首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In previous studies, we showed that essentially all the proteins of the Amoeba proteus nucleus could be classified either as Rapidly Migrating Proteins (RMP), which shuttle between nucleus and cytoplasm continuously at a relatively rapid rate during interphase, or as Slow Turnover Proteins (STP), which seem to move hardly at all during interphase. In this paper, we report on the kinetics and direction of the movement of both classes of protein, as well as on aspects of their localization, with and without growth. The effects of growth were observed with and without cell division. These nuclear proteins have been studied in several ways: by transplantation of labeled nuclei into unlabeled cells and noting the rate of distribution to cytoplasm and host cell nuclei; by repeated amputation of cytoplasm from labeled cells—with and without initially labeled cytoplasm—each amputation being followed by refeeding on unlabeled food; by noting the redistribution of the various protein classes following growth and cell division. The data show (a) labeled RMP equilibrate between a grafted labeled nucleus and an unlabeled host nucleus in ca. 3 hr, but are detectable in the latter less than 30 min after the operation; (b) STP label does, indeed, leave the nucleus and does so at a rate of ca. 25% of the nuclear total per cell generation (ca. 36–40 hr at 23°C); (c) the cytoplasm appears to have a reserve of material that is converted to RMP; (d) when labeled cells are amputated just before they would have divided and are refed unlabeled food after each amputation, there is a loss of 20–25% of the nuclear protein label with each amputation; (e) under the latter circumstances, an essentially complete turnover of all nuclear protein can be demonstrated.  相似文献   

2.
The behavior of nuclear proteins in Amoeba proteus was studied by tritiated amino acid labeling, nuclear transplantation, and cytoplasmic amputation. During prophase at least 77% (but probably over 95%) of the nuclear proteins is released to the cytoplasm. These same proteins return to the nucleus within the first 3 hr of interphase. When cytoplasm is amputated from an ameba in mitosis (shen the nuclear proteins are in the cytoplasm), the resultant daughter nuclei are depleted in the labeled nuclear proteins. The degree of depletion is less than proportional to the amount of cytoplasm removed because a portion of rapidly migrating protein (a nuclear protein that is normally shuttling between nucleus and cytoplasm and is thus also present in the cytoplasm) which would normally remain in the cytoplasm is taken up by the reconstituting daughter nuclei. Cytoplasmic fragments cut from mitotic cells are enriched in both major classes of nuclear proteins, i.e. rapidly migrating protein and slow turn-over protein. An interphase nucleus implanted into such an enucleated cell acquires from the cytoplasm essentially all of the excess nuclear proteins of both classes. The data indicate that there is a lack of binding sites in the cytoplasm for the rapidly migrating nuclear protein. The quantitative aspects of the distribution of rapidly migrating protein between the nucleus and the cytoplasm indicate that the distribution is governed primarily by factors within the nucleus.  相似文献   

3.
An excellent correlation has been established between the quantity of protein associated with nuclei isolated from heat-shocked cells and the level of hyperthermic cell killing. However, controversy remains about whether increases in nuclear-associated protein result from a heat-induced migration of cytoplasmic proteins into the nucleus or because hyperthermia reduces the solubility of nuclear proteins in the detergent buffers commonly used to isolate nuclei. To address this controversy, the nuclear protein content was measured in whole and detergent-extracted cells before and following hyperthermia. It was found that hyperthermia caused no significant change in the nuclear protein content of whole, unextracted cells, and when fluorescently labeled proteins were microinjected into the cytoplasm no gross change in the selective permeability of the nuclear membrane to soluble proteins was observed during or following hyperthermia. Measurements in extracted cells showed that the detergent buffers removed protein from both the nucleus and cytoplasm of control, nonheated cells and that hyperthermia reduced the extractability of both nuclear and cytoplasmic proteins. The amount of protein found in nuclei isolated from heated cells approached that observed in nuclei within nonheated whole cells as the hyperthermic exposure was increased. Thus, the dose-dependent, two- to threefold increase in the protein content of nuclei isolated from heated cells represents a heat-induced reduction in the extractability of proteins normally present within cell nuclei and does not result from a mass migration of cytoplasmic proteins into the nucleus, although some specific proteins (e.g., the 70 KDa heat shock protein) do migrate to the nucleus following heat shock. Differential scanning calorimetry (DSC) measurements of whole cells, isolated nuclei, cytoplasts, and karyoplasts supported these conclusions and suggested that most of the detergent-insoluble proteins remaining in the nuclei and cytoplasm of heated cells are in their native state. Thus, a relatively small amount of denatured protein may be sufficient to initiate and sustain insoluble protein aggregates comprised of mostly native proteins. Analyses of the DSC data also implied that the previously identified critical target proteins, predicted to have a Tm of 46.0°C, are present in both the nucleus and cytoplasm. © 1996 Wiley-Liss, Inc.  相似文献   

4.
As a basis for understanding the role of non-histone proteins in nuclear differentiation, we have identified one period during embryogenesis when intense accumulation of non-histones occurs in nuclei of Rana pipiens. We then demonstrated, experimentally, the loss of non-histones from nuclei after transplantation into enucleated eggs. 3H-tryptophan or 3H-lysine was injected into blastocoeles of mid-blastulae and into archenterons of late gastrulae; embryos were subsequently studied autoradiographically. Nuclei of animal hemisphere cells from blastulae accumulated only small amounts of 3H-tryptophan within 3 h, whereas a large accumulation occurred in endodermal nuclei of gastrulae as early as 1 h, and after 3 h 95.9% ( ) of the nuclei were densely labelled. Significant accumulation of 3H-lysine occurred in the majority of nuclei of both types within 3 h (blastulae ; gastrulae ). Controls, involving RNase or boiling TCA, demonstrated that the 3H-amino acids have been incorporated mainly into proteins. Endodermal nuclei labelled either with 3H-tryptophan or 3H-lysine after a 3 h incubation were transplanted singly into enucleated eggs. Autoradiograms demonstrated that most non-histones leave the nucleus during its reprogramming in the egg cytoplasm prior to first cleavage; whereas other types of proteins labelled with 3H-lysine remain for the most part in the nucleus. Cytochemical studies indicated that some of the non-histones which leave transplanted nuclei are acidic proteins; whereas some of those proteins which remain in the nucleus are histones.In addition to the above findings, the results of these studies demonstrate the feasibility in the future of studying the nucleocytoplasmic migration of different kinds of macromolecules in a developmental metazoan system and determining their roles in the establishment of nuclear differentiation.  相似文献   

5.
The presence of actin in nuclei: a critical appraisal.   总被引:5,自引:0,他引:5  
L Goldstein  R Rubin  C Ko 《Cell》1977,12(3):601-608
To assess the significance of actin associations with nuclei, we have examined Amoeba proteus nuclei for the presence of labeled actin under a variety of circumstances without (in most instances) isolating nuclei or breaking up cytoplasms prior to the extraction of proteins.We first established that: the 42,000 dalton proteins (presumed to be actin) present in cytoplasm and non-isolated nuclei are identical electrophoretically; the putative actin of amebas has the same size and almost the same isoelectric point as rat muscle actin; and the peptide “fingerprints” of putative ameba actin and rat actin are very similar after tryptic digestion. We therefore concluded that the 42,000 dalton protein of ameba is actin.We determined that: the concentrations of actin in the cytoplasm and nucleus of amebas are the same; actin is readily lost from nuclei that are released from lysed cells; shortly after a 35S-labeled nucleus is transplanted into unlabeled cytoplasm, or an unlabeled nucleus is transplanted into 35S-labeled cytoplasm, the concentration of 35S-actin in nucleus and cytoplasm is the same; and when cells containing 35S-actin are subjected to long chase periods on unlabeled food, the concentrations of 35S-actin in nucleus and cytoplasm fall in parallel. These observations taken together suggest that actin is not tightly associated with nuclei. Rather, actin may associate with nuclei for the trivial reason that the nuclear envelope is no barrier to free movement of that protein between the two compartments.We conclude that the mere presence of actin in nuclei is insufficient grounds for assuming that it has any role in nuclear functions, such as, for example, chromosome condensation.  相似文献   

6.
The Rapidly Migrating Proteins (RMP) which shuttle nonrandomly between nucleus and cytoplasm and equilibrate in approximately equal amounts in each compartment, were isolated from Amoeba proteus by implanting 3H-protein containing nuclei into unlabeled cells and some time later extracting the labeled material from the cytoplasms of such cells. The labeled material was subsequently fractionated by gel filtration in Sephadex G-100 columns. The RMP are soluble in dilute salt solutions and appear as a heterogenous group of molecules, one component of which seems to be a single species of protein accounting for ca. one-third of the RMP fraction. Because of its distinctness this component, called the LR fraction, received the major attention in this study. LR was found to comprise ca. 17% of the aqueous-soluble proteins of the nucleus and ca. 3–4% of the total cell protein. LR has a very low molecular weight as determined, e.g., by its elution from a Sephadex G-100 column. Because of its low molecular weight, LR could be purified by taking advantage of the fact that LR is (1) soluble in a saturated Solution of ammonium sulfate and (2) insoluble in butanol, diethyl ether, and 10% trichloroacetic acid. LR migrates toward the anode as a single band when subjected to electrophoresis on “standard disc” and SDS polyacrylamide gels. It does not enter a gel designed to separate basic proteins (at pH 4.0). When subjected to Sephadex G-25 gel filtration LR migrates through the gel as a single band and elutes from the gel at a position in the middle of the linear separation range that indicates its molecular weight is ca. 2300. The only N-terminal amino acid found in the LR fraction is proline. Evidence is presented to show that LR is not the product of a non-specific breakdown of protein produced during its isolation, but the possibility that it results from the cleavage of a single chemical bond of a larger polypeptide, has not been eliminated. When injected into non-labeled amebae, purified radioactive LR concentrates in the nucleus — just as radioactive RMP concentrates in a recipient cell nucleus when an amino acid-labeled nucleus is implanted into an unlabeled cell.  相似文献   

7.
Radioactivity, apparently in cytonucleoproteins, from an amino acid-labeled nucleus implanted into a non-radioactive cell appeared in the host nucleus within 10 minutes, and the typical equilibrium ratio 70:30 donor nucleus radioactivity:host nucleus radioactivity was reached in 4 to 5 hours at 25°C. If such binucleates grew and divided, no localization of radioactivity was observable in cells fixed during mitosis, but the protein label remained concentrated in the daughter interphase nuclei for at least 4 generations. Continued migration of cytonucleoproteins was observed if these daughter nuclei were transplanted to other unlabeled cells. The Q10 (19° to 29°C) of the migration rate of radioactive cytonucleoproteins was ca. 1.3, suggesting that passage through the cytoplasm occurred by diffusion. Both non-migratory nuclear proteins and cytonucleoproteins appear to be synthesized in the cytoplasm.  相似文献   

8.
The proteins of wild-type and polyploid plasmodia of P. polycephalum were prelabelled with [3H]leucine and [14C]leucine. The two types of plasmodia were then fused for 2 h. Following fusion the nuclei were isolated and the smaller wild-type cell nuclei separated from the larger polyploid cell nuclei. The proteins were isolated from the recipient cell nuclei and the recipient nuclear proteins extracted. Ratios of 3H/14C in the various nuclear protein fractions show that during fusion differential transfer of labelled preformed proteins from the donor cell into the recipient cell nucleus occurs. The quantity of proteins transferred varies among the different fractions and with the phase of the cell cycle. Isotopic dilution experiments indicate that these differences in protein transfer are, in part, due to a high rate of synthesis and turnover of the nuclear proteins.  相似文献   

9.
10.
By transplanting nuclei between labeled and unlabeled cells, we determined the localization of the major proteins of amebas and described certain features of their intracellular distributon. We identified approximately 130 cellular proteins by fluorography of one-dimensional polyacrylamide electrophoretic gels and found that slightly less than half of them (designated NP, for nuclear proteins) are almost exclusively nuclear. About 95 percent of the other proteins (designated CP for cytoplamsic proteins) are roughly equally concentrated in nucleus and cytoplasm, but—because the cytoplasm is 50 times larger than the nucleus—about 98 percent of each of the latter is in the cytoplasm. Of the CP, roughly 5 percent are not detectable in the nucleus. Assuming that these are restricted to the cytoplasm only because, for example, they are in structures too large to enter the nucleus and labeled CP readily exit a nucleus introduced into unlabeled cytoplasm, we conclude that the nuclear envelope does not limit the movement of any nonstructural cellular protein in either direction between the two compartments. Some NP are not found in the cytoplasm (although ostensibly synthesized there) presumably because of preferential binding within the nucleus. Almost one half of the protein mass in nuclei in vivo is CP and apparently only proteins of that group are lost from nuclei when cells are lysed. Thus, while an extracellular environment allows CP to exit isolated nuclei, the nuclear binding affinities for NP are retained. Further examination of NP distribution shows that many NP species are, in fact, detectable in the cytoplasm (although at only about 1/300 the nuclear concentration), apparently because the nuclear affinity is relatively low. These proteins are electrophoretically distinguishable from the high-affinity NP not found in the cytoplasm. New experiments show that an earlier suggestion that the nuclear transplantation operation causes an artifactual release of NP to the cytoplasm is largely incorrect. Moreover, we show that cytoplasmic “contamination” of nuclear preparations is not a factor in classifying proteins by these nuclear transplantation experiments. We speculate the no mechanism has evolved to confine most CP to the cytoplasm (where they presumably function exclusively) because the cytoplasm’s large volume ensures that CP will be abundant there. Extending Bonner’s idea of “quasi-functional nuclear binding sites” for NP, we suggest that a subset of NP usually have a low affinity for available intranuclear sites because their main function(s) occurs at other intranuclear sites to which they bind tightly only when particular metabolic conditions demand. The other NP (those completely absent from cytoplasm) presumable always are bound with high affinity at their primary functional sites.  相似文献   

11.
We studied the mechanism of transport of proteins into the nucleus using synthetic peptides containing the nuclear location signal sequence of Simian virus 40 (SV 40) large T-antigen. When chick erythrocytes containing a synthetic large T-antigen nuclear translocation signal were fused with SV 40-transformed human fibroblasts, the migration of native large T-antigen into the chick nuclei was suppressed. Migration of proteins detected by human specific antinuclear autoimmune antibody was not blocked. An analog of the nuclear location signal peptide did not inhibit entry of large T-antigen into the chick nuclei. This result suggests that the peptide blocked the migration of only native large T-antigen into the nucleus, and that the signal of the majority of nuclear proteins for nuclear transport is not the same as that of the large T-antigen. The synthetic peptide was conjugated chemically with bovine serum albumin (BSA) and introduced into the cytoplasm of cultured human cells by red blood cell ghost-mediated microinjection. The BSA-synthetic peptide conjugate was found predominantly in the nucleus within 2 h after its introduction into the cells. BSA conjugated with the cross-linking reagent alone was not transported into the nucleus. Acetylated synthetic peptide was not effective in promoting nuclear localization of BSA. Mild trypsin treatment of the BSA-synthetic peptide conjugate suppressed nuclear localization. Conjugates of the synthetic peptide with phycoerythrin (Mr about 150 kD) and with secretory IgA (Mr about 380 kD) were both found in the nucleus very shortly after their introduction into the cytoplasm. These results suggest that the synthetic peptide containing the nuclear location signal sequence provides exogenous proteins with the ability to migrate into the nucleus. But, since a conjugate of the synthetic peptide with IgM (Mr about 940 kD) did not migrate into the nucleus after its microinjection, there may be a size limit in nuclear transport of conjugated proteins.  相似文献   

12.
13.
The lectin wheat germ agglutinin (WGA), which has been reported to inhibit nuclear protein uptake in vitro by isolated nuclei (Finlay et al. (1987) J. Cell Biol. 104, 189), also blocks, on microinjection into living cells, the migration of proteins into the cell nucleus. Radioactively labeled nuclear proteins were injected into the cytoplasm of Xenopus oocytes and their reentry into the nucleus was analyzed in the presence or absence of WGA by two-dimensional gel electrophoresis. In another set of experiments, fluorescently labeled nucleoplasmin was injected, alone or together with WGA, into the cytoplasm of rat hepatoma cells, and its nucleocytoplasmic distribution was studied by quantitative laser fluorescence microscopy. The results indicate that WGA inhibits the uptake of karyophilic proteins in general, independent of their sizes. Since the nucleocytoplasmic flux of a dextran with Mr 10,000 was not affected it can be excluded that WGA acts by a general blockade or constriction of the functional pore channel. At reduced WGA concentrations, the rate but not the final extent of nuclear protein accumulation was decreased. These findings support the concept that the O-glycosidically bound carbohydrates of certain nuclear pore complex proteins are exposed to the pore interior and that these regions are probably involved in nucleocytoplasmic translocation processes.  相似文献   

14.
The mechanism by which proteins accumulate in the cell nucleus is not yet known. Two alternative mechanisms are discussed here: (a) selective unidirectional entry of karyophilic proteins through the nuclear pores, and (b) free diffusion of all proteins through the nuclear pores and specific binding of nuclear proteins to nondiffusible components of the nucleoplasm. We present experiments designed to distinguish between these alternatives. After mechanical injury of the Xenopus oocyte nuclear envelope, nuclear proteins were detected in the cytoplasm by immunohistochemical methods. In a second approach, nuclei from X. borealis oocytes were isolated under oil, the nuclear envelopes were removed, and the pure nucleoplasm was injected into the vegetal pole of X. laevis oocytes. With immunohistochemical methods, it was found that each of five nuclear proteins rapidly diffuses out of the injected nucleoplasm into the surrounding cytoplasm. The subsequent transport and accumulation in the intact host nucleus could be shown for the nuclear protein N1 with the aid of a species-specific mAb that reacts only with X. borealis N1. Purified and iodinated nucleoplasmin was injected into the cytoplasm of Xenopus oocytes and its uptake into the nucleus was studied by biochemical methods.  相似文献   

15.
Nuclear migration is a critical component of many cellular and developmental processes. The nuclear envelope forms a barrier between the cytoplasm, where mechanical forces are generated, and the nucleoskeleton. The LINC complex consists of KASH proteins in the outer nuclear membrane and SUN proteins in the inner nuclear membrane that bridge the nuclear envelope. How forces are transferred from the LINC complex to the nucleoskeleton is poorly understood. The Caenorhabditis elegans lamin, LMN-1, is required for nuclear migration and interacts with the nucleoplasmic domain of the SUN protein UNC-84. This interaction is weakened by the unc-84(P91S) missense mutation. These mutant nuclei have an intermediate nuclear migration defect—live imaging of nuclei or LMN-1::GFP shows that many nuclei migrate normally, others initiate migration before subsequently failing, and others fail to begin migration. At least one other component of the nucleoskeleton, the NET5/Samp1/Ima1 homologue SAMP-1, plays a role in nuclear migration. We propose a nut-and-bolt model to explain how forces are dissipated across the nuclear envelope during nuclear migration. In this model, SUN/KASH bridges serve as bolts through the nuclear envelope, and nucleoskeleton components LMN-1 and SAMP-1 act as both nuts and washers on the inside of the nucleus.  相似文献   

16.
Incorporation of 3H-leucine into histones and non-histone chromosomal proteins was investigated in liver, a tissue in which proteins generally turn over rapidly, and in muscle, a tissue in which proteins turn over slowly. Incorporation into histones was low in both tissues. Incorporation into non-histone chromosomal proteins which, in liver, proceeded at about the same rate as into soluble cytoplasmic proteins was, in muscle, considerably more rapid than into any other cytoplasmic or nuclear protein fraction investigated. The significance of the relatively high incorporation rate into the non-histone chromosomal proteins in muscle is not known. However, autoradiographic experiments suggest that in muscle all nuclei display a high rate of incorporation into these proteins, and gel electrophoretic experiments indicate that a high rate of turnover is characteristic of many of the proteins comprising this fraction.  相似文献   

17.
These experiments were designed to determine whether the migration of RNA molecules from an implanted nucleus to the host cytoplasm and from there into the host cell nucleus against a concentration gradient might reflect an artefact induced by the process of nuclear transplantation. That is, are RNA molecules, as previously shown for certain nuclear proteins, caused to artefactually leave a manipulated nucleus and then move into the host cell nucleus (as well as return to the grafted nucleus) during the recovery period?A variety of experiments involving different kinds of manipulative sequences and different numbers of nuclear transplantations suggest—but do not prove—that no artefact is involved in the migration of RNA from one nucleus to another but two experiments strongly support the view that the shuttling activity is a normal physiological process. One of the latter involved a determination of the rate of egress of 3H-RNA from an implanted nucleus and reveals that that rate, in contrast with the equivalent rate of egress for labeled proteins which is clearly abnormal after micromanipulation, is totally consonant with the rate of movement of RNA from nucleus to cytoplasm established from experiments that do not involve micromanipulation. The other experiment involves comparison of (1) the amount of radioactivity acquired by an unlabeled nucleus present in the cell at the time a labeled nucleus is implanted with (2) the amount of radioactivity acquired by an unlabeled nucleus implanted after a labeled nucleus had been implanted and had time to recover from any possible operation-induced trauma. With 3H-protein nuclei the host nuclei of (1) acquired much more label than the host nuclei of (2) because in (1) the host nuclei were able to acquire much of the artefactually-released 3H-protein. For the 3H-RNA experiments, however, little difference was found between (1) and (2) in the amount of label acquired by the host cell nuclei. It can be concluded that little, if any, of the non-random shuttling activity of RNA molecules can be a reflection of an artefact.  相似文献   

18.
The use of western blot analysis of nuclear and cytoplasmic extracts of BgDNV densovirusinfected German cockroach, Blattella germanica, the intracellular localization of the regulatory proteins of the corresponding densovirus was investigated in cell culture. It was demonstrated that two proteins, namely NS1 and NS3, were predominantly localized in the nucleus, whereas NS2 protein was equally distributed in the nuclei and the cytoplasm. The data obtained are important for understanding the potential functions of densovirus regulatory proteins. The intracellular localization of NS3 protein was determined for the first time for any densovirus.  相似文献   

19.
20.
In studies on the specific migration of macromolecules across the nuclear envelope, a karyophilic protein was injected into the cytoplasm of cultured cells and its subsequent location in the cell was examined. Nucleoplasmin of frog nuclear protein was used for this experiment. When [125I]nucleoplasmin was introduced into the cytoplasm of mammalian cells (human and mouse) by red blood cell-mediated microinjection, it rapidly accumulated in the nucleus. When nucleoplasmin conjugated with [125I]IgG against chromosomal protein was introduced similarly, it also accumulated rapidly in the nucleus, and reacted with its antigen inside the nucleus. On the contrary, when IgG alone or IgG conjugated with BSA were introduced, they did not migrate from the cytoplasm into the nucleus. These findings imply that the migration of macromolecules from the cytoplasm to the nucleus does not depend only on their molecular size but also on a specific transport mechanism, and that karyophilic proteins may act as useful carriers in the transfer of exogenous proteins into the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号