首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vitro T cell-dependent antibody response of human lymphocytes to influenza virus X31 was used to study the role of T cell-derived lymphokines in antigen-specific responses. Supernatant from cultures of phytohaemagglutinin-stimulated, pooled human tonsil cells (PHA-MLR) was capable of replacing T cells and inducing T-depleted tonsil cells to secrete influenza-specific antibody. The T cell-replacing activity of PHA-MLR supernatant co-purified with interleukin 2 (IL 2) on Ultrogel AcA54 gel filtration and reversed phase-high performance liquid chromatography. PHA-MLR supernatant and IL 2 also enhanced B cell proliferation induced by anti-mu or Staphylococcal aureus strain Cowan I (SAC). A murine monoclonal antibody directed against the human IL 2 receptor (Mab 2A3) was used to completely block the enhancement of influenza-specific antibody production mediated by PHA-MLR supernatant, purified IL 2, and recombinant human IL 2. Mab 2A3 did not affect the T-independent B cell proliferation induced by anti-mu or SAC, but abrogated the enhancing effect of the PHA-MLR supernatant and IL 2 in this culture system. Immunofluorescence studies failed to demonstrate binding of Mab 2A3 to B cells activated by the X31 influenza virus and IL 2, or by SAC. By using Mab 2A3 to mask out IL 2 effects in the influenza-specific culture system, no other B cell differentiating activities were revealed in supernatants from lymphocytic cultures stimulated with a variety of mitogens. Thus, our results indicate that the production of influenza-specific antibodies by T-depleted human lymphocyte cultures is absolutely dependent on the presence of both antigen and IL 2.  相似文献   

2.
DNA-raised antibody (Ab) responses have been compared for the dependence on CD4+ and CD8+ cells, the longevity of functional antigen (Ag) expression, and the nature of the Ag-presenting cell after intramuscular (i.m.) and gene gun inoculations. A plasmid expressing the hemagglutinin (HA) glycoprotein of influenza virus was used for immunizations of BALB/c mice. Intramuscular and gene gun-raised Abs had similar dependencies on CD4+ and CD8+ cells but different temporal patterns of functional Ag expression. The two methods of DNA immunization also appeared to have different frequencies or types of Ag-presenting cells in the draining lymph nodes and spleen. For both methods of DNA delivery, Ab was independent of CD8+ cells but dependent on CD4+ cells. The CD4 dependence occurred at priming but not booster immunizations and resulted in a 1-month delay in the Ab response. Temporal T-cell transfers from TCR+/+ mice into immunized TCR-/- mice revealed the persistence of DNA-expressed Ag for up to 1 month after both i.m. and gene gun inoculations. For gene gun, but not i.m. immunizations, approximately 90% of the functional Ag expression was lost by 1 week, consistent with the sloughing of the epidermal target site. Despite similar titers of raised Ab, Ag-presenting dendritic cells could be detected in the draining lymph nodes and spleen of gene gun- but not i.m. DNA-immunized mice. In the gene gun-immunized mice, Ag-presenting dendritic cells appeared in the draining lymph nodes before the spleen.  相似文献   

3.
Normal horse and guinea pig sera contain the glycoprotein inhibitor alpha 2-macroglobulin, which inhibits the infectivity and hemagglutinating activity of influenza A viruses of the H2 and H3 subtypes. In the current study, the presence of inhibitors of influenza A virus in pig and rabbit sera was investigated. Variants of influenza virus type A/Los Angeles/2/87(H3N2) that were resistant to horse, pig, or rabbit serum were isolated. Analysis of the variant viruses with anti-hemagglutinin (HA) monoclonal antibodies revealed that antigenic changes occurred with the development of serum inhibitor resistance. Characterization of the inhibitors in pig and rabbit sera by using periodate and receptor-destroying enzyme demonstrated that carbohydrate is an important constituent of the active portion of both inhibitor molecules and that sialic acid is involved in the interaction of the inhibitors with influenza virus HA. Nucleotide sequence analysis of the HA molecule revealed that the serum-resistant variants each acquired a different set of amino acid alterations. The multiply resistant variants maintained the original amino acid changes and acquired additional changes. Sequence modifications in the HA involved the conserved amino acids within the receptor binding site (RBS) at position 137 and the second-shell RBS residues at positions 155 and 186. Amino acid changes also occurred within antigenic site A (position 145) and directly behind the receptor binding pocket (position 220). Amino acid alterations resulted in the acquisition of a potential glycosylation site at position 128 and the loss of potential glycosylation sites at positions 246 and 248. The localization of the amino acid changes in HA1 to the region of the RBS supports the concept of serum inhibitors as receptor analogs. The unique set of mutations acquired by the serum inhibitor-resistant variants strongly suggests that horse, pig, and rabbit sera each contain distinct glycoprotein inhibitors of influenza A virus.  相似文献   

4.
Two peptides corresponding to HA1(181-204) and HA2(103-123) of the A/Japan/305/57 influenza virus hemagglutinin (HA) were chemically synthesized by solid-phase methods and were tested for their ability to generate murine secondary anti-influenza cytolytic T lymphocytes (CTL) in vitro and to bind monoclonal anti-HA antibodies. Peptide HA1(181-204) could only generate CTL in the presence of helper factors contained in supernatant fluids from either Concanavalin A-stimulated mouse spleen cultures or WEHI-3 cells grown in vitro. Peptide HA2(103-123) stimulated the induction of anti-influenza CTL independent of helper factors, but the stimulation was also greatly increased if helper factors were added. A 10-fold molar excess of peptide HA2(103-123) was required to obtain optimal CTL activation over the quantities required in the HA1(181-204) system. This molar ratio remained unchanged, even in the presence of helper factors. Induction of influenza-specific CTL was antigen-dependent in both systems, even though some killing of noninfected target cells was also occasionally observed. Our results suggest that synthetic peptides can be recognized as antigenic determinants in the generation of H-2-restricted anti-viral CTL capable of killing appropriately infected target cells. The inability of peptide HA1(181-204) to generate sufficient help for CTL development suggests that certain regions of the HA can be recognized by CTL precursors, but not by all of the required helper cells. Peptide HA1(181-204) also reacted with three monoclonal anti-HA antibodies as well as mouse anti-influenza (A/Japan/305/57) immune sera. This antibody reactivity suggests the possibility of a shared antigenic epitope or region between T and B cells, and therefore provides new insight in our understanding of viral antigenicity.  相似文献   

5.
Intestinal bacteria are required for development of gut-associated lymphoid tissues (GALT), which mediate a variety of host immune functions, such as mucosal immunity and oral tolerance. In rabbits, the intestinal microflora are also required for developing the preimmune Ab repertoire by promoting somatic diversification of Ig genes in B cells that have migrated to GALT. We studied the mechanism of bacteria-induced GALT development. Bacteria were introduced into rabbits in which the appendix had been rendered germfree by microsurgery (we refer to these rabbits as germfree-appendix rabbits). We then identified specific members of the intestinal flora that promote GALT development. The combination of Bacteroides fragilis and Bacillus subtilis consistently promoted GALT development and led to development of the preimmune Ab repertoire, as shown by an increase in somatic diversification of VDJ-C micro genes in appendix B cells. Neither species alone consistently induced GALT development, nor did Clostridium subterminale, Escherichia coli, or Staphylococcus epidermidis. B. fragilis, which by itself is immunogenic, did not promote GALT development; hence, GALT development in rabbits does not appear to be the result of an Ag-specific immune response. To identify bacterial pathways required for GALT development, we introduced B. fragilis along with stress-response mutants of B. subtilis into germfree-appendix rabbits. We identified two Spo0A-controlled stress responses, sporulation and secretion of the protein YqxM, which are required for GALT development. We conclude that specific members of the commensal, intestinal flora drive GALT development through a specific subset of stress responses.  相似文献   

6.

 

In this work, we study the consequences of sequence variations of the "2009 H1N1" (swine or Mexican flu) influenza A virus strain neuraminidase for drug treatment and vaccination. We find that it is phylogenetically more closely related to European H1N1 swine flu and H5N1 avian flu rather than to the H1N1 counterparts in the Americas. Homology-based 3D structure modeling reveals that the novel mutations are preferentially located at the protein surface and do not interfere with the active site. The latter is the binding cavity for 3 currently used neuraminidase inhibitors: oseltamivir (Tamiflu®), zanamivir (Relenza®) and peramivir; thus, the drugs should remain effective for treatment. However, the antigenic regions of the neuraminidase relevant for vaccine development, serological typing and passive antibody treatment can differ from those of previous strains and already vary among patients.

Reviewers

This article was reviewed by Sandor Pongor and L. Aravind.  相似文献   

7.
Jang YH  Byun YH  Lee YJ  Lee YH  Lee KH  Seong BL 《Journal of virology》2012,86(10):5953-5958
The rapid transmission of the pandemic 2009 H1N1 influenza virus (pH1N1) among humans has raised the concern of a potential emergence of reassortment between pH1N1 and highly pathogenic influenza strains, especially the avian H5N1 influenza virus. Here, we report that the cold-adapted pH1N1 live attenuated vaccine (CApH1N1) elicits cross-reactive immunity to seasonal and H5 influenza A viruses in the mouse model. Immunization with CApH1N1 induced both systemic and mucosal antibodies with broad reactivity to seasonal and H5 strains, including HAPI H5N1 and the avian H5N2 virus, providing complete protection against heterologous and heterosubtypic lethal challenges. Our results not only accentuate the merit of using live attenuated influenza virus vaccines in view of cross-reactivity but also represent the potential of CApH1N1 live vaccine for mitigating the clinical severity of infections that arise from reassortments between pH1N1 and highly pathogenic H5 subtype viruses.  相似文献   

8.
9.
Although human immunodeficiency type 1 (HIV-1) infection induces strong antibody responses to the viral envelope glycoprotein (Env) only a few of these antibodies possess the capacity to neutralize a broad range of strains. The induction of such antibodies represents an important goal in the development of a preventive vaccine against the infection. Among the broadly neutralizing monoclonal antibodies discovered so far, three (2F5, Z13 and 4E10) target the short and hidden membrane proximal external region (MPER) of the gp41 transmembrane protein. Antibody responses to MPER are rarely observed in HIV-infected individuals or after immunization with Env immunogens. To initiate antibody responses to MPER in its membrane-embedded native conformation, we generated expression plasmids encoding the membrane-anchored ectodomain of gp41 with N-terminal deletions of various sizes. Following transfection of these plasmids, the MPER domains are displayed on the cell surface and incorporated into HIV virus like particles (VLP). Transfected cells displaying MPER mutants bound as efficiently to both 2F5 and 4E10 as cells transfected with a plasmid encoding full-length Env. Mice immunized with VLPs containing the MPER mutants produced MPER-specific antibodies, the levels of which could be increased by the trimerization of the displayed proteins as well as by a DNA prime-VLP boost immunization strategy. Although 2F5 competed for binding to MPER with antibodies in sera of some of the immunized mice, neutralizing activity could not be detected. Whether this is due to inefficient binding of the induced antibodies to MPER in the context of wild type Env or whether the overall MPER-specific antibody response induced by the MPER display mutants is too low to reveal neutralizing activity, remains to be determined.  相似文献   

10.
Incessant antigenic evolution enables the persistence and spread of influenza virus in the human population. As the principal target of the immune response, the hemagglutinin (HA) surface antigen on influenza viruses continuously acquires and replaces N-linked glycosylation sites to shield immunogenic protein epitopes using host-derived glycans. Anti-glycan antibodies, such as 2G12, target the HIV-1 envelope protein (Env), which is even more extensively glycosylated and contains under-processed oligomannose-type clusters on its dense glycan shield. Here, we illustrate that 2G12 can also neutralize human seasonal influenza A H3N2 viruses that have evolved to present similar oligomannose-type clusters on their HAs from around 20 years after the 1968 pandemic. Using structural biology and mass spectrometric approaches, we find that two N-glycosylation sites close to the receptor binding site (RBS) on influenza hemagglutinin represent the oligomannose cluster recognized by 2G12. One of these glycan sites is highly conserved in all human H3N2 strains and the other emerged during virus evolution. These two N-glycosylation sites have also become crucial for fitness of recent H3N2 strains. These findings shed light on the evolution of the glycan shield on influenza virus and suggest 2G12-like antibodies can potentially act as broad neutralizers to target human enveloped viruses.  相似文献   

11.
Qiu C  Tian D  Wan Y  Zhang W  Qiu C  Zhu Z  Ye R  Song Z  Zhou M  Yuan S  Shi B  Wu M  Liu Y  Gu S  Wei J  Zhou Z  Zhang X  Zhang Z  Hu Y  Yuan Z  Xu J 《PloS one》2011,6(8):e22603
Few studies on the humoral immune responses in human during natural influenza infection have been reported. Here, we used serum samples from pandemic 2009 H1N1 influenza infected patients to characterize the humoral immune responses to influenza during natural infection in humans. We observed for the first time that the pandemic 2009 H1N1 influenza induced influenza A-specific IgM within days after symptoms onset, whereas the unit of IgG did not changed. The magnitude of influenza A-specific IgM antibodies might have a value in predicting the rate of virus clearance to some degree. However, the newly developed IgM was not associated with hemagglutination inhibition (HI) activities in the same samples but correlated with HI activities of subsequently collected sera which were mediated by IgG antibodies, indicating that IgM was critical for influenza infection and influences subsequent IgG antibody responses. These findings provide new important insights on the human immunity to natural influenza infection.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) is transmitted mainly through mucosal sites. Optimum strategies to elicit both systemic and mucosal immunity are critical for the development of vaccines against HIV-1. We therefore sought to evaluate the induction of systemic and mucosal immune responses by the use of Newcastle disease virus (NDV) as a vaccine vector. We generated a recombinant NDV, designated rLaSota/gp160, expressing the gp160 envelope (Env) protein of HIV-1 from an added gene. The gp160 protein expressed by rLaSota/gp160 virus was detected on an infected cell surface and was incorporated into the NDV virion. Biochemical studies showed that gp160 present in infected cells and in the virion formed a higher-order oligomer that retained recognition by conformationally sensitive monoclonal antibodies. Expression of gp160 did not increase the virulence of recombinant NDV (rNDV) strain LaSota. Guinea pigs were administered rLaSota/gp160 via the intranasal (i.n.) or intramuscular (i.m.) route in different prime-boost combinations. Systemic and mucosal antibody responses specific to the HIV-1 envelope protein were assessed in serum and vaginal washes, respectively. Two or three immunizations via the i.n. or i.m. route induced a more potent systemic and mucosal immune response than a single immunization by either route. Priming by the i.n. route was more immunogenic than by the i.m. route, and the same was true for the boosts. Furthermore, immunization with rLaSota/gp160 by any route or combination of routes induced a Th1-type response, as reflected by the induction of stronger antigen-specific IgG2a than IgG1 antibody responses. Additionally, i.n. immunization elicited a stronger neutralizing serum antibody response to laboratory-adapted HIV-1 strain MN.3. These data illustrate that it is feasible to use NDV as a vaccine vector to elicit potent humoral and mucosal responses to the HIV-1 envelope protein.  相似文献   

13.
Highly pathogenic avian H5N1 influenza viruses are now widespread in poultry in Asia and have recently spread to some African and European countries. Interspecies transmission of these viruses to humans poses a major threat to public health. To better understand the basis of pathogenesis of H5N1 viruses, we have investigated the role of proinflammatory cytokines in transgenic mice deficient in interleukin-6 (IL-6), macrophage inflammatory protein 1 alpha (MIP-1alpha), IL-1 receptor (IL-1R), or tumor necrosis factor receptor 1 (TNFR1) by the use of two avian influenza A viruses isolated from humans, A/Hong Kong/483/97 (HK/483) and A/Hong Kong/486/97 (HK/486), which exhibit high and low lethality in mice, respectively. The course of disease and the extent of virus replication and spread in IL-6- and MIP-1alpha-deficient mice were not different from those observed in wild-type mice during acute infection with 1,000 50% mouse infective doses of either H5N1 virus. However, with HK/486 virus, IL-1R-deficient mice exhibited heightened morbidity and mortality due to infection, whereas no such differences were observed with the more virulent HK/483 virus. Furthermore, TNFR1-deficient mice exhibited significantly reduced morbidity following challenge with either H5N1 virus but no difference in viral replication and spread or ultimate disease outcome compared with wild-type mice. These results suggest that TNF-alpha may contribute to morbidity during H5N1 influenza virus infection, while IL-1 may be important for effective virus clearance in nonlethal H5N1 disease.  相似文献   

14.
Antibody-dependent enhancement of the uptake of influenza A virus by Fc receptor-bearing cells was analyzed by using virus strains of the three human influenza A virus subtypes, A/PR/8/34 (H1N1), A/Japan/305/57 (H2N2), and A/Port Chalmers/1/73 (H3N2). Immune sera obtained from mice following primary infection with an H1N1, H2N2, or H3N2 subtype virus neutralized only virus of the same subtype; however, immune sera augmented the uptake of virus across subtypes. Immune sera from H1N1-infected mice augmented uptake of the homologous (H1N1) and H2N2 viruses. Antisera to the H2N2 virus augmented the uptake of virus of all subtypes (H1N1, H2N2, or H3N2). Antisera to the H3N2 virus augmented the uptake of the homologous (H3N2) and H2N2 viruses. These results show that subtype cross-reactive, nonneutralizing antibodies augment the uptake of influenza A virus strains of different subtypes. Antibodies to neuraminidase may contribute to the enhanced uptake of viruses of a different subtype, because N2-specific monoclonal antibodies augmented the uptake of both A/Japan/305/57 (H2N2) and A/Port Chalmers/1/73 (H3N2) viruses.  相似文献   

15.
The data on cytotoxicity and antiviral activity of commercial antivirals, such as Remantadine, Oseltamivir, Arbidol and Ribavirin in the MDCK cell culture infected with highly pathogenic (H5N1) and pandemic 2009 (H1N1) influenza A viruses are presented. The study of the antiviral activity of antivirals in the MDCK cells culture demonstrated that Arbidol, Rimantadine and Ribavirin efficiently inhibited reproduction of the highly pathogenic H5N1 influenza viruses isolated from sick birds. Arbidol and Oseltamivir carboxylate selectively inhibited reproduction of the pandemic 2009 H1N1 influenza A viruses with changed specificity to the cell receptors, causing severe influenza in men, while remantadine had no effect on their reproduction.  相似文献   

16.
On 15 April and 17 April 2009, novel swineorigin influenza A (H1N1) virus was identifi ed in specimens obtained from two epidemiologically unlinked patients in the United States. The ongoing outbreak of novel H1N1 2009 influenza (swine influenza) has caused more than 3,99,232 laboratory confi rmed cases of pandemic influenza H1N1 and over 4735 deaths globally. This novel 2009 influenza virus designated as H1N1 A/swine/California/04/2009 virus is not zoonotic swine flu and is transmitted from person to person and has higher transmissibility then that of seasonal influenza viruses. In India the novel H1N1 virus infection has been reported from all over the country. A total of 68,919 samples from clinically suspected persons have been tested for influenza A H1N1 across the country and 13,330 (18.9%) of them have been found positive with 427 deaths. At the All India Institute of Medical Sciences, New Delhi India, we tested 1096 clinical samples for the presence of novel H1N1 influenza virus and seasonal influenza viruses. Of these 1096 samples, 194 samples (17.7%) were positive for novel H1N1 influenza virus and 197 samples (18%) were positive for seasonal influenza viruses. During outbreaks of emerging infectious diseases accurate and rapid diagnosis is critical for minimizing further spread through timely implementation of appropriate vaccines and antiviral treatment. Since the symptoms of novel H1N1 influenza infection are not specifi c, laboratory confi rmation of suspected cases is of prime importance.  相似文献   

17.
18.
19.
In July 1991, an influenza A virus, designated A/Maryland/12/91 (A/MD), was isolated from the bronchial secretions of a 27-year-old animal caretaker. He had been admitted to the hospital with bilateral pneumonia and died of acute respiratory distress syndrome 13 days later. Antigenic analyses with postinfection ferret antisera and monoclonal antibodies to recent H1 swine hemagglutinins indicated that the hemagglutinin of this virus was antigenically related to, but distinguishable from, those of other influenza A (H1N1) viruses currently circulating in swine. Oligonucleotide mapping of total viral RNAs revealed differences between A/MD and other contemporary swine viruses. However, partial sequencing of each RNA segment of A/MD demonstrated that all segments were related to those of currently circulating swine viruses. Sequence analysis of the entire hemagglutinin, nucleoprotein, and matrix genes of A/MD revealed a high level of identity with other contemporary swine viruses. Our studies on A/MD emphasize that H1N1 viruses in pigs obviously continue to cross species barriers and infect humans.  相似文献   

20.
目的比较分析H7N9病毒与H1N1病毒感染小鼠病理学损伤特点,初步探讨两种病毒感染致小鼠急性肺损伤的致病机制。方法 H7N9病毒与H1N1病毒分别感染小鼠,观察不同病毒感染后小鼠生存率,并于不同时间点取心、肝、脾、肺、肾、脑、肠等组织,伊红-苏木素染色并进行组织病理学分析,免疫组化检测病毒抗原分布及中性粒细胞浸润。综合分析肺组织病理损伤与病毒复制、宿主免疫反应之间的关系。结果 H7N9病毒感染小鼠肺及脾脏损伤较轻,存活率较高。H1N1病毒感染的小鼠肺及脾脏损伤较重,感染后9 d全部死亡;两种病毒抗原主要分布于支气管上皮细胞、少量间质细胞和肺泡上皮细胞,病毒复制水平无明显差异。但H1N1病毒感染后肺及脾脏中均有大量中性粒细胞浸润,小鼠机体炎症反应明显强于H7N9病毒感染后小鼠炎症反应。结论 H7N9病毒与H1N1病毒感染后小鼠病理学损伤特点及程度均不同,病毒复制是小鼠肺损伤的诱发因素但并非决定因素,宿主针对病毒感染产生的免疫反应程度与急性肺损伤密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号