首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1994,126(6):1495-1507
We have characterized a group of regulatory mutations that alter the activity of the outer dynein arms. Three mutations were obtained as suppressors of the paralyzed central pair mutant pf6 (Luck, D.J.L., and G. Piperno. 1989. Cell Movement. pp. 49-60), whereas two others were obtained as suppressors of the central pair mutant pfl6. Recombination analysis and complementation tests indicate that all five mutations are alleles at the SUP-PF-1/ODA4 locus and that each allele can restore motility to radial spoke and central pair defective strains. Restriction fragment length polymorphism analysis with a genomic probe for the beta-dynein heavy chain (DHC) gene confirms that this locus is tightly linked to the beta-DHC gene. Although all five mutant sup-pf-1 alleles alter the activity of the outer dynein arm as assayed by measurements of flagellar motility, only two alleles have a discernable polypeptide defect by SDS-PAGE. We have used photolytic and proteolytic cleavage procedures to localize the polypeptide defect to an approximately 100-kD domain downstream from the last putative nucleotide binding site. This region is encoded by approximately 5 kb of genomic DNA (Mitchell, D.R., and K. Brown. 1994. J. Cell Sci. 107:653-644). PCR amplification of wild-type and mutant DNA across this region identified one PCR product that was consistently smaller in the sup-pf-1 DNA. Direct DNA sequencing of the PCR products revealed that two of the sup-pf-1 mutations are distinct, in-frame deletions. These deletions occur within a region that is predicted to encode a small alpha-helical coiled-coil domain of the beta-DHC. This domain may play a role in protein-protein interactions within the outer dynein arm. Since both the size and location of this domain have been conserved in all axonemal and cytoplasmic DHCs sequenced to date, it presumably performs a common function in all dynein isoforms.  相似文献   

2.
Chlamydomonas reinhardtii can use their flagella for two distinct types of movement: swimming through liquid or gliding on a solid substrate. Cells switching from swimming to gliding motility undergo a reversible flagellar quiescence. This phenomenon appears to involve the outer dynein arms, since mutants having altered outer arm beta and gamma dyneins (sup-pf-1 and sup-pf-2) show a diminished ability to quiesce. Sup-pf-1 and sup-pf-2 were originally isolated as gain-of-function mutations that suppress the flagellar paralysis resulting from radial spoke or central pair defects. Defective quiescence is also a gain-of-function phenomenon, as cells completely lacking outer arm heavy chains show a normal quiescence phenotype. These data suggest that regulation of outer arm dynein activity is essential for flagellar quiescence and furthermore that regulation of quiescence involves a signal transduction pathway that shares elements with the radial spoke/central pair system.  相似文献   

3.
Several flagellar dynein ATPase and radial spokehead genes have been isolated from a Chlamydomonas genomic expression library in lambda gt11. The library was probed with polyclonal and monoclonal antibodies raised against purified flagellar polypeptides, and recombinant phage giving positive signals were cloned. In vitro translation of mRNAs hybrid-selected by the cloned sequences from whole cell RNA provided confirmation of identity for three of the four clones. Evidence supporting the identification of the fourth, which encodes a dynein heavy chain, was provided by antibody selection; the fusion protein produced by this clone selected heavy chain-specific antibodies from a complex polyclonal antiserum recognizing many dynein determinants. One of the radial spoke sequences isolated here is of particular interest because it encodes the wild-type allele of a locus which was defined previously by temperature-sensitive paralyzed flagella mutation pf-26ts (Huang, B., G. Piperno, Z. Ramanis, and D. J. L. Luck, 1981, J. Cell Biol., 88:80-88). The cloned sequence was used to hybrid-select mRNA from mutant pf-26ts cells, and when translated in vitro, the selected mRNA produced a mutant spokehead polypeptide with an altered electrophoretic mobility. This confirms that the pf-26ts mutation alters the primary structure of a radial spokehead polypeptide. To quantify spokehead and dynein mRNAs during flagellar regeneration, all of the cloned sequences were used as hybridization probes in RNA dot experiments. Levels increased rapidly and coordinately after deflagellation, peaked 3-10-fold above nondeflagellated controls, and then returned to control values within 2 h. This accumulation pattern was similar to that of flagellar alpha-tubulin mRNA.  相似文献   

4.
《The Journal of cell biology》1994,126(5):1255-1266
Strains of Chlamydomonas reinhardtii with a mutant allele at the BOP2 locus swim slowly and have an abnormal flagellar waveform similar to previously identified strains with defects in the inner arm region. Double mutant strains with the bop2-1 allele and any of 17 different mutations that affect the dynein arm region swim more slowly than either parent, which suggests that the bop2-1 mutation does not affect solely the outer dynein arms, the I1 or ida4 inner dynein arms, or the dynein regulatory complex. Flagellar axonemes isolated from bop2-1 cells are missing a phosphorylated polypeptide of 152 kD. Electron microscopic analysis shows that bop2-1 axonemes are missing density in the inner dynein arm region. Surprisingly, two populations of images were observed in longitudinal sections of axonemes from the bop2-1 strain. In the 10 longitudinal axonemes examined, a portion of the dynein regulatory complex and a newly identified structure, the projection, are affected. In five of these 10 longitudinal axonemes examined, two lobes of the ida4 inner arm are also missing. By examining the cross-sectional images of wild-type and bop2-1 axonemes at each outer doublet position around the axoneme, we have determined that the bop2-1 mutation affects the assembly of inner arm region components in a doublet specific manner. Doublets 5, 6, and 8 have the most severe deficiency, doublet 9 has an intermediate phenotype, and doublets 2, 3, 4, and 7 have the least severe phenotype. The bop2-1 mutation provides the first evidence of radial asymmetry in the inner dynein arm region.  相似文献   

5.
A new allele of the Chlamydomonas oda4 flagellar mutant (oda4-s7) possessing abnormal outer dynein arms was isolated. Unlike the previously described oda4 axoneme lacking all three (alpha, beta, and gamma) outer-arm dynein heavy chains, the oda4-s7 axoneme contains the alpha and gamma heavy chains and a novel peptide with a molecular mass of approximately 160 kD. The peptide reacts with a mAb (18 beta B) that recognizes an epitope on the NH2-terminal part of the beta heavy chain. These observations indicate that this mutant has a truncated beta heavy chain, and that the NH2-terminal part of the beta heavy chain is important for the stable assembly of the outer arms. In averaged electron microscopic images of outer arms from cross sections of axonemes, the mutant outer arm lacks its mid-portion, producing a forked appearance. Together with our previous finding that the mutant oda11 lacks the alpha heavy chain and the outermost portion of the arm (Sakakibara, H., D. R. Mitchell, and R. Kamiya. 1991. J. Cell Biol. 113:615-622), this result defines the approximate locations of the three outer arm heavy chains in the axonemal cross section. The swimming velocity of oda4-s7 is 65 +/- 8 microns/s, close to that of oda4 which lacks the entire outer arm (62 +/- 8 microns/s) but significantly lower than the velocities of wild type (194 +/- 23 microns/s) and oda11 (119 +/- 17 microns/s). Thus, the lack of the beta heavy chain impairs outer-arm function more seriously than does the lack of the alpha heavy chain, suggesting that the alpha and beta chains play different roles in outer arm function.  相似文献   

6.
We provide indirect evidence that six axonemal proteins here referred to as "dynein regulatory complex" (drc) are located in close proximity with the inner dynein arms I2 and I3. Subsets of drc subunits are missing from five second-site suppressors, pf2, pf3, suppf3, suppf4, and suppf5, that restore flagellar motility but not radial spoke structure of radial spoke mutants. The absence of drc components is correlated with a deficiency of all four heavy chains of inner arms I2 and I3 from axonemes of suppressors pf2, pf3, suppf3, and suppf5. Similarly, inner arm subunits actin, p28, and caltractin/centrin, or subsets of them, are deficient in pf2, pf3, and suppf5. Recombinant strains carrying one of the mutations pf2, pf3, or suppf5 and the inner arm mutation ida4 are more defective for I2 inner arm heavy chains than the parent strains. This evidence indicates that at least one subunit of the drc affects the assembly of and interacts with the inner arms I2.  相似文献   

7.
The multi-dynein hypothesis [Asai, 1995: Cell Motil Cytoskeleton 32:129-132] states: (1) there are many different dynein HC isoforms; (2) each isoform is encoded by a different gene; (3) different isoforms have different functions. Many studies provide evidence in support of the first two statements [Piperno et al., 1990: J Cell Biol 110:379-389; Kagami and Kamiya, 1992: J Cell Sci 103:653-664; Gibbons, 1995: Cell Motil Cytoskeleton 32:136-144; Porter et al., 1996: Genetics 144:569-585; Xu et al., 1999: J Eukaryot Microbiol 46:606-611] and there is evidence that outer arms and inner arms play different roles in flagellar beating [Brokaw and Kamiya, 1987: Cell Motil. Cytoskeleton 8:68-75]. However, there are few studies rigorously testing in vivo whether inner arm dyneins, especially the 1-headed inner arm dyneins, play unique roles. This study tested the third tenet of the multi-dynein hypothesis by introducing mutations into three inner arm dynein HC genes (DYH8, 9 and 12) that are thought to encode HCs associated with 1-headed inner arm dyneins. Southern blots, Northern blots, and RT-PCR analyses indicate that all three mutants (KO-8, 9, and 12) are complete knockouts. Each mutant swims slower than the wild-type cells. The beat frequency of KO-8 cells is lower than that of the wild-type cells while the beat frequencies of KO-9 and KO-12 are not different from that of wild-type cells. Our results suggest that each inner arm dynein HC is essential for normal cell motility and cannot be replaced functionally by other dynein HCs and that not all of the 1-headed inner arm dyneins play the same role in ciliary motility. Thus, the results of our study support the multi-dynein hypothesis [Asai, 1995: Cell Motil Cytoskeleton 32:129-132].  相似文献   

8.
To help understand the functional properties of inner and outer dynein arms in axonemal motility, sliding velocities of outer doublets were measured in disintegrating axonemes of Chlamydomonas mutants lacking either of the arms. Measurements under improved solution conditions yielded significantly higher sliding velocities than those observed in a previous study [Okagaki and Kamiya, 1986, J. Cell Biol. 103:1895-1902]. As in the previous study, it was found that the velocities in axonemes of wild type (wt) and a mutant (oda1) missing the outer arm differ greatly: 18.5 +/- 4.1 microns/sec for wt and 4.4 +/- 2.3 microns/sec for oda1 at 0.5 mM Mg-ATP. In contrast, axonemes of two types of mutants (ida2 and ida4) that lacked different sets of two inner-arm heavy chains displayed velocities almost identical with the wild-type velocity. Moreover, axonemes of a non-motile double mutant ida2 X ida4 underwent sliding disintegration at a similar high velocity, although less frequently than in axonemes of single mutants. These observations support the hypothesis that the inner and outer dynein arms in disintegrating axonemes drive microtubules at different speeds and it is the faster outer arm that determines the overall speed when both arms are present. The inner arm may be important for the initiation of sliding. The axoneme thus appears to be equipped with two (or more) types of motors with different intrinsic speeds.  相似文献   

9.
The outer dynein arm-docking complex (ODA-DC) targets the outer dynein arm to its correct binding site on the flagellar axoneme. The Chlamydomonas ODA-DC contains three proteins; loss of any one prevents normal assembly of the outer arm, leading to a slow, jerky swimming phenotype. We showed previously that the smallest ODA-DC subunit, DC3, has four EF-hands (Casey, D. M., Inaba, K., Pazour, G. J., Takada, S., Wakabayashi, K., Wilkerson, C. G., Kamiya, R., and Witman, G. B. (2003) Mol. Biol. Cell 14, 3650-3663). Two of the EF-hands fit the consensus pattern for calcium binding, and one of these contains two cysteine residues within its binding loop. To determine whether the predicted EF-hands are functional, we purified bacterially expressed wild-type DC3 and analyzed its calcium-binding potential in the presence and absence of dithiothreitol and Mg2+. The protein bound one calcium ion with an affinity (Kd) of approximately 1 x 10-5 m. Calcium binding was observed only in the presence of dithiothreitol and thus is redox-sensitive. DC3 also bound Mg2+ at physiological concentrations but with a much lower affinity. Changing the essential glutamate to glutamine in both EF-hands eliminated the calcium binding activity of the bacterially expressed protein. To investigate the role of the EF-hands in vivo, we transformed the modified DC3 gene into a Chlamydomonas insertional mutant lacking DC3. The transformed strain swam normally, assembled a normal number of outer arms, and had a normal photoshock response, indicating that the Glu to Gln mutations did not affect ODA-DC assembly, outer arm assembly, or Ca2+-mediated outer arm activity. Thus, DC3 is a true calcium-binding protein, but the function of this activity remains unknown.  相似文献   

10.
Mutants with outer dynein arm defects or deficiencies all show a major reduction in beat frequency to about half the normal value; some of these mutants show an additional decrease in sliding velocity associated with reduced shear amplitude and an additional reduction in beat frequency, as well as other more minor modifications of the normal forward mode bending pattern. New mutants (ida98, pf30), which appear to be deficient in a subset of inner dynein arms show a reduction in sliding velocity that is primarily associated with a reduction in shear amplitude, with only a small reduction in beat frequency. These differences in motility phenotype between inner and outer dynein arm mutants suggest that inner and outer dynein arms may have distinct functions. The relatively large decrease in sliding velocity associated with partial loss of inner arms is consistent with earlier observations on pf23, a nonmotile mutant lacking inner arms, suggesting that inner arms may have an essential function in motility. The ability to generate reverse mode bending patterns is retained in some inner or outer dynein arm mutants, but appears to be decreased in those mutants which show reduced shear amplitude for the forward mode bending pattern.  相似文献   

11.
The outer dynein arm-docking complex (ODA-DC) is a microtubule-associated structure that targets the outer dynein arm to its binding site on the flagellar axoneme (Takada et al. 2002. Mol. Biol. Cell 13, 1015-1029). The ODA-DC of Chlamydomonas contains three proteins, referred to as DC1, DC2, and DC3. We here report the isolation and sequencing of genomic and full-length cDNA clones encoding DC3. The sequence predicts a 21,341 Da protein with four EF-hands that is a member of the CTER (calmodulin, troponin C, essential and regulatory myosin light chains) group and is most closely related to a predicted protein from Plasmodium. The DC3 gene, termed ODA14, is intronless. Chlamydomonas mutants that lack DC3 exhibit slow, jerky swimming because of loss of some but not all outer dynein arms. Some outer doublet microtubules without arms had a "partial" docking complex, indicating that DC1 and DC2 can assemble in the absence of DC3. In contrast, DC3 cannot assemble in the absence of DC1 or DC2. Transformation of a DC3-deletion strain with the wild-type DC3 gene rescued both the motility phenotype and the structural defect, whereas a mutated DC3 gene was incompetent to rescue. The results indicate that DC3 is important for both outer arm and ODA-DC assembly.  相似文献   

12.
Polypeptides from flagella or axonemes of Chlamydomonas reinhardtii were analyzed by labeling cellular proteins by prolonged growth on 35S- containing media and using one- and two-dimensional electrophoretic techniques which can resolve greater than 170 axonemal components. By this approach, a paralyzed mutant that lacks axonemal radial spokes, pf14, has been shown to lack 17 polypeptides in the molecular weight range of 20,000 to 124,000 and in the isoelectric point range of 4.8- 7.1. Five of those polypeptides are also missing in the mutant pf-1 which lacks only radial spokeheads. The identification of the 17 polypeptides missing in pf-14 as components of radial spoke structures and the localization of the polypeptides lacking in pf-1 within the spokehead, are supported by experiments of chemical dissection of wild- type axonemes. Extraction procedures that solubilize outer and inner dynein arms preserve the structure of the radial spokes along with the 17 polypeptides in question. Six radial spoke polypeptides are solubilized in conditions that cause disassembly of radial spokeheads from the stalks and those components include the five polypeptides missing in pf-1. No Ca++- or Mg++-activated ATPase activities were found to be associated with solubilized preparations of wild-type radial spokeheads. In vivo pulse 32P incorporation experiments provide evidence that greater than 80 axonemal components are labeled by 32P and that five of the radial spoke stalk polypeptides are modified to different extents.  相似文献   

13.
14.
15.
《The Journal of cell biology》1988,107(6):2253-2258
35 strains of Chlamydomonas mutant missing the entire outer dynein arm were isolated by screening slow-swimming phenotypes. They comprised 10 independent genetic loci (odal-10) including those of previously isolated mutants oda38 and pf28. The 10 loci were distinct from pf13 and pf22, loci for nonmotile mutants missing the outer arm. These results indicate that at least 12 genes are responsible for the assembly of the outer dynein arms. There were no mutants lacking partial structures of the outer arm, suggesting that lack of a single component results in failure of assembly of entire outer arms. Temporary dikaryons derived from mating of two different oda strains often, but not always, recovered the wild-type motility within 2 h of mating. Hence, outer arms can be transported and attached to the outer doublets independently of flagellar growth.  相似文献   

16.
To understand the mechanisms that regulate the assembly and activity of flagellar dyneins, we focused on the I1 inner arm dynein (dynein f) and a null allele, bop5-2, defective in the gene encoding the IC138 phosphoprotein subunit. I1 dynein assembles in bop5-2 axonemes but lacks at least four subunits: IC138, IC97, LC7b, and flagellar-associated protein (FAP) 120—defining a new I1 subcomplex. Electron microscopy and image averaging revealed a defect at the base of the I1 dynein, in between radial spoke 1 and the outer dynein arms. Microtubule sliding velocities also are reduced. Transformation with wild-type IC138 restores assembly of the IC138 subcomplex and rescues microtubule sliding. These observations suggest that the IC138 subcomplex is required to coordinate I1 motor activity. To further test this hypothesis, we analyzed microtubule sliding in radial spoke and double mutant strains. The results reveal an essential role for the IC138 subcomplex in the regulation of I1 activity by the radial spoke/phosphorylation pathway.  相似文献   

17.
The outer dynein arm of Chlamydomonas flagella contains three heavy chains (alpha, beta, and gamma), each of which exhibits motor activity. How they assemble and cooperate is of considerable interest. Here we report the isolation of a novel mutant, oda2-t, whose gamma heavy chain is truncated at about 30% of the sequence. While the previously isolated gamma chain mutant oda2 lacks the entire outer arm, oda2-t retains outer arms that contain alpha and beta heavy chains, suggesting that the N-terminal sequence (corresponding to the tail region) is necessary and sufficient for stable outer-arm assembly. Thin-section electron microscopy and image analysis localize the gamma heavy chain to a basal region of the outer-arm image in the axonemal cross section. The motility of oda2-t is lower than that of the wild type and oda11 (lacking the alpha heavy chain) but higher than that of oda2 and oda4-s7 (lacking the motor domain of the beta heavy chain). Thus, the outer-arm dynein lacking the gamma heavy-chain motor domain is partially functional. The availability of mutants lacking individual heavy chains should greatly facilitate studies on the structure and function of the outer-arm dynein.  相似文献   

18.
Members of the LC7/Roadblock family of light chains (LCs) have been found in both cytoplasmic and axonemal dyneins. LC7a was originally identified within Chlamydomonas outer arm dynein and associates with this motor's cargo-binding region. We describe here a novel member of this protein family, termed LC7b that is also present in the Chlamydomonas flagellum. Levels of LC7b are reduced approximately 20% in axonemes isolated from strains lacking inner arm I1 and are approximately 80% lower in the absence of the outer arms. When both dyneins are missing, LC7b levels are diminished to <10%. In oda9 axonemal extracts that completely lack outer arms, LC7b copurifies with inner arm I1, whereas in ida1 extracts that are devoid of I1 inner arms it associates with outer arm dynein. We also have observed that some LC7a is present in both isolated axonemes and purified 18S dynein from oda1, suggesting that it is also a component of both the outer arm and inner arm I1. Intriguingly, in axonemal extracts from the LC7a null mutant, oda15, which assembles approximately 30% of its outer arms, LC7b fails to copurify with either dynein, suggesting that it interacts with LC7a. Furthermore, both the outer arm gamma heavy chain and DC2 from the outer arm docking complex completely dissociate after salt extraction from oda15 axonemes. EDC cross-linking of purified dynein revealed that LC7b interacts with LC3, an outer dynein arm thioredoxin; DC2, an outer arm docking complex component; and also with the phosphoprotein IC138 from inner arm I1. These data suggest that LC7a stabilizes both the outer arms and inner arm I1 and that both LC7a and LC7b are involved in multiple intradynein interactions within both dyneins.  相似文献   

19.
The outer dynein arm of Chlamydomonas flagella, when isolated under Mg(2+)-free conditions, tends to dissociate into an 11 to 12S particle (12S dynein) containing the gamma heavy chain and a 21S particle (called 18S dynein) containing the alpha and beta heavy chains. We show here that functional outer arms can be reconstituted by the addition of 12S and 18S dyneins to the axonemes of the outer armless mutants oda1- oda6. A third factor that sediments at integral 7S is required for efficient reconstitution of the outer arms on the axonemes of oda1 and oda3. However, this factor is not necessary for reconstitution on the axonemes of oda2, oda4, oda5, and oda6. SDS-PAGE analysis indicates that the axonemes of the former two mutants lack a integral of 70-kD polypeptide that is present in those of the other mutants as well as in the 7S fraction from the wild-type extract. Furthermore, electron micrographs of axonemal cross sections revealed that the latter four mutants, but not oda1 or oda3, have small pointed structures on the outer doublets, at a position in cross section where outer arms normally occur. We suggest that the 7S factor constitutes the pointed structure on the outer doublets and facilitates attachment of the outer arm. The discovery of this structure raises a new question as to how the attachment site for the outer arm dynein is determined within the axoneme.  相似文献   

20.
Inner dynein arms, but not outer dynein arms, require the activity of KHP1(FLA10) to reach the distal part of axonemes before binding to outer doublet microtubules. We have analyzed the rescue of inner or outer dynein arms in quadriflagellate dikaryons by immunofluorescence microscopy of p28(IDA4), an inner dynein arm light chain, or IC69(ODA6), an outer dynein arm intermediate chain. In dikaryons two strains with different genetic backgrounds share the cytoplasm. As a consequence, wild-type axonemal precursors are transported to and assembled in mutant axonemes to complement the defects. The rescue of inner dynein arms containing p28 in ida4-wild-type dikaryons progressively occurred from the distal part of the axonemes and with time was extended towards the proximal part. In contrast, the rescue of outer dynein arms in oda2-wild-type dikaryons progressively occurred along the entire length of the axoneme. Rescue of inner dynein arms containing p28 in ida4fla10-fla10 dikaryons was similar to the rescue observed in ida4-wild-type dikaryons at 21 degrees C, whereas it was inhibited at 32 degrees C, a nonpermissive temperature for KHP1(FLA10). In contrast, rescue of outer dynein arms in oda2fla10-fla10 dikaryons was similar to the rescue observed in oda2-wild-type dikaryons at both 21 degrees and 32 degrees C and was not inhibited at 32 degrees C. Positioning of substructures in the internal part of the axonemal shaft requires the activity of kinesin homologue protein 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号