共查询到20条相似文献,搜索用时 0 毫秒
1.
During first stages of oogenesis in an ichneumonid wasp Coleocentrotus soldanskii. in each 32 cell cluster, as many as 8 cystocytes enter meiosis. Only one differentiates as an oocyte, the rest are gradually transdetermined to become nurse cells. Significantly, the nurse cells that have passed the first stages of meiosis retain some features characteristic of the oocyte. Namely the nuclei of these cells, as the oocyte nucleus, produce accessory nuclei (AN). Gradual transdetermination of pro-oocytes into nurse cells and the occurrence of ANs in transdetermined cells suggest that a diffusing substance, forming a concentration gradient, is responsible for the determination of the oocyte within the cystocyte groups in hymenopterans. 相似文献
2.
R. Foscarini 《Journal of fish biology》1989,34(1):31-40
Comparative scanning electron microscope studies have been performed on the skin of two oviparous and two viviparous freshwater fish embryos and larvae in order to investigate eventual morphological differences. In the early larval stages, temporary microvilli-like structures (MVLS) were detected in oviparous fish larvae which were later replaced by raicroridge formations. In viviparous fish larvae, only'fingerprint-like'pattern microridge formations were observed. Light microscope slides showed that the disappearance of these MVLS were found to be chronologically related with the development of functional gill lamellae and yolk sac resorption. 相似文献
3.
Speake BK Thompson MB 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2000,127(4):453-467
The purpose of this article is to collate the compositional data for the lipids of the eggs and neonates of ten species of lizards displaying a range of parity modes, to highlight emergent trends and to identify some of the physiological changes central to the evolution of viviparity. The eggs of oviparous species and of viviparous species with a simple (type I) placenta are characterised by very high proportions of triacylglycerol which forms over 80% (wt. /wt.) of the total yolk lipid. The eggs of viviparous species with complex (types II and III) placentae contain lower proportions of triacylglycerol (about 70% of total yolk lipid) and commensurately greater proportions of phospholipid, cholesteryl ester and free cholesterol. The fatty acid compositions of the yolk lipids are very similar for all the lizard species, irrespective of parity mode; in particular, the proportions of docosahexaenoic acid are consistently low. For all the species, the proportions of both docosahexaenoic and arachidonic acids are higher in the phospholipid of the neonate compared with the egg. The difference between the lipid contents of the eggs and the neonates indicates that, in species of Pseudemoia which have a complex (type III) placenta, more than 50% of the total lipid supplied to the embryo is derived from placental transport. 相似文献
4.
Reproductive biology of viviparous and oviparous species of the leaf beetle genus Oreina 总被引:1,自引:0,他引:1
In five species of the genus Oreina Chevrolat (Coleoptera, Chrysomelidae) we compared the size of offspring, the fecundity of the females, the timing of offspring production and female investment over the season. Two of the species, O. elongata and O. luctuosa, laid eggs, while O. cacaliae, O. gloriosa and O. variabilis gave birth to larvae. Offspring size corrected for female size was similar in the two oviparous species and in the viviparous O. cacaliae. In the two other viviparous species the larvae were two to three times bigger in relation to the female. The greater size of the offspring was not traded off for lower fecundity in these latter two species, yet the production of bigger larvae was associated with a longer laying period and thereby a spreading of reproductive investment over the season. The prediction of life history theory that higher investment in individual offspring should be traded off for lower fecundity could not be confirmed. The investigation of egg and larval development showed that in one of the oviparous species, O. luctuosa, the length of the egg stage was more variable. This corroborates the view that in this species the eggs can be retained for varying times before being laid. Greater size at birth does not necessarily lead to shortened developmental times: the larval periods of O. cacaliae, O. elongata, O. gloriosa and O. variabilis were all comparable although the larvae of the first two species were relatively smaller when laid; only the small larvae of O. luctuosa needed significantly longer for their development. For all growth parameters examined the differences between species were larger than the differences between populations. A comparison of larval growth of the oligophagous species O. cacaliae on three plant genera showed that larval growth rate is influenced by the food plant. However, the plant on which the larvae grew worst is apparently not chosen for oviposition in the field. A comparison with a phylogeny of the species based on allozymes suggests that species with similar reproductive parameters are closely related, yet that viviparity evolved independently in O. cacaliae on one hand and O. variabilis and O. gloriosa on the other. 相似文献
5.
Experimental evidence of early costs of reproduction in conspecific viviparous and oviparous lizards
Reproduction entails costs, and disentangling the relative importance of each stage of the reproductive cycle may be important to assess the costs and benefits of different reproductive strategies. We studied the early costs of reproduction in oviparous and viviparous lizard females of the bimodal reproductive species Zootoca vivipara. Egg retention time in oviparous females is approximately one-third of the time in viviparous females. We compared the vitellogenesis and egg retention stages that are common to both reproductive modes. Precisely, we monitored the thermoregulatory behaviour, the weight gain and the immunocompetence of the females. Moreover, we injected an antigen in half of the females (immune challenge) to study the trade-offs between reproductive mode and immune performance and between different components of the immune system. Finally, we experimentally induced parturition in viviparous females at the time of egg laying in oviparous females. Oviparous and viviparous females did not show strong differences in response to the immune challenge. However, viviparous females spent more time thermoregulating while partially hidden and gained more weight than oviparous females. The greater weight gain indicates that the initial period of egg retention is less costly for viviparous than for oviparous females or that viviparous females are able to save and accumulate energy at this period. This energy may be used by viviparous females to cope with the subsequent costs of the last two-third of the gestation. Such an ability to compensate the higher costs of a longer egg retention period may account for the frequent evolution of viviparity in squamate reptiles. 相似文献
6.
Voituron Y Heulin B Surget-Groba Y 《Journal of experimental zoology. Part A, Comparative experimental biology》2004,301(4):367-373
The lizard Lacerta vivipara has allopatric oviparous and viviparous populations. The cold hardiness strategy of L. vivipara has previously been studied in viviparous populations, but never in oviparous ones. The present study reveals that both the oviparous and viviparous individuals of this species are able to survive in a supercooled state at -3 degrees C for at least one week when kept on dry substrates. The mean crystallisation temperatures of the body, around -4 degrees C on dry substrata and -2 degrees C on wet substrata, do not differ between oviparous and viviparous individuals. All the individuals are able to tolerate up to 48-50% of their body fluid converted into ice, but only viviparous individuals were able to stabilize their body ice content at 48%, and hence were able to survive even when frozen at -3 degrees C for times of up 24 hours. Ice contents higher than 51% have been constantly found lethal for oviparous individuals. This suggests that, in L. vivipara, the evolution towards a higher degree of freezing tolerance could parallel the evolution of the viviparous reproductive mode, a feature believed to be strongly selected under cold climatic conditions. This is the first report, among reptiles, of an intraspecific variation regarding the freeze tolerance capacities. 相似文献
7.
8.
Thompson MB 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2007,148(4):755-760
Regardless of the mode of reproduction, three things must occur at birth or hatching in amniote vertebrates: initiation of breathing, pulmonary fluid elimination and reabsorption, and adequate perfusion of pulmonary circulation. Although data on these events are few, there appears to be no fundamental difference in them that can be associated with the oviparity to viviparity transition. There are, however, differences in the timing of these events in oviparous and viviparous amniotes. The transition to neonatal respiration tends to be very quick in viviparous species because the vascular support for oxygen uptake provided by the mother is rapidly disassociated from the mechanism for uptake by the embryo. By contrast, hatching often is a slow process, taking 24 h or more in some species, as chorioallantoic blood flow slowly gives way to clearing of the lungs and pulmonary gas exchange. Little is known of the mechanisms of pulmonary fluid elimination and reabsorption or lung inflation in reptiles, but the cellular structures and surfactant systems are similar in all amniote vertebrates. Nevertheless, there are differences, particularly of timing and maturation of various systems, but there has been no exploration of the functional (or phylogenetic) bases of these differences. Perfusion of the neonatal pulmonary system to support respiration in reptiles remains to be investigated. In mammals and birds, closure of the ductus arteriosus is important, but the role played by the ductus arterioisus in reptilian hatching or birth is not known. 相似文献
9.
10.
Michael B Thompson 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2007,148(4):755-760
Regardless of the mode of reproduction, three things must occur at birth or hatching in amniote vertebrates: initiation of breathing, pulmonary fluid elimination and reabsorption, and adequate perfusion of pulmonary circulation. Although data on these events are few, there appears to be no fundamental difference in them that can be associated with the oviparity to viviparity transition. There are, however, differences in the timing of these events in oviparous and viviparous amniotes. The transition to neonatal respiration tends to be very quick in viviparous species because the vascular support for oxygen uptake provided by the mother is rapidly disassociated from the mechanism for uptake by the embryo. By contrast, hatching often is a slow process, taking 24 h or more in some species, as chorioallantoic blood flow slowly gives way to clearing of the lungs and pulmonary gas exchange. Little is known of the mechanisms of pulmonary fluid elimination and reabsorption or lung inflation in reptiles, but the cellular structures and surfactant systems are similar in all amniote vertebrates. Nevertheless, there are differences, particularly of timing and maturation of various systems, but there has been no exploration of the functional (or phylogenetic) bases of these differences. Perfusion of the neonatal pulmonary system to support respiration in reptiles remains to be investigated. In mammals and birds, closure of the ductus arteriosus is important, but the role played by the ductus arterioisus in reptilian hatching or birth is not known. 相似文献
11.
Jantra S Bigliardi E Brizzi R Ietta F Bechi N Paulesu L 《Biology of reproduction》2007,76(6):1009-1015
In previous reports, we have shown that interleukin 1 (IL1), a cytokine associated with implantation in mice, is also expressed in reproductive tissues of viviparous squamate reptiles and cartilaginous fishes. In the present study, we investigated the expression of IL1B and its functional membrane receptor type I (IL1R1) in amphibians, a class of vertebrates that is characterized by different reproductive modes, including internal and external fertilization. In particular, we investigated the oviductal tissues of the aplacental viviparous Salamandra lanzai, the oviparous Triturus carnifex, and the ovuliparous Bufo bufo. In immunohistochemistry with anti-human IL1B and IL1R1 polyclonal antibodies we found that in S. lanzai, most cells in the uterine mucosa were immunoreactive for IL1B and IL1R1. In T. carnifex, IL1B and IL1R1 were present in ciliated luminal cells, and there was evidence of IL1B in glandular cells. In B. bufo, the expression of IL1B and IL1R1 was limited to the apical cytoplasm of the ciliated oviductal cells. Western blot analysis showed that a putative mature form of IL1B, similar to that seen in mammals, was present in the oviductal tissues of S. lanzai, whereas different forms, which probably correspond to an inactive pro-IL1B protein, were found in T. carnifex and B. bufo. A band that corresponded to the predicted 80-kDa human IL1R1 was found in S. lanzai and T. carnifex. Although the present study shows that IL1B and IL1R1 expression occurs in all reproductive modes, the differential expression patterns noted between ovuliparity and oviparity and viviparity may reflect the different roles of IL1 in the various reproductive modes. 相似文献
12.
Summary Germ cell clusters are found in the germarial region of ovarioles of Parthenothrips dracenae. Cluster mitoses are synchronized, at least initially. The intercellular bridges are filled with fusomal material, which can fuse to form polyfusomal aggregates which in turn form small rosettes. All cells develop into oocytes. Oocytes become isolated by a secondary detachment process. Intercellular bridges, together with fusomal material and cell membranes, survive for some time as isolated bodies. Phylogenetic consequences are discussed. The data provide strong evidence for a secondary panoistic ovary in thysanopterans, since cluster formation in ovaries of primary panoists has not been shown. 相似文献
13.
The European common lizard (Zootoca vivipara) is a widely distributed species across Europe and Asia exhibiting two reproductive modes (oviparity/viviparity), six major lineages and several sublineages. It has been used to tackle a large variety of research questions, nevertheless, few nuclear DNA sequence markers have been developed for this species. Here we developed 79 new nuclear DNA sequence markers using a clonation protocol. These markers were amplified in several oviparous and viviparous specimens including samples of all extant clades, to test the amplification success and their diversity. 49.4% of the markers were polymorphic and of those, 51.3% amplified in all and 94.9% amplified in 5–7 of the extant Z. vivipara clades. These new markers will be very useful for the study of the population structure, population dynamics, and micro/macro evolution of Z. vivipara. Cross-species amplification in four lizard species (Psammodromus edwardsianus, Podarcis muralis, Lacerta bilineata, and Takydromus sexlineatus) was positive in several of the markers, and six makers amplified in all five species. The large genetic distance between P. edwardsianus and Z. vivipara further suggests that these markers may as well be employed in many other species. 相似文献
14.
Heulin B Stewart JR Surget-Groba Y Bellaud P Jouan F Lancien G Deunff J 《Journal of morphology》2005,266(1):80-93
The evolutionary process leading to the emergence of viviparity in Squamata consists of lengthening the period of egg retention in utero coupled with marked reduction in the thickness of the eggshell. We used light microscopy and scanning electron microscopy to study uterine structure during the reproductive cycle of oviparous and viviparous females of the reproductively bimodal Lacerta vivipara. We compared the structure of the uterine shell glands, which secrete components of the eggshell, during preovulatory and early gestation phases of the reproductive cycle and also compared histochemistry of the eggshells. The uterine glands of both reproductive forms undergo considerable growth within a period of a few weeks during folliculogenesis and vitellogenesis preceding ovulation. The majority of the proteinaceous fibers of the shell membrane are secreted early in embryonic development and the uterine glands regress shortly thereafter. This supports previous observations indicating that, in Squamata, secretion of the shell membrane occurs very rapidly after ovulation. The most striking differences between reproductive modes were larger uterine glands at late vitellogenesis in oviparous females, 101 microm compared to 60 microm in viviparous females, and greater thickness of the shell membrane during early gestation in oviparous females (52-73 microm) compared to viviparous females (4-8 microm). Our intraspecific comparison supports the conclusions of previous studies that, prior to ovulation, the uterine glandular layer is less developed in viviparous than in oviparous species, and that this is the main factor accounting for differences in the thickness of the shell membrane of the two reproductive forms of squamates. 相似文献
15.
16.
Thomson M Herbert JF Thompson MB 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2006,144(3):382-386
Plastic changes occur in the morphology of the uterus at various stages of the reproductive cycle in both oviparous and viviparous lizards and these may be influenced by estrogen. Estrogen driven phosphorylation of effector proteins on tyrosine residues plays a major role in the plastic modulation of uterine anatomy and physiology in vertebrates. We used electrophoresis and Western blotting to characterize the phosphotyrosine protein profiles at various stages of the reproductive pathway in an oviparous lizard Lampropholis guichenoti and a viviparous lizard Eulamprus tympanum. L. guichenoti displayed major bands in the 200-35 kDa range and a triplet of bands of molecular masses 61 kDa, 52 kDa and 48 kDa in 50% of specimens and a 38 kDa band in all specimens. In contrast, E. tympanum samples all displayed a single major band at 40 kDa, which was significantly elevated at the early pregnancy stage. Somewhat paradoxically, the viviparous species, which has the more complex uterine epithelial changes during pregnancy, has the fewest phosphotyrosine bands, so how tyrosine phosphorylation is affected during the evolution of viviparity is not clear. 相似文献
17.
Thomson M Herbert JF Murphy CR Thompson MB 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2005,142(1):123-127
The gene HoxA10 and its protein product are essential for the formation of the extensions of the plasma membrane called uterodomes or pinopods in mammalian uterine epithelia. In mice, the presence of the HoxA10 protein and uterodomes is needed for uterine receptivity to blastocyst implantation. The viviparous lizard Eulamprus tympanum displays uterodomes whereas the oviparous lizard Lampropholis guichenoti does not. To explore the theory that HoxA10 is involved in the formation of uterodomes we investigated whether HoxA10 immunoreactive proteins were present in both species during their reproductive cycles. Oviduct proteins from vitellogenic, gravid or non-reproductive L. guichenoti (n=19) and E. tympanum (n=28) were separated by electrophoresis and analysed by Western blot and specific antibodies to HoxA10. E. tympanum displayed HoxA10 immunoreactive bands at 59 and 63 kDa in 20 out of the 28 samples. All of the L. guichenoti samples displayed HoxA10 immunoreactive bands, 18 had bands at 59 and 64 kDa and 1 animal had a single band at 59 kDa. There were no significant differences in the level of HoxA10 immunoreactivity between the different stages of reproductive cycle in either species. The different molecular mass of the larger band in L. guichenoti (64 kDa) compared to E. tympanum (63 kDa) indicates that the two lizards express different isoforms of the HoxA10-like proteins and it will be interesting in future studies to determine whether there are differences in the biological activity of the proteins that regulate different physiological functions in the uterus of viviparous and oviparous lizards. 相似文献
18.
19.
Gaëtano Odierna Benoit Heulin Claude-Pierre Guillaume Nusa Vogrin Gennaro Aprea Teresa Capriglione Yann Surget-Groba Larissa Kupriyanova 《Ecography》2001,24(3):332-340
The lizard Lacerta ( Zootoca ) vivipara has two modes of reproduction and is variable karyologically. We describe its karyological variation from literature data and from new data on two viviparous populations from France, on two oviparous populations from the Pyrenees in south-western France and on three oviparous populations recently discovered in Slovenia. Males have 36 chromosomes, whereas females have only 35 chromosomes in all viviparous populations and in the Pyrenean oviparous populations. This karyotype has been interpreted to result from a fusion of an ancestral sexual W chromosome with an autosome from the Zl or from the Z2 pair. The karyotype formula is 32 autosomes + ZIZ2W for the female and 32 autosomes + Z1Z1Z2Z2 for the male. The karyotype of the Slovenian oviparous populations, 34 autosomes + ZW in the male and 34 autosomes +ZW in the female, represents an evolutionary stage that preceded the chromosomal fusion. There is minor karyological variation, mainly concerning the W and Z2 chromosomes, within the Pyrenean oviparous populations. This parallels the geographic variation of the W-linked alleles of the MPI enzyme and suggests that allopatric differentiation of these oviparous populations might have occurred in the vicinity of the Pyrenees during the Pleistocene.
The viviparous populations from western Europe carry a metacentric W chromosome, whereas oviparous populations from south-western Europe and eastern viviparous populations both show an acrocentrie, or a subtelocentrie. W chromosome. This suggests that the acrocentric-subtelocentric W is a primitive character and that viviparity probably arose in an eastern lineage of the species. 相似文献
The viviparous populations from western Europe carry a metacentric W chromosome, whereas oviparous populations from south-western Europe and eastern viviparous populations both show an acrocentrie, or a subtelocentrie. W chromosome. This suggests that the acrocentric-subtelocentric W is a primitive character and that viviparity probably arose in an eastern lineage of the species. 相似文献
20.
Marianne Gabirot Pilar Lpez Jos Martín Michelle de Fraipont Benoit Heulin Barry Sinervo Jean Clobert 《Biochemical Systematics and Ecology》2008,36(7):539-544
In spite of the importance of chemoreception in intraspecific communication of lizards, only a few studies have examined chemical composition of secretions of lizards. The secretion of the femoral glands of adult male lizards Lacerta vivipara contains a relatively low number (18) of lipophilic compounds in comparison with other related lacertid lizards. These compounds were identified on the basis of mass spectra, obtained by GC-MS. Chemicals included ten steroids (mainly cholesterol) and four carboxylic acids between n-C12 and n-C18, and minor components such as squalene, α-tocopherol, and two waxy esters, which may contribute to avoid oxidation of other lipophilic components in the fairly humid environments occupied by this lizard. Secretions of adult males from oviparous and viviparous populations did not differ in the numbers and quality of chemical compounds, but there were some differences in the relative proportion of some compounds. Males from oviparous populations had lower proportions of hexadecanoic acid and cholestan-3-one, and higher proportions of squalene than viviparous males. These differences might be explained by either small genetic differences between types or due to different microclimatic conditions in the original populations. 相似文献