首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of hydrocortisone acetate treatment of rats during the last gestational week on neurochemical and morphological characteristics of the brain in early postnatal and mature offspring were studied. Disappearance of sexual differences both in aromatase and 5alpha-reductase activities and noradrenaline concentration in the preoptic area in 10-day old rats was found. Meanwhile a sexual dimorphism in serotonin metabolism emerged. In adult offspring, the prenatal exposure to glucocorticoids resulted in disappearance of sexual differences in neurocytes' nuclei volume in medial preoptic and suprachiasmatic nuclei. The adrenocortical reaction to noradrenaline infusion to the 3rd brain ventricle was absent in the experimental males and intensified in females. In males, adrenocortical reaction to restraint decreased while post-stress changes in hypothalamic noradrenaline concentration and hippocampal glutamate decarboxylase activity were not observed. In the similar experiments in females both the augmentation of adrenocortical reaction and inhibition of GABA-ergic system were revealed. The results obtained indicate the modifying effect of prenatal exposure to glucocorticoids on sexual dimorphism of neuroendocrine system.  相似文献   

2.
Metabotropic GABAB receptors are abundantly expressed at glutamatergic synapses where they control excitability of the synapse. Here, we tested the hypothesis that glutamatergic neurotransmission may regulate GABAB receptors. We found that application of glutamate to cultured cortical neurons led to rapid down-regulation of GABAB receptors via lysosomal degradation. This effect was mimicked by selective activation of AMPA receptors and further accelerated by coactivation of group I metabotropic glutamate receptors. Inhibition of NMDA receptors, blockade of L-type Ca2+ channels, and removal of extracellular Ca2+ prevented glutamate-induced down-regulation of GABAB receptors, indicating that Ca2+ influx plays a critical role. We further established that glutamate-induced down-regulation depends on the internalization of GABAB receptors. Glutamate did not affect the rate of GABAB receptor endocytosis but led to reduced recycling of the receptors back to the plasma membrane. Blockade of lysosomal activity rescued receptor recycling, indicating that glutamate redirects GABAB receptors from the recycling to the degradation pathway. In conclusion, the data indicate that sustained activation of AMPA receptors down-regulates GABAB receptors by sorting endocytosed GABAB receptors preferentially to lysosomes for degradation on the expense of recycling. This mechanism may relieve glutamatergic synapses from GABAB receptor-mediated inhibition resulting in increased synaptic excitability.  相似文献   

3.
Neurons of the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic- pituitary-adrenal (HPA) axis and the autonomic nervous system. Females lacking functional GABAB receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABAB receptor to a 7-day critical period (E11–E17) during embryonic development. Experiments tested the role of GABAB receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABAB receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABAB receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABAB receptor antagonist. Embryonic exposure to GABAB receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABAB receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.  相似文献   

4.
Estradiol rapidly activates a microcircuit in the arcuate nucleus of the hypothalamus (ARH) that is needed for maximal female sexual receptivity. Membrane estrogen receptor-α complexes with and signals through the metabotropic glutamate receptor-1a stimulating NPY release within the ARH activating proopiomelanocortin (POMC) neurons. These POMC neurons project to the medial preoptic nucleus (MPN) and release β-endorphin. Estradiol treatment induces activation/internalization of MPN μ-opioid receptors (MOR) to inhibit lordosis. Estradiol membrane action modulates ARH gamma-aminobutyric acid receptor-B (GABAB) activity. We tested the hypothesis that ARH GABAB receptors mediate estradiol-induced MOR activation and facilitation of sexual receptivity. Double-label immunohistochemistry revealed expression of GABAB receptors in NPY, ERα and POMC expressing ARH neurons. Approximately 70% of POMC neurons expressed GABAB receptors. Because estradiol initially activates an inhibitory circuit and maintains activation of this circuit, the effects of blocking GABAB receptors were evaluated before estradiol benzoate (EB) treatment and after at the time of lordosis testing. Bilateral infusions of the GABAB receptor antagonist, CGP52432, into the ARH prior to EB treatment of ovariectomized rats prevented estradiol-induced activation/internalization of MPN MOR, and the rats remained unreceptive. However, in EB-treated rats, bilateral CGP52432 infusions 30 min before behavior testing attenuated MOR internalization and facilitated lordosis. These results indicated that GABAB receptors were located within the lordosis-regulating ARH microcircuit and are necessary for activation and maintenance of the estradiol inhibition of lordosis behavior. Although GABAB receptors positively influence estradiol signaling, they negatively regulate lordosis behavior since GABAB activity maintains the estradiol-induced inhibition.  相似文献   

5.
We investigated the effects of hydrocortisone acetate and dexamethasone administered to pregnant rats during the last gestational week on sexual differentiation of testosterone metabolism and biogenic monoamine contents and turnover in the discrete brain regions in 10-day-old offspring. In the preoptic area, sex-dependent differences in aromatase activity were attenuated by prenatal glucocorticoids. Prenatal dexamethasone but not hydrocortisone acetate caused the inversion of sexual dimorphism of 5alpha-reductase activity in the preoptic area. In the brain preoptic area of the male pups prenatally exposed to hydrocortisone acetate, a decrease in noradrenaline turnover was found. Dopamine turnover in the preoptic area and 5-hydroxytryptamine metabolism in the preoptic area and medial basal hypothalamus increased in females as a result of hydrocortisone acetate treatment. Our results indicate that excess glucocorticoids in prenatal life modifies the basic neurochemical and neurophysiological mechanisms of sexual brain differentiation and might contribute to behavioral and reproductive disorders in adulthood.  相似文献   

6.
Regulators of G-protein signaling (RGS) proteins regulate certain G-protein-coupled receptor (GPCR)-mediated signaling pathways. The GABAB receptor (GABABR) is a GPCR that plays a role in the stress response. Previous studies indicate that acute immobilization stress (AIS) decreases RGS4 in the prefrontal cortex (PFC) and hypothalamus (HY) and suggest the possibility of a signal complex composed of RGS4 and GABABR. Therefore, in the present study, we tested whether RGS4 associates with GABABR in these brain regions. We found the co-localization of RGS4 and GABABR subtypes in the PFC and HY using double immunohistochemistry and confirmed a direct association between GABAB2R and RGS4 proteins using co-immunoprecipitation. Furthermore, we found that AIS decreased the amount of RGS4 bound to GABAB2R and the number of double-positive cells. These results indicate that GABABR forms a signal complex with RGS4 and suggests that RGS4 is a regulator of GABABR. [BMB Reports 2014; 47(6): 324-329]  相似文献   

7.
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system and exerts its actions via ionotropic (GABAA and GABAC) and metabotropic (GABAB) receptors. The GABAB receptor is a dimer composed of R1 and R2 components. In addition to their location on neurons, GABA and functional GABAB receptors also have been detected in some peripheral tissues. In the present study, we combined immunohistochemistry, immunoblot and tension recording to determine if the human fallopian tube express glutamic acid decarboxylase (GAD65/67), two isoforms for synthesis of GABA and functional GABAB receptors. Immunoblots showed that the human fallopian tube tissue contained GABABR1 protein which was localized in the epithelial cells and smooth muscle cells by immunohistochemistry. In addition, epithelial cells also expressed GAD65/67. Tension recording found that both GABA and baclofen, a GABAB receptor agonist increased the spontaneous activity of human fallopian tube. The expressions of GABABR and GAD65/67 were significantly upregulated in the ectopic pregnancy group than in the intrauterine pregnancy group. We conclude that the human fallopian tube is capable of synthesizing GABA and expresses functionally active GABAB receptors. An upregulation of GABA synthesis and corresponding GABAB receptors may involve in ectopic pregnancy.  相似文献   

8.
The effects of pirlindole and dehydro-pirlindole on GABAA receptors and MAO-A activity were investigated in vitro. Pirlindole was inactive as a GABA antagonist. Dehydro-pirlindole exhibited partial and selective blockade of a subset of GABAA receptors with an EC50 of 12μM and maximum reversal (ΔBopt) of 42%. Inhibition of rat brain and human placenta MAO-A by both compounds was much more potent (with IC50 range 0.3–0.005 μM). Their effects on MAO-A activity were partially reversible in vitro. In contrast to pirlindole, dehydro-pirlindole may act not only as MAO-A inhibitor but also as a clozapine-like selective GABAA receptor blocker, preferentially blocking a subset of GABAA receptors that are not sensitive to DMCM or Ro 5-4864. Pirlindole is the generic name of the drug pyrazidol.  相似文献   

9.
The age-related development of GABABreceptors and their coupling to adenylate cyclase were studied in the brains of spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Compared with WKY rats, the specific [3H]GABA binding to GABABreceptors showed a significant decrease not only in the posterior hypothalamus, midbrain, hippocampus and striatum of eleven-week-old SHR, which maintain a hypertensive state, but also in the posterior hypothalamus of four-week-old normotensive SHR. Similarly, the GABABreceptor agonists (baclofen and DN-2327)-induced suppression of adenylate cyclase activity showed a decrease in the posterior hypothalamus of four-week-old SHR as well as in the posterior hypothalamus and striatum of eleven-week-old SHR. These results suggest that the functions of the GABABreceptor in the brain of SHR may be decreased independently from the occurrence of blood pressure elevation and that such changes may even be involved in the pathogenesis of SHR.  相似文献   

10.
11.
The neurotransmitter gamma-aminobutyric acid (GABA) and subtypes of GABA receptors were recently identified in adult testes. Since adult Leydig cells possess both the GABA biosynthetic enzyme glutamate decarboxylase (GAD), as well as GABAA and GABAB receptors, it is possible that GABA may act as auto-/paracrine molecule to regulate Leydig cell function. The present study was aimed to examine effects of GABA, which may include trophic action. This assumption is based on reports pinpointing GABA as regulator of proliferation and differentiation of developing neurons via GABAA receptors. Assuming such a role for the developing testis, we studied whether GABA synthesis and GABA receptors are already present in the postnatal testis, where fetal Leydig cells and, to a much greater extend, cells of the adult Leydig cell lineage proliferate. Immunohistochemistry, RT-PCR, Western blotting and a radioactive enzymatic GAD assay evidenced that fetal Leydig cells of five-six days old rats possess active GAD protein, and that both fetal Leydig cells and cells of the adult Leydig cell lineage possess GABAA receptor subunits. TM3 cells, a proliferating mouse Leydig cell line, which we showed to possess GABAA receptor subunits by RT-PCR, served to study effects of GABA on proliferation. Using a colorimetric proliferation assay and Western Blotting for proliferating cell nuclear antigen (PCNA) we demonstrated that GABA or the GABAA agonist isoguvacine significantly increased TM3 cell number and PCNA content in TM3 cells. These effects were blocked by the GABAA antagonist bicuculline, implying a role for GABAA receptors. In conclusion, GABA increases proliferation of TM3 Leydig cells via GABAA receptor activation and proliferating Leydig cells in the postnatal rodent testis bear a GABAergic system. Thus testicular GABA may play an as yet unrecognized role in the development of Leydig cells during the differentiation of the testicular interstitial compartment.  相似文献   

12.
We studied the effects of stress induced by different influences (immobilization and compulsory swimming) on the activity of angiotensin-converting enzyme (ACE, an enzyme of the proteolytic conversion of angiotensin II) in structures of the hypothalamo-hypophyseal-adrenocortical system (HHAS) of unilaterally adrenalectomized (hemiadrenalectomized, HAE) rats. The pattern of stress-induced changes in the activity of ACE depended on the type of stress; rigid daily immobilization of rats for 1 h resulted in more significant shifts. Post-immobilization stress changes in the activity of ACE in the HHAS structures of HAE rats (with a lower basal activity of the endogenous angiotensin system in their hypothalamus) differed from the stress-induced reaction of the enzyme in intact rats. In HAE rats, we also observed inhibition of the activity of a glucocorticoid link of the stress system, as compared with that in intact animals. An inhibitor of ACE, captopril, and a stable analog of leucine-enkephalin, dalargin, when injected before stressing, were capable of decreasing the stress-induced ACE reaction in the hypothalamus and adenohypophysis and of limiting manifestations of the reaction of the adrenals to immobilization. This is interpreted as a proof of the involvement of the components of the angiotensin and enkephalin systems in the formation of the HHAS system to stressing of HAE rats.  相似文献   

13.
Summary. GABA is synthesized within GABA terminals through a highly compartmentalized process in which glial-derived glutamine is a major precursor and its release is modulated by GABAB autoreceptors. The aim of this work was to ascertain whether or not GABA synthesis and release are coupled in the rat brain through a GABAB autoreceptor-mediated modulation. It was found that (−)baclofen (30 μM) reduces the K+ stimulated release of [3H]GABA in synaptosomes and prisms (10 μM) from cerebral cortex, while at the same concentrations (−)baclofen failed to modify the synthesis of [3H]GABA from [3H]glutamine in cortical and hypothalamic slices, prisms and in cortical synaptosomes. In this latter preparation, identical results were observed when (−)baclofen was added to Krebs-Tris media, containing 5 or 15 mM K+ concentration. In agreement with these latter results, glutamic acid decarboxylase (GAD) activity from cortical and hypothalamic prisms was not affected by 1–100 μM (−)baclofen. Similar results on GABA synthesis were also observed when 1–100 μM 3-aminopropil(methyl)-phosphinic acid or GABA was used instead of (−)baclofen to stimulate GABAB autoreceptors. [3H]GABA release, [3H]GABA synthesis from [3H]glutamine and GAD activity were also insensitive to the action of the GABAB antagonist CGP 52432 (10–100 μM). Likewise, muscimol (0.3–100 μM) did not affect GABA synthesis. Our results indicate that unlike GABA release, GABA synthesis is not modulated by GABAB autoreceptors. Received August 31, 1999 Accepted September 20, 1999  相似文献   

14.
In the adult central nervous system, GABAergic synaptic inhibition is known to play a crucial role in preventing the spread of excitatory glutamatergic activity. This inhibition is achieved by a membrane hyperpolarization through the activation of postsynaptic γ-aminobutyric acidA (GABAA) and GABAB receptors. In addition, GABA also depress transmitter release acting through presynaptic GABAB receptors. Despite the wealth of data regarding the role of GABA in regulating the degree of synchronous activity in the adult, little is known about GABA transmission during early stages of development. In the following we report that GABA mediates most of the excitatory drive at early stages of development in the hippocampal CA3 region. Activation of GABAA receptors induces a depolarization and excitation of immature CA3 pyramidal neurons and increases intracellular Ca2+ ([Ca2+]i) during the first postnatal week of life. During the same developmental period, the postsynaptic GABAB-mediated inhibition is poorly developed. In contrast, the presynaptic GABAB-mediated inhibition is well developed at birth and plays a crucial role in modulating the postsynaptic activity by depressing transmitter release at early postnatal stages. We have also shown that GABA plays a trophic role in the neuritic outgrowth of cultured hippocampal neurons. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Neuronal G protein‐gated inwardly rectifying potassium (GIRK) channels mediate the slow inhibitory effects of many neurotransmitters post‐synaptically. However, no evidence exists that supports that GIRK channels play any role in the inhibition of glutamate release by GABAB receptors. In this study, we show for the first time that GABAB receptors operate through two mechanisms in nerve terminals from the cerebral cortex. As shown previously, GABAB receptors reduces glutamate release and the Ca2+ influx mediated by N‐type Ca2+ channels in a mode insensitive to the GIRK channel blocker tertiapin‐Q and consistent with direct inhibition of this voltage‐gated Ca2+ channel. However, by means of weak stimulation protocols, we reveal that GABAB receptors also reduce glutamate release mediated by P/Q‐type Ca2+ channels, and that these responses are reversed by the GIRK channel blocker tertiapin‐Q. Consistent with the functional interaction between GABAB receptors and GIRK channels at nerve terminals we demonstrate by immunogold electron immunohistochemistry that pre‐synaptic boutons of asymmetric synapses co‐express GABAB receptors and GIRK channels, thus suggesting that the functional interaction of these two proteins, found at the post‐synaptic level, also occurs at glutamatergic nerve terminals.  相似文献   

16.
Glutamate and GABA acting at mGluR1 and GABAB receptors, respectively, have roles in memory processing in the hippocampus up to 35 min after bead discrimination learning in the young chick. Activation of mGluR1 receptors is important at 2.5 and 30 min after training, but modulation of these receptors between these two times has no effect on memory. This timing is similar to the action of glutamate on NMDA receptors. The GABAB antagonist, phaclofen, and the inhibitor of astrocytic oxidative metabolism, fluoroacetate, inhibited memory when injected between 2.5 and 30 min. Paradoxically, a high dose of the GABAB agonist, baclofen, also inhibited memory, but a low dose promoted memory consolidation—an effect possibly caused by too much information and loss of the ‘message’. These results are interpreted in terms interactions between interneurons, astrocytes and pyramidal cells and demonstrate the importance of all cell types in memory processing in the hippocampus.  相似文献   

17.
Regulation of cell surface expression of neurotransmitter receptors is crucial for determining synaptic strength and plasticity, but the underlying mechanisms are not well understood. We previously showed that proteasomal degradation of GABAB receptors via the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery determines the number of cell surface GABAB receptors and thereby GABAB receptor-mediated neuronal inhibition. Here, we show that proteasomal degradation of GABAB receptors requires the interaction of the GABAB2 C terminus with the proteasomal AAA-ATPase Rpt6. A mutant of Rpt6 lacking ATPase activity prevented degradation of GABAB receptors but not the removal of Lys48-linked ubiquitin from GABAB2. Blocking ERAD activity diminished the interaction of Rtp6 with GABAB receptors resulting in increased total as well as cell surface expression of GABAB receptors. Modulating neuronal activity affected proteasomal activity and correspondingly the interaction level of Rpt6 with GABAB2. This resulted in altered cell surface expression of the receptors. Thus, neuronal activity-dependent proteasomal degradation of GABAB receptors by the ERAD machinery is a potent mechanism regulating the number of GABAB receptors available for signaling and is expected to contribute to homeostatic neuronal plasticity.  相似文献   

18.
Cerebellar granule cells in culture express receptors for GABA belonging to the GABAA and GABAB classes. In order to characterize the ability of the insecticide lindane to interact with these receptors cells were grown in either plain culture media or media containing 150 M THIP as this is known to influence the properties of both GABAA and GABAB receptors. It was found that lindane regardless of the culture condition inhibited evoked (40 mM K+) release of neurotransmitter ([3H]D-aspartate as label for glutamate). In naive cells both GABAA and GABAB receptor active drugs prevented the inhibitory action of lindane but in THIP treated cultures none of the GABAA and GABAB receptor active drugs had any effect on the inhibitory action of lindane. This lack of effect was not due to inability of baclofen itself to inhibit transmitter release. It is concluded that lindane dependent on the state of the GABAA and GABAB receptors is able to indirectly interfere with both GABAA and GABAB receptors. In case of the latter receptors it was shown using [3H]baclofen to label the receptors that lindane could not displace the ligand confirming that lindane is likely to exert its action at a site different from the agonist binding site.  相似文献   

19.
It has been established that hydrocortisone administration increased the amount of total, free, bound and synaptosomal GABA in the hypothalamus, glutamate decarboxylase activity in the homogenate and synaptosomes and time of the mediator turnover. ACTH administration increased the GABA content and glutamate decarboxylase activity in synaptosomes. The total amino acid content and time of its turnover got higher only with single hormone administration. In the hippocamp hydrocortisone administration increased the total and free GABA contents, its turnover time, glutamate decarboxylase activity in the homogenate and decreased GABA-aminotransferase activity in the homogenate and synaptosomes. The GABA level in synaptosomes grew only with multiple hormone administration. Single administration of ACTH decreased the total GABA content, glutamate decarboxylase activity in the homogenate, while its multiple administration increased the GABA level in synaptosomes followed by a decrease of GABA-aminotransferase activity in the homogenate and synaptosomes. The GABA turnover time fell with single hormone administration and grew with the multiple one. Adrenalectomy induced no changes in the GABA content and activity of its metabolism enzymes in the hypothalamus, however the bound GABA level decreased, while the turnover time increased. In the hippocamp adrenalectomy decreased total, free and synaptosomal GABA contents, glutamate decarboxylase activity in a homogenate and turnover time. Subsequent hydrocortisone administration only partly normalized the revealed changes of the GABA metabolism in the brain structures under adrenalectomy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号