities are interdependent of each other (9, 11, 13). FANCI and FANCD2 are paralogs to each other, since they share sequence homology and co-evolve in the same species (11). Both FANCI and FANCD2 can be phosphorylated by ATR/ATM (ataxia telangiectasia and Rad3-related/ataxia telangiectasia-mutated) kinases under genotoxic stress (11, 14, 15). The phosphorylation of FANCI seems to function as a molecular switch to turn on the FA repair pathway (16). The monoubiquitination of FANCD2 at lysine 561 plays a critical role in cellular resistance to DNA cross-linking agents and is required for FANCD2 to form damage-induced foci with BRCA1, BRCA2, RAD51, FANCJ, FANCN, and γ-H2AX on chromatin during S phase of the cell cycle (1725). In response to DNA damage or replication stress, FANCI is also monoubiquitinated at lysine 523 and recruited to the DNA repair nuclear foci (11, 13). The monoubiquitination of both FANCI and FANCD2 depends on the FA core complex (11, 13, 26), and the ubiquitination of FANCI relies on the FANCD2 monoubiquitination (2, 11). In an in vitro minimally reconstituted system, FANCI enhances FANCD2 monoubiquitination and increases its specificity toward the in vivo ubiquitination site (27).FANCI is a leucine-rich peptide (14.8% of leucine residues) with limited sequence information to indicate which processes it might be involved in. Besides the monoubiquitination site Lys523 and the putative nuclear localization signals (Fig. 1A), FANCI contains both ARM (armadillo) repeats and a conserved C-terminal EDGE motif as FANCD2 does (11, 28). The EDGE sequence in FANCD2 is not required for monoubiquitination but is required for mitomycin C (MMC) sensitivity (28). The ARM repeats form α-α superhelix folds and are involved in mediating protein-protein interactions (11, 29). In addition, FANCI, at its N terminus, contains a leucine zipper domain (aa 130–151) that could be involved in mediating protein-protein or protein-DNA interactions (Fig. 1A) (3033). FANCD2, the paralog of FANCI, was reported to bind to double strand DNA ends and Holliday junctions (34).Open in a separate windowFIGURE 1.Purified human FANCI binds to DNA promiscuously. A, schematic diagram of predicted FANCI motifs and mutagenesis strategy to define the DNA binding domain. The ranges of numbers indicate how FANCI was truncated (e.g. 801–1328 represents FANCI-(801–1328)). NLS, predicted nuclear localization signal (aa 779–795 and 1323–1328); K523, lysine 523, the monoubiquitination site. The leucine zipper (orange bars, aa 130–151), ARM repeats (green bars), and EDGE motif (blue bars) are indicated. Red bars with a slash indicate the point mutations shown on the left. B, SDS-PAGE of the purified proteins stained with Coomassie Brilliant Blue R-250. R1285Q and D1301A are two point mutants of FANCI. All FANCI variants are tagged by hexahistidine. FANCD2 is in its native form. Protein markers in kilodaltons are indicated. C, titration of WT-FANCI for the DNA binding activity. Diagrams of the DNA substrates are shown at the top of each set of reactions. *, 32P-labeled 5′-end. HJ, Holliday junction. Concentrations of FANCI were 0, 20, 40, 60, and 80 nm (ascending triangles). The substrate concentration was 1 nm. Protein-DNA complex is indicated by an arrow. D, supershift assay. 1 nm of ssDNA was incubated with PBS (lane 1), 80 nm FANCI alone (lane 2), and 80 nm FANCI preincubated with a specific FANCI antibody (lane 3) in the condition described under “Experimental Procedures.”In order to delineate the function of FANCI protein, we purified the recombinant FANCI from the baculovirus expression system. In this study, we report the DNA binding activity of FANCI. Unlike FANCD2, FANCI binds to different DNA structures, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), 5′-tailed, 3′-tailed, splayed arm, 5′-flap, 3′-flap, static fork, and Holliday junction with preference toward branched structures in the presence of FANCD2. Our data suggest that the dynamic DNA binding activity of FANCI and the preferential recognition of branched structures by the ID complex are likely to be the mechanisms to initiate downstream repair events.  相似文献   

12.
Paneth cells are a secretory epithelial lineage that release dense core granules rich in host defense peptides and proteins from the base of small intestinal crypts. Enteric α-defensins, termed cryptdins (Crps) in mice, are highly abundant in Paneth cell secretions and inherently resistant to proteolysis. Accordingly, we tested the hypothesis that enteric α-defensins of Paneth cell origin persist in a functional state in the mouse large bowel lumen. To test this idea, putative Crps purified from mouse distal colonic lumen were characterized biochemically and assayed in vitro for bactericidal peptide activities. The peptides comigrated with cryptdin control peptides in acid-urea-PAGE and SDS-PAGE, providing identification as putative Crps. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry experiments showed that the molecular masses of the putative α-defensins matched those of the six most abundant known Crps, as well as N-terminally truncated forms of each, and that the peptides contain six Cys residues, consistent with identities as α-defensins. N-terminal sequencing definitively revealed peptides with N termini corresponding to full-length, (des-Leu)-truncated, and (des-Leu-Arg)-truncated N termini of Crps 1–4 and 6. Crps from mouse large bowel lumen were bactericidal in the low micromolar range. Thus, Paneth cell α-defensins secreted into the small intestinal lumen persist as intact and functional forms throughout the intestinal tract, suggesting that the peptides may mediate enteric innate immunity in the colonic lumen, far from their upstream point of secretion in small intestinal crypts.Antimicrobial peptides (AMPs)2 are released by epithelial cells onto mucosal surfaces as effectors of innate immunity (15). In mammals, most AMPs derive from two major families, the cathelicidins and defensins (6). The defensins comprise the α-, β-, and θ-defensin subfamilies, which are defined by the presence of six cysteine residues paired in characteristic tridisulfide arrays (7). α-Defensins are highly abundant in two primary cell lineages: phagocytic leukocytes, primarily neutrophils, of myeloid origin and Paneth cells, which are secretory epithelial cells located at the base of the crypts of Lieberkühn in the small intestine (810). Neutrophil α-defensins are stored in azurophilic granules and contribute to non-oxidative microbial cell killing in phagolysosomes (11, 12), except in mice whose neutrophils lack defensins (13). In the small bowel, α-defensins and other host defense proteins (1418) are released apically as components of Paneth cell secretory granules in response to cholinergic stimulation and after exposure to bacterial antigens (19). Therefore, the release of Paneth cell products into the crypt lumen is inferred to protect mitotically active crypt cells from colonization by potential pathogens and confer protection against enteric infection (7, 20, 21).Under normal, homeostatic conditions, Paneth cells are not found outside the small bowel, although they may appear ectopically in response to local inflammation throughout the gastrointestinal tract (22, 23). Paneth cell numbers increase progressively throughout the small intestine, occurring at highest numbers in the distal ileum (24). Mouse Paneth cells express numerous α-defensin isoforms, termed cryptdins (Crps) (25), that have broad spectrum antimicrobial activities (6, 26). Collectively, α-defensins constitute approximately seventy percent of the bactericidal peptide activity in mouse Paneth cell secretions (19), selectively killing bacteria by membrane-disruptive mechanisms (2730). The role of Paneth cell α-defensins in gastrointestinal mucosal immunity is evident from studies of mice transgenic for human enteric α-defensin-5, HD-5, which are immune to infection by orally administered Salmonella enterica sv. typhimurium (S. typhimurium) (31).The biosynthesis of mature, bactericidal α-defensins from their inactive precursors requires activation by lineage-specific proteolytic convertases. In mouse Paneth cells, inactive ∼8.4-kDa Crp precursors are processed intracellularly into microbicidal ∼4-kDa Crps by specific cleavage events mediated by matrix metalloproteinase-7 (MMP-7) (32, 33). MMP-7 null mice exhibit increased susceptibility to systemic S. typhimurium infection and decreased clearance of orally administered non-invasive Escherichia coli (19, 32). Although the α-defensin proregions are sensitive to proteolysis, the mature, disulfide-stabilized peptides resist digestion by their converting enzymes in vitro, whether the convertase is MMP-7 (32), trypsin (34), or neutrophil serine proteinases (35). Because α-defensins resist proteolysis in vitro, we hypothesized that Paneth cell α-defensins resist degradation and remain in a functional state in the large bowel, a complex, hostile environment containing varied proteases of both host and microbial origin.Here, we report on the isolation and characterization of a population of enteric α-defensins from the mouse colonic lumen. Full-length and N-terminally truncated Paneth cell α-defensins were identified and are abundant in the distal large bowel lumen.  相似文献   

13.
Collapsin response mediator protein 2 (CRMP2) is an intracellular protein that mediates signaling of Semaphorin3A (Sema3A), a repulsive axon guidance molecule. Fyn, a Src-type tyrosine kinase, is involved in the Sema3A signaling. However, the relationship between CRMP2 and Fyn in this signaling pathway is still unknown. In our research, we demonstrated that Fyn phosphorylated CRMP2 at Tyr32 residues in HEK293T cells. Immunohistochemical analysis using a phospho-specific antibody at Tyr32 of CRMP showed that Tyr32-phosphorylated CRMP was abundant in the nervous system, including dorsal root ganglion neurons, the molecular and Purkinje cell layer of adult cerebellum, and hippocampal fimbria. Overexpression of a nonphosphorylated mutant (Tyr32 to Phe32) of CRMP2 in dorsal root ganglion neurons interfered with Sema3A-induced growth cone collapse response. These results suggest that Fyn-dependent phosphorylation of CRMP2 at Tyr32 is involved in Sema3A signaling.Collapsin response mediator proteins (CRMPs)4 have been identified as intracellular proteins that mediate Semaphorin3A (Sema3A) signaling in the nervous system (1). CRMP2 is one of the five members of the CRMP family. CRMPs also mediate signal transduction of NT3, Ephrin, and Reelin (24). CRMPs interact with several intracellular molecules, including tubulin, Numb, kinesin1, and Sra1 (58). CRMPs are involved in axon guidance, axonal elongation, cell migration, synapse maturation, and the generation of neuronal polarity (1, 2, 4, 5).CRMP family proteins are known to be the major phosphoproteins in the developing brain (1, 9). CRMP2 is phosphorylated by several Ser/Thr kinases, such as Rho kinase, cyclin-dependent kinase 5 (Cdk5), and glycogen synthase kinase 3β (GSK3β) (2, 1013). The phosphorylation sites of CRMP2 by these kinases are clustered in the C terminus and have already been identified. Rho kinase phosphorylates CRMP2 at Thr555 (10). Cdk5 phosphorylates CRMP2 at Ser522, and this phosphorylation is essential for sequential phosphorylations by GSK3β at Ser518, Thr514, and Thr509 (2, 1113). These phosphorylations disrupt the interaction of CRMP2 with tubulin or Numb (2, 3, 13). The sequential phosphorylation of CRMP2 by Cdk5 and GSK3β is an essential step in Sema3A signaling (11, 13). Furthermore, the neurofibrillary tangles in the brains of people with Alzheimer disease contain hyperphosphorylated CRMP2 at Thr509, Ser518, and Ser522 (14, 15).CRMPs are also substrates of several tyrosine kinases. The phosphorylation of CRMP2 by Fes/Fps and Fer has been shown to be involved in Sema3A signaling (16, 17). Phosphorylation of CRMP2 at Tyr479 by a Src family tyrosine kinase Yes regulates CXCL12-induced T lymphocyte migration (18). We reported previously that Fyn is involved in Sema3A signaling (19). Fyn associates with PlexinA2, one of the components of the Sema3A receptor complex. Fyn also activates Cdk5 through the phosphorylation at Tyr15 of Cdk5 (19). In dorsal root ganglion (DRG) neurons from fyn-deficient mice, Sema3A-induced growth cone collapse response is attenuated compared with control mice (19). Furthermore, we recently found that Fyn phosphorylates CRMP1 and that this phosphorylation is involved in Reelin signaling (4). Although it has been shown that CRMP2 is involved in Sema3A signaling (1, 11, 13), the relationship between Fyn and CRMP2 in Sema3A signaling and the tyrosine phosphorylation site(s) of CRMPs remain unknown.Here, we show that Fyn phosphorylates CRMP2 at Tyr32. Using a phospho-specific antibody against Tyr32, we determined that the residue is phosphorylated in vivo. A nonphosphorylated mutant CRMP2Y32F inhibits Sema3A-induced growth cone collapse. These results indicate that tyrosine phosphorylation by Fyn at Tyr32 is involved in Sema3A signaling.  相似文献   

14.
Early onset generalized dystonia (DYT1) is an autosomal dominant neurological disorder caused by deletion of a single glutamate residue (torsinA ΔE) in the C-terminal region of the AAA+ (ATPases associated with a variety of cellular activities) protein torsinA. The pathogenic mechanism by which torsinA ΔE mutation leads to dystonia remains unknown. Here we report the identification and characterization of a 628-amino acid novel protein, printor, that interacts with torsinA. Printor co-distributes with torsinA in multiple brain regions and co-localizes with torsinA in the endoplasmic reticulum. Interestingly, printor selectively binds to the ATP-free form but not to the ATP-bound form of torsinA, supporting a role for printor as a cofactor rather than a substrate of torsinA. The interaction of printor with torsinA is completely abolished by the dystonia-associated torsinA ΔE mutation. Our findings suggest that printor is a new component of the DYT1 pathogenic pathway and provide a potential molecular target for therapeutic intervention in dystonia.Early onset generalized torsion dystonia (DYT1) is the most common and severe form of hereditary dystonia, a movement disorder characterized by involuntary movements and sustained muscle spasms (1). This autosomal dominant disease has childhood onset and its dystonic symptoms are thought to result from neuronal dysfunction rather than neurodegeneration (2, 3). Most DYT1 cases are caused by deletion of a single glutamate residue at positions 302 or 303 (torsinA ΔE) of the 332-amino acid protein torsinA (4). In addition, a different torsinA mutation that deletes amino acids Phe323–Tyr328 (torsinA Δ323–328) was identified in a single family with dystonia (5), although the pathogenic significance of this torsinA mutation is unclear because these patients contain a concomitant mutation in another dystonia-related protein, ϵ-sarcoglycan (6). Recently, genetic association studies have implicated polymorphisms in the torsinA gene as a genetic risk factor in the development of adult-onset idiopathic dystonia (7, 8).TorsinA contains an N-terminal endoplasmic reticulum (ER)3 signal sequence and a 20-amino acid hydrophobic region followed by a conserved AAA+ (ATPases associated with a variety of cellular activities) domain (9, 10). Because members of the AAA+ family are known to facilitate conformational changes in target proteins (11, 12), it has been proposed that torsinA may function as a molecular chaperone (13, 14). TorsinA is widely expressed in brain and multiple other tissues (15) and is primarily associated with the ER and nuclear envelope (NE) compartments in cells (1620). TorsinA is believed to mainly reside in the lumen of the ER and NE (1719) and has been shown to bind lamina-associated polypeptide 1 (LAP1) (21), lumenal domain-like LAP1 (LULL1) (21), and nesprins (22). In addition, recent evidence indicates that a significant pool of torsinA exhibits a topology in which the AAA+ domain faces the cytoplasm (20). In support of this topology, torsinA is found in the cytoplasm, neuronal processes, and synaptic terminals (2, 3, 15, 2326) and has been shown to bind cytosolic proteins snapin (27) and kinesin light chain 1 (20). TorsinA has been proposed to play a role in several cellular processes, including dopaminergic neurotransmission (2831), NE organization and dynamics (17, 22, 32), and protein trafficking (27, 33). However, the precise biological function of torsinA and its regulation remain unknown.To gain insights into torsinA function, we performed yeast two-hybrid screens to search for torsinA-interacting proteins in the brain. We report here the isolation and characterization of a novel protein named printor (protein interactor of torsinA) that interacts selectively with wild-type (WT) torsinA but not the dystonia-associated torsinA ΔE mutant. Our data suggest that printor may serve as a cofactor of torsinA and provide a new molecular target for understanding and treating dystonia.  相似文献   

15.
16.
Plant growth and development is driven by osmotic processes. Potassium represents the major osmotically active cation in plants cells. The uptake of this inorganic osmolyte from the soil in Arabidopsis involves a root K+ uptake module consisting of the two K+ channel α-subunits, AKT1 and AtKC1. AKT1-mediated potassium absorption from K+-depleted soil was shown to depend on the calcium-sensing proteins CBL1/9 and their interacting kinase CIPK23. Here we show that upon activation by the CBL·CIPK complex in low external potassium homomeric AKT1 channels open at voltages positive of EK, a condition resulting in cellular K+ leakage. Although at submillimolar external potassium an intrinsic K+ sensor reduces AKT1 channel cord conductance, loss of cytosolic potassium is not completely abolished under these conditions. Depending on channel activity and the actual potassium gradients, this channel-mediated K+ loss results in impaired plant growth in the atkc1 mutant. Incorporation of the AtKC1 subunit into the channel complex, however, modulates the properties of the K+ uptake module to prevent K+ loss. Upon assembly of AKT1 and AtKC1, the activation threshold of the root inward rectifier voltage gate is shifted negative by approximately −70 mV. Additionally, the channel conductance gains a hypersensitive K+ dependence. Together, these two processes appear to represent a safety strategy preventing K+ loss through the uptake channels under physiological conditions. Similar growth retardation phenotypes of akt1 and atkc1 loss-of-function mutants in response to limiting K+ supply further support such functional interdependence of AKT1 and AtKC1. Taken together, these findings suggest an essential role of AtKC1-like subunits for root K+ uptake and K+ homeostasis when plants experience conditions of K+ limitation.Fundamental plant functions such as control of the membrane potential, osmo-regulation, and turgor-driven growth and movements are based on the availability to gain high cellular potassium concentrations (1). The absorption of this inorganic osmolyte from the soil by the root therefore represents a pivotal process for plant life. Classical experiments by Epstein et al. in 1963 (2) described K+ root uptake as a biphasic process mediated by two uptake mechanisms: high affinity potassium transport with apparent affinities of ∼20 μm and a low affinity transport system with Km values in the millimolar range. During the last decades several molecular components of potassium transport systems have been identified and functionally characterized in plants (3, 4). Mutant analyses, heterologous expression, as well as radiotracer uptake experiments characterized the K+ channels AKT1·AtKC1 and members of the HAK·KT·KUP family as major components of the Arabidopsis thaliana root-localized potassium transport system (59). In this study we focused on AKT1 and AtKC1, members of the Arabidopsis Shaker-like K+ channel family. AKT1 is a voltage-dependent inward-rectifying K+ channel mediating potassium uptake over a wide range of external potassium concentrations (1015). Root cells of the akt1-1 loss-of-function mutant completely lack inward rectifying K+ currents (12). As a consequence the growth of akt1-1 seedlings is strongly impaired on low potassium medium (100 μm and less) (11, 12, 15). Rescue of yeast growth on 20 μm K+ and patch clamp experiments (16, 17) directly demonstrated that plant inward rectifying K+ channels are capable of serving as high affinity potassium uptake transporters. AtKC1 shares its expression pattern with AKT1 (1820). AtKC1 α-subunits, however, neither form functional channels in akt1-1 knock-out plants nor in heterologous expression systems. In contrast to root cells of akt1-1 loss of function mutants, root protoplasts of AtKC1 null mutants (atkc1-f) still exhibit inward rectifying potassium currents most likely derived from homomeric AKT1 tetramers (20). Inward K+ currents in this atkc1-f mutant were characterized by a more positive activation voltage. These data suggested that the AtKC1 α-subunits do not form K+ channels per se but modulate the properties of the AKT1·AtKC1 heterocomplex (2022). Previously, two groups in their ground-breaking studies demonstrated that AKT1 is activated by the CBL2-interacting, serine/threonine kinase, CIPK23, particularly under low K+ conditions (23, 24). CIPK23 itself was shown to be activated by the two calcineurin B-like proteins, CBL1 and 9, acting in a Ca2+-dependent manner upstream of CIPK23 (25, 26). Genetic disruption of these elements resulted in transgenic plants exhibiting a phenotype comparable with that of the AKT1 loss of function mutant. This regulatory system, based on a calcium sensor, a protein kinase, and a K+ channel, was functionally reconstituted in Xenopus oocytes (23, 24, 27), suggesting that these elements are essential and sufficient to operate as a low K+-sensitive potassium uptake system. Here we report on the physiological properties of the heteromeric K+ uptake module formed by the predominant root potassium uptake channel subunits, AKT1 and AtKC1 and its regulating kinase complex, CBL1 and CIPK23. Our studies show that the physical interaction of the CBL1·CIPK23 complex is specific for AKT1 channels and does not involve the AtKC1 subunit. AKT1 possesses a K+ (absence) sensor affecting channel activity at submillimolar K+ concentrations by strongly reducing its maximal cord conductance. Despite this K+ sensor, upon activation, AKT1 homomeric channels were shown to represent a potassium leak at low external potassium concentrations. Integration of AtKC1 into the K+ uptake module, however, prevented potassium loss by modulating both the voltage sensor and conductance in the channel complex. Moreover, activation of the AKT1-like maize channel ZMK1 by CBL1·CIPK23 suggests a conserved interaction and regulation across monocot and dicotyledonous plant species. Our biophysical studies as well as growth assays with plant mutant lines lacking the respective channels underline that acquisition of potassium under limiting K+ conditions is mediated via the root AKT1·AtKC1 K+ uptake channel complex.  相似文献   

17.
18.
19.
A central question in Wnt signaling is the regulation of β-catenin phosphorylation and degradation. Multiple kinases, including CKIα and GSK3, are involved in β-catenin phosphorylation. Protein phosphatases such as PP2A and PP1 have been implicated in the regulation of β-catenin. However, which phosphatase dephosphorylates β-catenin in vivo and how the specificity of β-catenin dephosphorylation is regulated are not clear. In this study, we show that PP2A regulates β-catenin phosphorylation and degradation in vivo. We demonstrate that PP2A is required for Wnt/β-catenin signaling in Drosophila. Moreover, we have identified PR55α as the regulatory subunit of PP2A that controls β-catenin phosphorylation and degradation. PR55α, but not the catalytic subunit, PP2Ac, directly interacts with β-catenin. RNA interference knockdown of PR55α elevates β-catenin phosphorylation and decreases Wnt signaling, whereas overexpressing PR55α enhances Wnt signaling. Taken together, our results suggest that PR55α specifically regulates PP2A-mediated β-catenin dephosphorylation and plays an essential role in Wnt signaling.Wnt/β-catenin signaling plays essential roles in development and tumorigenesis (13). Our previous work found that β-catenin is sequentially phosphorylated by CKIα4 and GSK3 (4), which creates a binding site for β-Trcp (5), leading to degradation via the ubiquitination/proteasome machinery (3). Mutations in β-catenin or APC genes that prevent β-catenin phosphorylation or ubiquitination/degradation lead ultimately to cancer (1, 2).In addition to the involvement of kinases, protein phosphatases, such as PP1, PP2A, and PP2C, are also implicated in Wnt/β-catenin regulation. PP2C and PP1 may regulate dephosphorylation of Axin and play positive roles in Wnt signaling (6, 7). PP2A is a multisubunit enzyme (810); it has been reported to play either positive or negative roles in Wnt signaling likely by targeting different components (1121). Toward the goal of understanding the mechanism of β-catenin phosphorylation, we carried out siRNA screening targeting several major phosphatases, in which we found that PP2A dephosphorylates β-catenin. This is consistent with a recent study where PP2A is shown to dephosphorylate β-catenin in a cell-free system (18).PP2A consists of a catalytic subunit (PP2Ac), a structure subunit (PR65/A), and variable regulatory B subunits (PR/B, PR/B′, PR/B″, or PR/B‴). The substrate specificity of PP2A is thought to be determined by its B subunit (9). By siRNA screening, we further identified that PR55α, a regulatory subunit of PP2A, specifically regulates β-catenin phosphorylation and degradation. Mechanistically, we found that PR55α directly interacts with β-catenin and regulates PP2A-mediated β-catenin dephosphorylation in Wnt signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号