首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two members of the zinc finger Krüppel family, ZNF24 (KOX17) and ZNF29 (KOX26), have been localized by somatic cell hybrid analysis and in situ chromosomal hybridization to human chromosomes 18q12 and 17p13-p12, respectively. The mapping of ZNF29 together with the previously reported localization of ZFP3 suggests that a zinc finger gene complex is located on human chromosome 17p. ZNF29 maps centromeric to the human p53 tumor antigen gene (TP53). In the analogous murine position, the two mouse zinc finger genes Zfp2 and Zfp3 have recently been assigned to the distal region of mouse chromosome 11, the murine homolog of human chromosome 17. Both human zinc finger genes ZNF24 and ZNF29 are in chromosomal regions that have been noted to be deleted in neoplasms of the lung and of the central nervous system at chromosome 17p and in colorectal neoplasia at chromosomes 17p and 18q.  相似文献   

2.
Nine KOX zinc finger genes were localized on four human chromosomes by in situ hybridization of cDNA probes to metaphase chromosomes. KOX1 (ZNF10), KOX11 (ZNF18), and KOX12 (ZNF19) were mapped to chromosome bands 12q24.33, 17p13-p12, and 16q22-q23, respectively. Six other KOX genes were localized on chromosome 19: KOX6 (ZNF14) and KOX13 (ZNF20) to 19p13.3-p13.2, KOX5 (ZNF13) and KOX22 (ZNF27) to 19q13.2-qter, and KOX24 (ZNF28) and KOX28 (ZNF30) to 19q13.4. Pulsed field gel electrophoresis experiments showed that the pairs of KOX genes found on the chromosome bands 12q24.33, 16q22-q23, 19p13.3-p13.2, or 19q13.3-qter lie within 200–300 kb DNA fragments. This suggests the existence of KOX gene clusters on these chromosomal bands.  相似文献   

3.
Two members of the KOX gene family, ZNF23 (KOX16) and ZNF32 (KOX30), have been mapped by in situ hybridization to chromosome regions 16q22 and 10q23-q24, respectively. The map location of ZNF23 and ZNF32 placed these zinc finger protein genes near to chromosome loci that, under certain in vitro conditions, are expressed as fragile sites (FRA16B, FRA16C) and (FRA10D, FRA10A, FRA10B and FRA10E). Human zinc finger gene ZNF32 maps to a chromosome region on 10q23-24 in which deletions have been observed associated with malignant lymphoma on 10q22-23 and with carcinoma of the prostate on 10q24. ZNF23 is located on 16q22 in a chromosomal region that has been involved in chromosome alterations characteristic of acute myeloid leukemia. A second Kox zinc finger gene (ZNF19/KOX12) was recently mapped to the same chromosome region on human chromosome 16q22. In the analogous murine position, the murine zinc finger genes Zfp-1 and Zfp-4 are found in the syntenic 16q region of mouse chromosome 8. Thus, ZNF19 and ZNF23 might be members of an evolutionarily conserved zinc finger gene cluster located on human chromosome 16q22.  相似文献   

4.
Three members of the human zinc finger Krüppel family, ZNF11/KOX2, ZNF22/KOX15, and ZNF25/KOX19, have been regionally localized to the pericentromeric region of chromosome 10 by in situ chromosomal hybridization and somatic cell hybrid analysis. ZNF25/KOX19 is located centromeric to a breakpoint in chromosome band 10q11.2 in the chromosome region 10p11.2-q11.2, whereas ZNF22/KOX15 maps distal to it in band 10q11.2. Sequences hybridizing to the KOX2 probe are found at two loci, ZNF11A and ZNF11B, that map proximal and distal to the 10q11.2 breakpoint, respectively. The two ZNF11 loci probably represent two related sequences in 10p11.2-q11.2. This cluster of ZNF/KOX genes is of particular interest since the loci for multiple endocrine neoplasia type 2A and 2B (MEN2A and MEN2B) syndromes have been assigned to this region by linkage analysis.  相似文献   

5.
The chromosome locations of 368 human Kruppel-type zinc finger (ZNF) PAC clones were physically mapped by FISH to human chromosomes in support of recent efforts of assigning KOX cDNAs (KOX1-KOX32) to zinc finger gene clusters. Recent mapping results were validated and confirmed by sequence comparisons to zinc finger gene sequences automatically annotated in EnsEMBL. In toto, 799 Kruppel-type zinc finger genes have been annotated in EnsEMBL of which 290 genes are found to encode KRAB domains. Sequence homologies of the zinc finger domains were used to establish phylogenic trees of KOX zinc finger genes as well as of all KRAB containing human zinc finger and KOX genes documenting the evolution of KRAB zinc finger genes late in primate evolution. A list of 368 assigned ZNF PAC clones is available under http://www.pzr.uni-rostock.de/supplements.  相似文献   

6.
Two related zinc finger (ZNF) gene clusters from the pericentromeric region of human chromosome 10, defined by cDNAs of the KOX series, have been cloned in yeast artificial chromosomes (YACs). The two clusters evolved by duplication of an ancestral gene cluster before the divergence of the human and great ape lineages. Included in cluster A are the ZNF gene sequences ZNF11A, ZNF33A, and ZNF37A, while cluster B comprises the related sequences ZNF11B, ZNF33B and ZNF37B. Genes from both clusters are expressed: cDNAs KOX2, KOX31 and KOX21 derive from ZNF11B, ZNF33A and ZNF37A, respectively. Further YACs have been isolated which link ZNF11A and ZNF33A to another gene, ZNF25, defined by cDNA clone KOX19. Therefore ZNF25 also forms part of cluster A, but has no counterpart in cluster B. Surprisingly, the KOX ZNF gene clusters are located on opposite sides of the centromere: cluster A maps to 10p11.2, while cluster B is in 10q11.2. This suggests the occurrence during primate evolution of a previously undescribed pericentric inversion subsequent to the cluster duplication. The evolution of this subset of KOX ZNF genes has therefore involved three types of genetic event: local gene duplication, gene cluster duplication, and chromosome rearrangement.  相似文献   

7.
We report here the partial characterization of a new human zinc finger (ZNF75) gene of the Kruppel type mapping to the long arm of the X chromosome. A cosmid clone was isolated from a library specific to the Xq24-qter region by hybridization to a degenerate oligonucleotide representing the link between two contigous fingers of the C2H2 type. The sequence of the pertinent cosmid fragments demonstrated five consecutive zinc finger motifs, all pertaining to the Kruppel family. A reading frame starting at least 75 amino acids before the first zinc finger and ending 11 amino acids after the last one was identified; comparison with other ZF genes suggests that this genomic fragment represents the carboxy-terminal exon of the gene. Homology of approximately 55% in the zinc finger region was detected with many zinc finger genes including mouse Zfp-35 and human ZFN7 cDNA clones. Mapping using a panel of sematic cell hybrids and chromosomal in situ hybridization localized the gene to Xq26, in a region not previously known to contain zinc finger genes.  相似文献   

8.
In this study, we describe the identification and partial characterization of 101 potential human zinc finger protein genes (ZnFPs). These sequences were isolated by hybridization of cosmids, obtained from mouse-human cell lines enriched for chromosome 11p, with an oligonucleotide specific for the "link" sequence between contiguous zinc fingers. Sixty-nine of these cosmids were regionally localized to human prometaphase chromosomes by in situ hybridization. The localization of these cosmids suggests that a number of finger protein genes occur in linked clusters. Their assignment to chromosomes 3p, 11p, 19p, 19qter, 20p, and 21q makes them valuable as markers or "candidate" genes for diseases associated with these chromosome regions.  相似文献   

9.
10.
A cluster of Krüppel type zinc finger genes of the KRAB subclass has recently been localized on human chromosome 19p12-p13.1. We now report that ZNF117 (HPF9), a closely related zinc finger gene of this KRAB subfamily, has been assigned to a distinct locus in the human genome: chromosome band 7q11.2.  相似文献   

11.
Proteins that share conserved "zinc finger" motifs represent a class of DNA-binding proteins that have been shown to play a fundamental role in regulating gene expression and to be involved in a number of human hereditary and malignant disease states. We have isolated, characterized, and mapped zinc finger-encoding genes specific to human chromosome 11q to investigate their possible association in the molecular pathogenesis of several disease loci mapped to this chromosome. An arrayed chromosome 11q cosmid library was screened using a degenerate oligonucleotide corresponding to the H/C link consensus sequence of the Drosophila Kruppel zinc finger gene, resulting in the isolation of six putative zinc finger genes. Three of the genes (ZNF123, ZNF125, and ZNF126) were analyzed and shown to contain tandemly repeated zinc finger motifs of the C2-H2 class. All three novel genes were found to be expressed in normal adult human tissues, although the tissue-specific pattern of expression differs markedly. Isolated zinc finger genes were regionally mapped on chromosome 11 using fluorescence in situ suppression hybridization and demonstrated clustering of the genes at 11q13.3-11q13.4 and 11q23.1-11q23.2. Analysis of in situ hybridization to interphase nuclei demonstrated a maximum distance of 1 Mb separating distinct finger genes. This analysis defines two linked multigene families of zinc finger genes to chromosome bands associated with a high frequency of specific translocations associated with malignancies.  相似文献   

12.
A novel human zinc finger gene, ZNF191, was assigned to chromosome 18 by hybridization of human/rodent hybrid cell panel to a full-length cDNA as a probe. Meanwhile, a human genomic DNA lambda/DASH library was screened using this cDNA probe and several positive clones were obtained. Fluorescence in situ hybridization (FISH) was performed by using one of these positive clones, 16-1, as a probe. Thus, the ZNF191 gene was precisely mapped in 18q12. 1. To date, some hereditary diseases and tumors have been found to be associated with this region by analysis of genetic linkage and loss of heterozygosity. Hence, it suggested that the gene ZNF191 can be taken as a candidate gene responsible for those diseases and tumors.  相似文献   

13.
cDNA clones encoding zinc finger structures were isolated by screening Molt4 and Jurkat cDNA libraries with zinc finger consensus sequences. Candidate clones were partially sequenced to verify the presence of zinc finger-encoding regions; nonoverlapping cDNA clones were chosen on the basis of sequences and genomic hybridization pattern. Zinc finger structure-encoding clones, which were designated by the term "Kox" and a number from 1 to 32 and which were apparently unique (i.e., distinct from each other and distinct from those isolated by other laboratories), were chosen for mapping in the human genome. DNAs from rodent-human somatic cell hybrids retaining defined complements of human chromosomes were analyzed for the presence of each of the Kox genes. Correlation between the presence of specific human chromosome regions and specific Kox genes established the chromosomal locations. Multiple Kox loci were mapped to 7q (Kox 18 and 25 and a locus detected by both Kox 8 cDNA and Kox 27 cDNA), 8q24 5' to the myc locus (Kox 9 and 32), 10cen----q24 (Kox 2, 15, 19, 21, 30, and 31), 12q13-qter (Kox 1 and 20), 17p13 (Kox 11 and 26), and 19q (Kox 5, 6, 10, 22, 24, and 28). Single Kox loci were mapped to 7p22 (Kox 3), 18q12 (Kox 17), 19p (Kox 13), 22q11 between IG lambda and BCR-1 (locus detected by both Kox 8 cDNA and Kox 27 cDNA), and Xp (Kox 14). Several of the Kox loci map to regions in which other zinc finger structure-encoding loci have already been localized, indicating possible zinc finger gene clusters. In addition, Kox genes at 8q24, 17p13, and 22q11--and perhaps other Kox genes--are located near recurrent chromosomal translocation breakpoints. Others, such as those on 7p and 7q, may be near regions specifically active in T cells.  相似文献   

14.
DNA probes derived from rat and human proenkephalin and prodynorphin genes have been used to localize these two opiate neuropeptide genes on human chromosomes. Hybridization of probes to Southern blots made with DNAs from a rodent-human somatic-cell hybrid panel indicates localization of proenkephalin to human chromosome 8 and of prodynorphin to human chromosome 20. In situ hybridization to metaphase chromosomes confirms these assignments and indicates regional localizations of proenkephalin to 8q23-q24 and of prodynorphin to 20p12-pter. A human genomic prodynorphin clone reveals a frequent two-allele TaqI polymorphism.  相似文献   

15.
本文以锌指蛋白ZNF191全长cDNA为探针,与人/啮齿类体细胞杂种系DNA杂交,将这个新的人类锌指基因定位于18号染色体。又用该cDNA筛选人基因组DNA lambda/DASH文库,以获得的DNA片段为探针,进行人染色体荧光原位杂交(FISH)分析,将ZNF191基因精细定位在染色体18q 12.1区带。依据有关遗传连锁分析和等位基因荧光原位杂交(FISH),将ZNF191精确定位于人染色体18q12.1。通过遗传连锁及染色体杂合性丢失分析.目前已知多种遗传病和肿瘤与这个区域相关。因此,ZNF191基因可作为这些疾病或肿瘤的候选相关基因。  相似文献   

16.
17.
Chromosome localization of human ARH genes, a ras-related gene family   总被引:2,自引:0,他引:2  
The human ARH genes (previously called RHO) share several properties with the ras gene family. Three members of the ARH family, the H6, H9, and H12 genes, have been localized to human chromosomes 2, 5, and 3, respectively. Analysis of DNAs from a rodent-human somatic cell hybrid panel demonstrates linkage of H6 to chromosome region 2p12----2pter and H9 to region 5q33----5qter. In situ chromosome hybridization also showed that the primary site for H9 is in the 5q31----qter region. The H12 gene was some-what difficult to localize using rodent-human hybrids because the probe detects a family of rodent genes as homologous to the human probe as in the human cognate gene. However, chromosome in situ hybridization revealed grains clustered in region 3p14----3p22 with a significant peak in band 3p21. We conclude that H6 is in 2p12----pter, H9 in 5q31----5qter, and H12 in 3p21.  相似文献   

18.
The human adenine phosphoribosyltransferase gene (APRT) was mapped with respect to the haptoglobin gene (HP) and the fragile site at 16q23.2 (FRA16D). A subclone of APRT and a cDNA clone of HP were used for molecular hybridization to DNA from mouse-human hybrid cell lines containing specific chromosome 16 translocations. The APRT subclone was used for in situ hybridization to chromosomes expressing FRA16D. APRT was found to be distal to HP and FRA16D and was localized at 16q24, making the gene order cen-FRA16B-HP-FRA16D-APRT-qter.  相似文献   

19.
Chromosomal localization of the human interleukin 1 alpha (IL-1 alpha) gene   总被引:6,自引:0,他引:6  
The human interleukin 1 alpha gene was assigned to chromosome 2 using Southern transfer analysis of human-rodent somatic cell hybrid DNAs. The gene was regionally localized to 2q12-21 using in situ hybridization to metaphase chromosomes. These results indicate that the IL-1 alpha gene maps to the same general region on the long arm of chromosome 2 as the IL-1 beta gene, which has been previously assigned.  相似文献   

20.
Dai J  Li Y  Ji C  Jin F  Zheng Z  Wang X  Sun X  Xu X  Gu S  Xie Y  Mao Y 《Cytogenetic and genome research》2003,103(1-2):74-78
This study reports the cloning and characterization of two novel human zinc finger protein cDNAs (ZNF460 and ZNF461) from a fetal brain cDNA library. The ZNF460 cDNA is 3,135 bp in length encoding a 562-amino-acid polypeptide and the ZNF461 cDNA is 2,548 bp encoding a 563-amino-acid protein. Both of the proteins contain a KRAB A+B box and eleven C2H2 type zinc finger motifs. ZNF461 shows high similarity with the rat GIOT-1 gene (GIOT1). The ZNF460 gene mapped to 19q13.4 with 3 exons, and ZNF461 mapped to 19q13.1 with 6 exons. Both of the two genes are ubiquitously expressed in normal human tissues and the abundance of the ZNF460 mRNA is relatively low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号