首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
ASC is an adaptor protein that is composed of two protein-protein interaction domains, a PYRIN domain (PYD), and a caspase-recruitment domain (CARD). Recently, ASC was identified as a binding partner of pyrin, which is the product of MEFV, a gene causing familial Mediterranean fever (FMF). Mutations in MEFV result in defects in control of neutrophil-mediated inflammation. Thus we focused on the expression of ASC in neutrophils. Immunohistochemical study showed that ASC is increased in neutrophils in severe inflammatory sites of gangrenous appendicitis. We, then, tested whether proinflammatory mediators induce ASC using peripheral blood neutrophils in vitro. ASC expression was transiently up-regulated by IL-1alpha, IL-1beta, IFN-alpha, IFN-gamma, TNFalpha, and LPS. ASC was also increased by incubation with either anti-Fas antibody or recombinant soluble Fas ligand. The Fas-mediated induction of ASC was inhibited by a general caspase inhibitor, z-VAD-fmk, and an immunocytochemical study showed that ASC was increased in neutrophils exhibiting characteristic phenotypes for apoptosis. These findings suggest that up-regulation of ASC is closely associated with inflammation and apoptosis in neutrophils.  相似文献   

3.
Molecular changes associated with cellular senescence in human diploid fibroblasts (HDF), IMR-90, were analyzed by two-dimensional differential proteome analysis. A high percentage of replicative senescent cells were positive for senescence-associated beta-galactosidase activity, and displayed elevated levels of p21 and p53 proteins. Comparison of early population doubling level (PDL) versus replicative senescent cells among the 1000 spots resolved on gels revealed that the signal intensities of six spots were increased fivefold, whereas those of four spots were decreased. Proteome analysis data demonstrated that connective tissue growth factor (CTGF) is an age-associated protein. Up-regulation of CTGF expression in senescent cells was further confirmed by Western blotting and RT-PCR. We postulate that CTGF expression is controlled, in part, by transforming growth factor-beta (TGF-beta), in view of the high levels of TGF-beta isoforms as well as type I and II receptors detected only in late PDL of HDF cells. To verify this hypothesis, we stimulated early PDL cells with TGF-beta1 as well as stress inducing agents such as hydrogen peroxide. As expected, CTGF expression and Smad protein phosphorylation were dramatically increased up to observed levels in normal replicative senescent cells. In vivo experiments disclosed that CTGF, pSmad, and p53 were constitutively expressed at basal levels in up to 18-month-old rat liver, and expression was significantly up-regulated in 24-month-old rat tissue. However, expression patterns were not altered at all periods examined in livers of caloric-restricted rats. In view of both in vitro and in vivo data, we propose that the TGF-beta/Smad pathway functions in the induction of CTGF, a novel biomarker protein of cellular senescence in human fibroblasts.  相似文献   

4.
5.
6.
Elevated circulating interleukin-6 (IL6) and up-regulated S100P in prostate cancer (PCa) specimens correlate independently with progression to androgen-independent and metastatic PCa. The cause of up-regulated S100P levels in advanced PCa remains to be determined. We investigated the possibility that IL6 is an inducer of S100P. Determination of mRNA and protein levels by real-time PCR and Western blotting revealed that IL6 is a more potent inducer of S100P than the synthetic androgen, R1881, in the LNCaP/C4-2B model of PCa progression. IL6 did not require androgen to induce S100P in these cells, which express a functional androgen receptor (AR). Like R1881, IL6 was unable to induce S100P in PC3 cells that lack a functional AR. IL6 did not strongly induce the AR-dependent genes PSA and KLK2 and, contrary to R1881, down-regulated Cyr61/CCN1, a potential marker that is down-regulated in PCa. Epidermal growth factor (EGF), which like IL6 is a non-androgen activator of the AR, did not induce S100P. The data identifies a unique gene-induction profile for IL6 and suggests that IL6 may require a functional AR for S100P induction. A link between elevated IL6 and up-regulated S100P in androgen-refractory and metastatic PCa is postulated.  相似文献   

7.
8.
The BMP/SMAD4 pathway has major effects on liver hepcidin levels. Bone morphogenetic protein-binding endothelial cell precursor-derived regulator (Bmper), a known regulator of BMP signaling, was found to be overexpressed at the mRNA and protein levels in liver of genetically hypotransferrinemic mice (Trf(hpx/hpx)). Soluble BMPER peptide inhibited BMP2- and BMP6-dependent hepcidin promoter activity in both HepG2 and HuH7 cells. These effects correlated with reduced cellular levels of pSMAD1/5/8. Addition of BMPER peptide to primary human hepatocytes abolished the BMP2-dependent increase in hepcidin mRNA, whereas injection of Bmper peptide into mice resulted in reduced liver hepcidin and increased serum iron levels. Thus Bmper may play an important role in suppressing hepcidin production in hypotransferrinemic mice.  相似文献   

9.
Various expression studies have shown a preferential muscle expression of the mouse Fem1a gene, but no data is available on the subcellular localization of the corresponding protein. Here, using a specific antibody, we show that Fem1a is expressed preferentially in cardiac muscle, brain and liver. Moreover, using immunofluorescence and electron microscopy, as well as biochemical assays, we demonstrate that Fem1a is localized within mitochondria of C2C12 myoblasts and cardiac muscle cells. Finally, we show that the expression of Fem1a, which is a cellular partner of the EP4 receptor for prostaglandin E2, is increased in mouse hearts after myocardial infarction.  相似文献   

10.
In a model of cerebral hypoxia-ischemia in the immature rat, widespread brain injury is produced in the ipsilateral hemisphere, whereas the contralateral hemisphere is left undamaged. Previously, we found that calpains were equally translocated to cellular membranes (a prerequisite for protease activation) in the ipsilateral and contralateral hemispheres. However, activation, as judged by degradation of fodrin, occurred only in the ipsilateral hemisphere. In this study we demonstrate that calpastatin, the specific, endogenous inhibitor protein to calpain, is up-regulated in response to hypoxia and may be responsible for the halted calpain activation in the contralateral hemisphere. Concomitantly, extensive degradation of calpastatin occurred in the ipsilateral hemisphere, as demonstrated by the appearance of a membrane-bound 50-kDa calpastatin breakdown product. The calpastatin breakdown product accumulated in the synaptosomal fraction, displaying a peak 24 h post-insult, but was not detectable in the cytosolic fraction. The degradation of calpastatin was blocked by administration of CX295, a calpain inhibitor, indicating that calpastatin acts as a suicide substrate to calpain during hypoxia-ischemia. In summary, calpastatin was up-regulated in areas that remain undamaged and degraded in areas where excessive activation of calpains and infarction occurs.  相似文献   

11.
12.
13.
14.
G-protein-coupled receptors (GPCRs) are the largest group of cell surface molecules involved in signal transduction and are receptors for a wide variety of stimuli ranging from light, calcium and odourants to biogenic amines and peptides. It is assumed that systematic genomic data-mining has identified the overwhelming majority of all remaining GPCRs in the genome. Here we report the cloning of a novel orphan GPCR which was identified in a search for erythropoietin-induced genes in the brain as a strongly up-regulated gene. This unknown gene coded for a protein which had a seven-transmembrane topology and key features typical of GPCRs of the A family but a low overall identity to all known GPCRs. The protein, coded ee3, has an unusually high evolutionary conservation and is expressed in neurons in diverse areas of the CNS with relation to integrative functions or motor tasks. A yeast two-hybrid screen for interacting proteins revealed binding to the microtubule-associated protein (MAP) 1b. Coupling to MAP1a has been described for another cognate GPCR, the 5-hydroxytryptamine (5HT) 2a receptor. Surprisingly, we found complete colocalization of ee3 and the 5HT2a receptor. The interaction with MAP1b proved to be critical for the stability or folding of ee3 as in mice lacking MAP1b the ee3 protein was undetectable by immunohistochemistry, although messenger RNA levels remained unchanged. We propose that ee3 is a highly interesting new orphan GPCR with potential connections to erythropoietin and 5HT2a receptor signalling.  相似文献   

15.
16.
Doublecortin (DCX) is required for normal migration of neurons into the cerebral cortex, since mutations in the human gene cause a disruption of cortical neuronal migration. To date, little is known about the distribution of DCX protein or its function. Here, we demonstrate that DCX is expressed in migrating neurons throughout the central and peripheral nervous system during embryonic and postnatal development. DCX protein localization overlaps with microtubules in cultured primary cortical neurons, and this overlapping expression is disrupted by microtubule depolymerization. DCX coassembles with brain microtubules, and recombinant DCX stimulates the polymerization of purified tubulin. Finally, overexpression of DCX in heterologous cells leads to a dramatic microtubule phenotype that is resistant to depolymerization. Therefore, DCX likely directs neuronal migration by regulating the organization and stability of microtubules.  相似文献   

17.
18.
100 days after the exposure of the rat sensorimotor cortex to hypoxic hypoxia two types of hyperchromic neurons with vacuolization of the cytoplasm were described. Using electron cytochemical method for the differential staining of ribonucleoproteins, it has been shown that the first type of hyperchromic neurons were cells with irreversible dystrophic changes and the second type were cells without irreversible dystrophy but with changes in the DNA-RNA-protein synthesizing system.  相似文献   

19.
Morphological changes of all links of the terminal vascular bed during acute hypoxic hypoxia were studied in experiment and in postmortem material. A complex of methods was used including microdissection, injection with India ink - gelatin, clearing, silver nitrate impregnation after V. V. Kuprijanov, staining after Van Gieson and with hematoxylin-eosin, biomicroscopy and reoencephalography. Signs of desorganization of the vascular bed were revealed which manifested themselves as changes in microangioarchitectonics and diameters of vascular lumens, increased permiability of their walls with saturation of them with white and escape of its forming elements of the blood outside the limits of the vessels, as well as in destruction of the aggregate state of the blood. It considerably enlarges our knowledge of the state and changes in the vascular bed during hypoxic hypoxia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号