首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
A method for detecting sequence variation of hypervariable segments of the mtDNA control region was developed. The technique uses hybridization of sequence-specific oligonucleotide (SSO) probes to DNA sequences that have been amplified by PCR. The nucleotide sequences of the two hypervariable segments of the mtDNA control region from 52 individuals were determined; these sequences were then used to define nine regions suitable for SSO typing. A total of 23 SSO probes were used to detect sequence variants at these nine regions in 525 individuals from five ethnic groups (African, Asian, Caucasian, Japanese, and Mexican). The SSO typing revealed an enormous amount of variability, with 274 mtDNA types observed among these 525 individuals and with diversity values, for each population, exceeding .95. For each of the nine mtDNA regions significant differences in the frequencies of sequence variants were observed between these five populations. The mtDNA SSO-typing system was successfully applied to a case involving individual identification of skeletal remains; the probability of a random match was approximately 0.7%. The potential useful applications of this mtDNA SSO-typing system thus include the analysis of individual identity as well as population genetic studies.  相似文献   

2.
A major task in human genetics is to understand the nature of the evolutionary processes that have shaped the gene pools of contemporary populations. Ancient DNA studies have great potential to shed light on the evolution of populations because they provide the opportunity to sample from the same population at different points in time. Here, we show that a sample of mitochondrial DNA (mtDNA) control region sequences from 68 early medieval Icelandic skeletal remains is more closely related to sequences from contemporary inhabitants of Scotland, Ireland, and Scandinavia than to those from the modern Icelandic population. Due to a faster rate of genetic drift in the Icelandic mtDNA pool during the last 1,100 years, the sequences carried by the first settlers were better preserved in their ancestral gene pools than among their descendants in Iceland. These results demonstrate the inferential power gained in ancient DNA studies through the application of population genetics analyses to relatively large samples.  相似文献   

3.
The advent of long PCR (XL-PCR) has proven to be a major advance in PCR technology and is currently being utilised to investigate numerous biological systems. The analysis of mixed DNA populations is a particularly useful application for XL-PCR. For example, XL-PCR has been used to investigate the occurrence of heterogeneous mitochondrial DNA (mtDNA) rearrangement mutations. With XL-PCR it became possible to amplify the entire length of the mtDNA chromosome and detect any mtDNA deletion or insertion mutations based on a measurable change in overall sequence length. In the present communication, XL-PCR and conventional short-length PCR were used to amplify mitochondrial DNA sequences from several human vastus lateralis skeletal muscle samples. The experiments demonstrated that there was minimal preferential amplification of shorter DNA sequences with XL-PCR and was significantly less than the preferential amplification of shorter sequences observed with conventional PCR. Also, XL-PCR amplification of the complete mtDNA sequence from control DNA containing a single mtDNA template (leucocyte extracts) showed that the generation of PCR artefacts was not a predisposed failing of the system but was dependant on the standard rules that govern the set up and optimisation of any PCR reaction. In optimised systems, XL-PCR artefacts were not generated and a single PCR product was always recovered.  相似文献   

4.
We developed primers for amplifying and sequencing highly degraded mtDNA from diverse fish species. The primers flank a variable 148-bp fragment within the 12S region of mtDNA. We screened and sequenced 82 samples of bony fishes representing 17 families to confirm cross-species amplification and identification. Salmonid species were analysed and demonstrate 13 species-specific SNPs within this region. Based on alignments of additional deposited sequences, these primers are conserved in many other species, making them useful for species identification using degraded DNA samples such as archaeological specimens.  相似文献   

5.
DNA was extracted from the frozen remains of a man found in the northwest corner of British Columbia, Canada, in 1999. His clothing was radiocarbon-dated at ca. 550 years old. Nitrogen and carbon content in whole bone and collagen-type residue extracted from both bone and muscle indicated good preservation of proteinaceous macromolecules. Restriction enzyme analysis of mitochondrial DNA (mtDNA) determined that the remains belong to haplogroup A, one of the four major Native American mtDNA haplogroups. Data obtained by PCR direct sequencing of the mtDNA control region, and by sequencing the clones from overlapping PCR products, were duplicated by an independent laboratory. Comparison of these mtDNA sequences with those of North American, Central American, South American, East Siberian, Greenlandic, and Northeast Asian populations indicates that the remains share an mtDNA type with North American, Central American, and South American populations.  相似文献   

6.
Single nucleotide polymorphism (SNP) is informative for human identification, and much shorter regions are targeted in analysis of biallelic SNP compared with highly polymorphic short tandem repeat (STR). Therefore, SNP genotyping is expected to be more sensitive than STR genotyping of degraded human DNA. To achieve simple, economical, and sensitive SNP genotyping for identification of degraded human DNA, we developed 18 loci for a SNP genotyping technique based on the mini-primer allele-specific amplification (ASA) combined with universal reporter primers (URP). The URP/ASA-based genotyping consisted of two amplifications followed by detection using capillary electrophoresis. The sizes of the target genome fragments ranged from 40 to 67 bp in length. In the Japanese population, the frequencies of minor alleles of 18 SNPs ranged from 0.36 to 0.50, and these SNPs are informative for identification. The success rate of SNP genotyping was much higher than that of STR genotyping of artificially degraded DNA. Moreover, we applied this genotyping method to case samples and showed successful SNP genotyping of severely degraded DNA from a 4-year buffered formalin-fixed tissue sample for human identification.  相似文献   

7.
The location of proteins on the mitochondrial DNA (mtDNA) of Drosophila virilis was investigated by Me3 psoralen photoreaction of mitochondria isolated from embryos. After photoreaction the mtDNA was purified and the pattern of DNA cross-linking was determined by electron microscopy of the DNA under totally denaturing conditions. The transcribed regions of the mtDNA molecule contained some uncross-linked regions, but such regions were infrequent and randomly distributed. In contrast, the A + T-rich region around the origin of replication of the mtDNA was usually protected from psoralen cross-linking. The data were best fit by two protected sites, each approximately 400 base pairs, compared to the four 400 base pair sites observed in the equivalent region of D. melanogaster mtDNA [Potter et al. (1980) Proc. Nat. Acad. Sci. USA 77, 4118-4122]. Thus this region of the mtDNA appears to be involved in a DNA-protein structure that is highly conserved even though the DNA sequence has diverged rapidly relative to protein-coding sequences.  相似文献   

8.
Xu J  Fonseca DM 《Mitochondrial DNA》2011,22(5-6):155-158
Repetitive DNA sequences not only exist abundantly in eukaryotic nuclear genomes, but also occur as tandem repeats in many animal mitochondrial DNA (mtDNA) control regions. Due to concerted evolution, these repetitive sequences are highly similar or even identical within a genome. When long repetitive regions are the targets of amplification for the purpose of sequencing, multiple amplicons may result if one primer has to be located inside the repeats. Here, we show that, without separating these amplicons by gel purification or cloning, directly sequencing the mitochondrial repeats with the primer outside repetitive region is feasible and efficient. We exemplify it by sequencing the mtDNA control region of the mosquito Aedes albopictus, which harbors typical large tandem DNA repeats. This one-way sequencing strategy is optimal for population surveys.  相似文献   

9.
DNA sequences from orthologous loci can provide universal characters for taxonomic identification. Molecular taxonomy is of particular value for groups in which distinctive morphological features are difficult to observe or compare. To assist in species identification for the little known family Ziphiidae (beaked whales), we compiled a reference database of mitochondrial DNA (mtDNA) control region (437 bp) and cytochrome b (384 bp) sequences for all 21 described species in this group. This mtDNA database is complemented by a nuclear database of actin intron sequences (925 bp) for 17 of the 21 species. All reference sequences were derived from specimens validated by diagnostic skeletal material or other documentation, and included four holotypes. Phylogenetic analyses of mtDNA sequences confirmed the genetic distinctiveness of all beaked whale species currently recognized. Both mitochondrial loci were well suited for species identification, with reference sequences for all known ziphiids forming robust species-specific clades in phylogenetic reconstructions. The majority of species were also distinguished by nuclear alleles. Phylogenetic comparison of sequence data from "test" specimens to these reference databases resulted in three major taxonomic discoveries involving animals previously misclassified from morphology. Based on our experience with this family and the order Cetacea as a whole, we suggest that a molecular taxonomy should consider the following components: comprehensiveness, validation, locus sensitivity, genetic distinctiveness and exclusivity, concordance, and universal accessibility and curation.  相似文献   

10.
African wild dogs are large, highly mobile carnivores that are known to disperse over considerable distances and are rare throughout much of their geographical range. Consequently, genetic variation within and differentiation between geographically separated populations is predicted to be minimal. We determined the genetic diversity of mitochondrial DNA (mtDNA) control region sequences and microsatellite loci in seven populations of African wild dogs. Analysis of mtDNA nucleotide diversity suggests that, historically, wild dog populations have been small relative to other large carnivores. However, population declines due to recent habitat loss have not caused a dramatic reduction in genetic diversity. We found one historical and eight recent mtDNA genotypes in 280 individuals that defined two highly divergent clades. In contrast to a previous, more limited, mtDNA analysis, sequences from these clades are not geographically restricted to eastern or southern African populations. Rather, we found a large admixture zone spanning populations from Botswana, Zimbabwe and south-eastern Tanzania. Mitochondrial and microsatellite differentiation between populations was significant and unique mtDNA genotypes and alleles characterized the populations. However, gene flow estimates (Nm) based on microsatellite data were generally greater than one migrant per generation. In contrast, gene flow estimates based on the mtDNA control region were lower than expected given differences in the mode of inheritance of mitochondrial and nuclear markers which suggests a male bias in long-distance dispersal.  相似文献   

11.
We have extended our previous analysis of the pedigree rate of control-region divergence in the human mitochondrial genome. One new germline mutation in the mitochondrial DNA (mtDNA) control region was detected among 185 transmission events (generations) from five Leber hereditary optic neuropathy (LHON) pedigrees. Pooling the LHON pedigree analyses yields a control-region divergence rate of 1.0 mutation/bp/10(6) years (Myr). When the results from eight published studies that used a similar approach were pooled with the LHON pedigree studies, totaling >2,600 transmission events, a pedigree divergence rate of 0.95 mutations/bp/Myr for the control region was obtained with a 99.5% confidence interval of 0.53-1.57. Taken together, the cumulative results support the original conclusion that the pedigree divergence rate for the control region is approximately 10-fold higher than that obtained with phylogenetic analyses. There is no evidence that any one factor explains this discrepancy, and the possible roles of mutational hotspots (rate heterogeneity), selection, and random genetic drift and the limitations of phylogenetic approaches to deal with high levels of homoplasy are discussed. In addition, we have extended our pedigree analysis of divergence in the mtDNA coding region. Finally, divergence of complete mtDNA sequences was analyzed in two tissues, white blood cells and skeletal muscle, from each of 17 individuals. In three of these individuals, there were four instances in which an mtDNA mutation was found in one tissue but not in the other. These results are discussed in terms of the occurrence of somatic mtDNA mutations.  相似文献   

12.
In the loach Misgurnus anguillicaudatue, the asexual lineage, which produces unreduced clonal diploid eggs, has been identified. Among 833 specimens collected from 54 localities in Japan and two localities in China, 82 candidates of other lineage(s) of cryptic clones were screened by examining RFLP (restriction fragment length polymorphism)-PCR haplotypes in the control region of mtDNA. This analysis was performed because triploid loaches arise from the accidental incorporation of the sperm nucleus into unreduced diploid eggs of a clone. The categorization of members belonging to three newly identified lineages (clones 2–4) and the previously identified clonal lineage (clone 1) was verified by evaluating the genetic identity between two or more individuals from each clonal lineage based on RAPD (random amplified polymorphic DNA)-PCR and multilocus DNA fingerprints. We detected 75 haplotypes by observing the nucleotide status at variable sites from the control region of mtDNA. Phylogenic trees constructed from such sequences showed two highly diversified clades, A and B, that were beyond the level common for interspecific genetic differentiation. That result suggests that M. anguillicaudatus in Japan is not a single species entity. Two clone-specific mtDNA sequences were included in clade A, and the loaches with such sequences may be the maternal origin of the clones. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λnDNA) and mtDNA (λmtDNA) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two genomes is demonstrated and which evaluates systematically the impact of DNA degradation on quantification of mtDNA copy number.  相似文献   

14.
Mitochondrial DNA (mtDNA) deletion mutations co-localize with electron transport system (ETS) abnormalities in rhesus monkey skeletal muscle fibers. Using laser capture microdissection in conjunction with PCR and DNA sequence analysis, mitochondrial genomes from single sections of ETS abnormal fibers were characterized. All ETS abnormal fibers contained mtDNA deletion mutations. Deletions were large, removing 20-78% of the genome, with some to nearly all of the functional genes lost. In one-third of the deleted genomes, the light strand origin was deleted, whereas the heavy strand origin of replication was conserved in all fibers. A majority (27/39) of the deletion mutations had direct repeat sequences at their breakpoints and most (36/39) had one breakpoint within or in close proximity to the cytochrome b gene. Several pieces of evidence support the clonality of the mtDNA deletion mutation within an ETS abnormal region of a fiber: (a) only single, smaller than wild-type, PCR products were obtained from each ETS abnormal region; (b) the amplification of mtDNA from two regions of the same ETS abnormal fiber identified identical deletion mutations, and (c) a polymorphism was observed at nucleotide position 16103 (A and G) in the wild-type mtDNA of one animal (sequence analysis of an ETS abnormal region revealed that mtDNA deletion mutations contained only A or G at this position). Species-specific differences in the regions of the genomes lost as well as the presence of direct repeat sequences at the breakpoints suggest mechanistic differences in deletion mutation formation between rodents and primates.  相似文献   

15.
Two major Ovis aries mitochondrial DNA (mtDNA) haplogroups have been described in independent studies. HinfI RFLP data of mitochondrial genomes from a large sample set (n = 239) indicated an ancient mutation which differentiates between the two mtDNA types. A completely determined sheep mtDNA sequence was used to assign this mutation to the COI gene and to develop a PCR based assay discriminating between the two phylogenetic branches. The haplogroup specificity of the mutation was further investigated in 26 randomly selected individuals. The animals were unequivocally assigned to their respective groups on the basis of the developed test and their complete control region sequences. The assay provides a rapid and economic means of discriminating between both major domestic sheep mtDNAs.  相似文献   

16.
DNA Surveillance is a Web-based application that assists in the identification of the species and population of unknown specimens by aligning user-submitted DNA sequences with a validated and curated data set of reference sequences. Phylogenetic analyses are performed and results are returned in tree and table format summarizing the evolutionary distances between the query and reference sequences. DNA Surveillance is implemented with mitochondrial DNA (mtDNA) control region sequences representing the majority of recognized cetacean species. Extensions of the system to include other gene loci and taxa are planned. The service, including instructions and sample data, is available at http://www.dna-surveillance.auckland.ac.nz.  相似文献   

17.
18.
A set of 96 complete mtDNA sequences that belong to the three major African haplogroups (L1, L2, and L3) was analyzed to determine if mtDNA has evolved as a molecular clock. Likelihood ratio tests (LRTs) were carried out with each of the haplogroups and with combined haplogroup sequence sets. Evolution has not been clock-like, neither for the coding region nor for the control region, in combined sets of African haplogroup L mtDNA sequences. In tests of individual haplogroups, L2 mtDNAs showed violations of a molecular clock under all conditions and in both the control and coding regions. In contrast, haplogroup L1 and L3 sequences, both for the coding and control regions, show clock-like evolution. In clock tests of individual L2 subclades, the L2a sequences showed a marked violation of clock-like evolution within the coding region. In addition, the L2a and L2c branch lengths of both the coding and control regions were shorter relative to those of the L2b and L2d sequences, a result that indicates lower levels of sequence divergence. Reduced median network analyses of the L2a sequences indicated the occurrence of marked homoplasy at multiple sites in the control region. After exclusion of the L2a and L2c sequences, African mtDNA coding region evolution has not significantly departed from a molecular clock, despite the results of neutrality tests that indicate the mitochondrial coding region has evolved under nonneutral conditions. In contrast, control region evolution is clock-like only at the haplogroup level, and it thus appears to have evolved essentially independently from the coding region. The results of the clock tests, the network analyses, and the branch length comparisons all caution against the use of simple mtDNA clocks.  相似文献   

19.
Mitochondrial genomes of spermatophytes are the largest of all organellar genomes. Their large size has been attributed to various factors; however, the relative contribution of these factors to mitochondrial DNA (mtDNA) expansion remains undetermined. We estimated their relative contribution in Malus domestica (apple). The mitochondrial genome of apple has a size of 396 947 bp and a one to nine ratio of coding to non-coding DNA, close to the corresponding average values for angiosperms. We determined that 71.5% of the apple mtDNA sequence was highly similar to sequences of its nuclear DNA. Using nuclear gene exons, nuclear transposable elements and chloroplast DNA as markers of promiscuous DNA content in mtDNA, we estimated that approximately 20% of the apple mtDNA consisted of DNA sequences imported from other cell compartments, mostly from the nucleus. Similar marker-based estimates of promiscuous DNA content in the mitochondrial genomes of other species ranged between 21.2 and 25.3% of the total mtDNA length for grape, between 23.1 and 38.6% for rice, and between 47.1 and 78.4% for maize. All these estimates are conservative, because they underestimate the import of non-functional DNA. We propose that the import of promiscuous DNA is a core mechanism for mtDNA size expansion in seed plants. In apple, maize and grape this mechanism contributed far more to genome expansion than did homologous recombination. In rice the estimated contribution of both mechanisms was found to be similar.  相似文献   

20.
Summary A good standard reference for the highly polymorphic human mitochondrial DNA (mtDNA) sequence is essential for studies of normal and disease-related nucleotide variants in the mitochondrial genome. A consensus sequence for the human mitochondrial genome has been derived from thirteen unrelated mtDNA sequences. We report 128 nucleotide variants of the human mtDNA sequence, and 62 amino acid variants of the human mitochondrial translation products, observed in the coding region of these mtDNA sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号