首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The design, synthesis and structure–activity relationships of a novel series of N-phenyl-substituted pyrrole, 1,2-pyrazole and 1,2,3-triazole acid analogs as PPAR ligands are outlined. The triazole acid analogs 3f and 4f were identified as potent dual PPARα/γ agonists both in binding and functional assays in vitro. The 3-oxybenzyl triazole acetic acid analog 3f showed excellent glucose and triglyceride lowering in diabetic db/db mice.  相似文献   

3.
4.
A series of novel, potent PPARα/γ dual agonists were synthesized and appraised. The most potent analogue, compound 2b demonstrated EC50 value of 0.012 ± 0.002 and 0.032 ± 0.01 μM, respectively, for hPPARα and hPPARγ in transactivation assay. Additionally, compound 2b demonstrated good glucose and lipid lowering effect in genetic diabetic (db/db) mice.  相似文献   

5.
Neural vascular insufficiency plays an important role in diabetic peripheral neuropathy (DPN). Peroxisome proliferative-activated receptor (PPAR)α has an endothelial protective effect related to activation of PPARγ coactivator (PGC)-1α and vascular endothelial growth factor (VEGF), but its role in DPN is unknown. We investigated whether fenofibrate would improve DPN associated with endothelial survival through AMPK-PGC-1α-eNOS pathway. Fenofibrate was given to db/db mice in combination with anti-flt-1 hexamer and anti-flk-1 heptamer (VEGFR inhibition) for 12 weeks. The db/db mice displayed sensory-motor impairment, nerve fibrosis and inflammation, increased apoptotic cells, disorganized myelin with axonal shrinkage and degeneration, fewer unmyelinated fibers, and endoneural vascular rarefaction in the sciatic nerve compared to db/m mice. These findings were exacerbated with VEGFR inhibition in db/db mice. Increased apoptotic cell death and endothelial dysfunction via inactivation of the PPARα-AMPK-PGC-1α pathway and their downstream PI3K-Akt-eNOS-NO pathway were noted in db/db mice, human umbilical vein endothelial cells (HUVECs) and human Schwann cells (HSCs) in high-glucose media. The effects were more prominent in response to VEGFR inhibition. In contrast, fenofibrate treatment ameliorated neural and endothelial damage by activating the PPARα-AMPK-PGC-1α-eNOS pathway in db/db mice, HUVECs and HSCs. Fenofibrate could be a promising therapy to prevent DPN by protecting endothelial cells through VEGF-independent activation of the PPARα-AMPK-PGC-1α-eNOS-NO pathway.  相似文献   

6.
Experimental and clinical data support the notion that peroxisome proliferator-activated receptor γ (PPARγ) activation is associated with anti-atherosclerosis as well as anti-diabetic effect. Telmisartan, an angiotensin receptor blocker (ARB), acts as a partial PPARγ agonist. We hypothesized that telmisartan protects against diabetic vascular complications, through PPARγ activation. We compared the effects of telmisartan, telmisartan combined with GW9662 (a PPARγ antagonist), and losartan with no PPARγ activity on vascular injury in obese type 2 diabetic db/db mice. Compared to losartan, telmisartan significantly ameliorated vascular endothelial dysfunction, downregulation of phospho-eNOS, and coronary arterial remodeling in db/db mice. More vascular protective effects of telmisartan than losartan were associated with greater anti-inflammatory effects of telmisartan, as shown by attenuation of vascular nuclear factor kappa B (NFκB) activation and tumor necrosis factor α. Coadministration of GW9662 with telmisartan abolished the above mentioned greater protective effects of telmisartan against vascular injury than losartan in db/db mice. Thus, PPARγ activity appears to be involved in the vascular protective effects of telmisartan in db/db mice. Moreover, telmisartan, but not losartan, prevented the downregulation of vascular PPARγ in db/db mice and this effect of telmisartan was cancelled by the coadministration of GW9662. Our data provided the first evidence indicating that PPARγ activity of telmisartan contributed to the protective effects of telmisartan against diabetic vascular complication. PPARγ activity of telmisartan was involved in the normalization of vascular PPARγ downregulation in diabetic mice. Thus, telmisartan seems to exert vascular protective effects in hypertensive patients with diabetes.  相似文献   

7.
Insulin resistance is a characteristic feature of Type 2 diabetes. Insulin resistance has also been implicated in the pathogenesis of cardiovascular disease. Currently used thiazolidinedione (TZD) insulin sensitizers although effective, have adverse side effects of weight gain, fluid retention and heart failure. Using fat cell-based phenotypic drug discovery approach we identified P1736, a novel antidiabetic molecule that has completed Phase II clinical trials. The present study evaluated the in vitro and in vivo pharmacological properties of P1736. P1736 is a non-TZD and it did not activate human PPAR(Peroxisome Proliferator Activated Receptor Gamma )receptors. P1736 caused dose dependent increase in glucose uptake (EC50-400nM) in the insulin resistant 3T3 adipocytes. The compound (10µM) induced translocation of GLUT-4 (Glucose Transporter type 4) transporters in these adipocytes while metformin (1.0mM) was inactive. In diabetic db/db mice, P1736 (150mg/kg) was more efficacious than metformin in lowering plasma glucose (35% vs 25%) and triglyceride levels (38% vs 31%). P1736 tested at 5mg/kg, twice daily doses, reduced glucose by 41% and triglycerides by 32%, in db/db mice. These effects were not associated with adverse effects on body weight or liver function. Rosiglitazone (5mg/kg, twice daily) caused 60% and 40 % decreases in glucose and triglyceride levels, respectively. However, rosiglitazone induced 13% weight gain (p<0.05) in db/db mice. P1736 was also efficacious in ob/ob mice wherein 30-35% decrease in glucose and significant improvement in hyperinsulinemia were observed. Administration of P1736 to ob/ob mice resulted in 70% increase in glucose uptake in soleus muscles while metformin caused 38% increase. P1736 exhibited excellent safety profile and was weight neutral in all preclinical models of diabetes. Thus, P1736 with its unique pharmacology coupled with PPAR- independent mode of action could represent an alternative option in the management of insulin resistant Type 2 diabetic patients.  相似文献   

8.
In this study, we evaluated the pharmacological effects of Ganoderma lucidum (G. lucidum) (water-extract) (0.003, 0.03 and 0.3 g/kg, 4-week oral gavage) consumption using the lean (+db/+m) and the obese/diabetic (+db/+db) mice. Different physiological parameters (plasma glucose and insulin levels, lipoproteins-cholesterol levels, phosphoenolpyruvate carboxykinase (PEPCK), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase) and isolated aorta relaxation of both species were measured and compared. G. lucidum (0.03 and 0.3 g/kg) lowered the serum glucose level in +db/+db mice after the first week of treatment whereas a reduction was observed in +db/+m mice only fed with 0.3 g/kg of G. lucidum at the fourth week. A higher hepatic PEPCK gene expression was found in +db/+db mice. G. lucidum (0.03 and 0.3 g/kg) markedly reduced the PEPCK expression in +db/+db mice whereas the expression of PEPCK was attenuated in +db/+m mice (0.3 g/kg G. lucidum). HMG CoA reductase protein expression (in both hepatic and extra-hepatic organs) and the serum insulin level were not altered by G. lucidum. These data demonstrate that G. lucidum consumption can provide beneficial effects in treating type 2 diabetes mellitus (T2DM) by lowering the serum glucose levels through the suppression of the hepatic PEPCK gene expression.  相似文献   

9.
G protein-coupled receptor 40 (GPR40) mediates both acute and chronic effects of free fatty acids (FFAs) on insulin secretion. However, it remains controversial whether inhibition of GPR40 would be beneficial in prevention of type 2 diabetes. This study is designed to evaluate the potential effects of DC260126, a small molecule antagonist of GPR40, on β-cell function following administration of 10 mg/kg dose of DC260126 to obese diabetic db/db mice. Oral glucose tolerance test, glucose stimulated insulin secretion and insulin tolerance test were used to investigate the pharmacological effects of DC260126 on db/db mice after 21-days treatment. Immunohistochemistry and serum biochemical analysis were also performed in this study. Although no significant change of blood glucose levels was found in DC260126-treated mice, DC260126 significantly inhibited glucose stimulated insulin secretion, reduced blood insulin level and improved insulin sensitivity after 3 weeks administration in db/db mice. Moreover, DC260126 reduced the proinsulin/insulin ratio and the apoptotic rate of pancreatic β-cells remarkably in DC260126-treated db/db mice compared to vehicle-treated mice (p<0.05, n = 8). The results suggest that although DC260126 could not provide benefit for improving hyperglycemia, it could protect against pancreatic β-cells dysfunction through reducing overload of β-cells, and it increases insulin sensitivity possibly via alleviation of hyperinsulinemia in db/db mice.  相似文献   

10.
Objective: Preclinical evaluation of DRF 2655, a peroxisome proliferator‐activated receptor alpha (PPARα) and PPARγ agonist, as a body‐weight lowering, hypolipidemic and euglycemic agent. Research Methods and Procedures: DRF 2655 was studied in different genetic, normal, and hyperlipidemic animal models. HEK 293 cells were used to conduct the reporter‐based transactivation of PPARα and PPARγ. To understand the biochemical mechanism of lipid‐, body‐weight‐, and glucose‐lowering effects, activities of key β‐oxidation and lipid catabolism enzymes and gluconeogenic enzymes were studied in db/db mice treated with DRF 2655. 3T3L1 cells were used for adipogenesis study, and HepG2 cells were used to study the effect of DRF 2655 on total cholesterol and triglyceride synthesis using [14C]acetate and [3H]glycerol. Results: DRF 2655 showed concentration‐dependent transactivation of PPARα and PPARγ. In the 3T3L1 cell‐differentiation study, DRF 2655 and rosiglitazone showed 369% and 471% increases, respectively, in triglyceride accumulation. DRF 2655 showed body‐weight lowering and euglycemic and hypolipidemic effects in various animal models. db/db mice treated with DRF 2655 showed 5‐ and 3.6‐fold inhibition in phosphoenolpyruvate carboxykinase and glucose 6‐phosphatase activity and 651% and 77% increases in the β‐oxidation enzymes carnitine palmitoyltransferase and carnitine acetyltransferase, respectively. HepG2 cells treated with DRF 2655 showed significant reduction in lipid synthesis. Discussion: DRF 2655 showed excellent euglycemic and hypolipidemic activities in different animal models. An exciting finding is its body‐weight lowering effect in these models, which might be mediated by the induction of target enzymes involved in hepatic lipid catabolism through PPARα activation.  相似文献   

11.

Background

The db/db mouse is an animal model of diabetes in which leptin receptor activity is deficient resulting accelerated cardiomyopathy when exposed to angiotensin (AT). Toll-like receptors 4 and 2 (TLR4, TLR2) are pattern recognition receptors, that recognize pathogen-associated molecular patterns and exacerbate and release inflammatory cytokines. Fetuin A (Fet A) is a fatty acid carrier which affects inflammation and insulin resistance in obese humans and animals through TLRs.The aim of this study was to investigate the effect of caloric restriction (CR) on free fatty acids (FFA) level and the inflammatory response in diabetic cardiomyopathy.

Methods and results

Left ventricular hypertrophy, increased fibrosis and leukocytes infiltration were observed in db/db AT treated hearts. Serum glucose, FFA, and cholesterol levels were elevated in db/db AT treated mice. Cardiac expression of PPARα increased while AKT phosphorylation was decreased.

Conclusions

Cumulatively, CR elevated cardiac PPARα improved the utilization of fatty acids, and reduced myocardial inflammation as seen by reduced levels of Fet A. Thus CR negated cardiomyopathy associated with AT in an animal model of diabetes suggesting that CR is an effective therapeutic approach in the treatment of diabetes and associated cardiomyopathy.  相似文献   

12.
It has been previously demonstrated that brain-derived neurotrophic factor (BDNF) regulates glucose metabolism and energy expenditure in rodent diabetic models such as C57BL/KsJ-leprdb/leprdb (db/db) mice. Central administration of BDNF has been found to reduce blood glucose in db/db mice, suggesting that BDNF acts through the central nervous system. In the present study we have expanded these investigations to explore the effect of central administration of BDNF on energy metabolism. Intracerebroventricular administration of BDNF lowered blood glucose and increased pancreatic insulin content of db/db mice compared with vehicle-treated pellet pair-fed db/db mice. While body temperatures of the pellet pair-fed db/db mice given vehicle were reduced because of restricted food supply in this pair-feeding condition, BDNF treatment remarkably alleviated the reduction of body temperature suggesting the enhancement of thermogenesis. BDNF enhanced norepinephrine turnover and increased uncoupling protein-1 mRNA expression in the interscapular brown adipose tissue. Our evidence indicates that BDNF activates the sympathetic nervous system via the central nervous system and regulates energy expenditure in obese diabetic animals.  相似文献   

13.
Folic acid supplementation provides beneficial effects on endothelial functions in patients with hyperhomocysteinemia. However, its effects on vascular functions under diabetic conditions are largely unknown. Therefore, the effect(s) of folic acid (5.7 and 71 μg/kg/day for 4 weeks) on aortic relaxation was investigated using obese/diabetic (+db/+db) mice and lean littermate (+db/+m) mice. Acetylcholine-induced relaxation in +db/+db mice was less than that observed in +db/+m mice. The reduced relaxation in +db/+db mice was restored by consumption of 71 μg/kg folic acid. Acetylcholine-induced relaxation (with and without folic acid treatment) was sensitive to NG-nitro-l-arginine methyl ester, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one, geldanamycin and triciribine. In addition, acetylcholine-induced relaxation was attenuated by resistin. The plasma level of resistin in +db/+db mice was sevenfold higher than that measured in +db/+m mice, and the elevated plasma level of resistin in +db/+db mice was reduced by 25% after treatment with 71 μg/kg folic acid. Folic acid slightly increased the ratio of reduced glutathione to oxidized glutathione in +db/+db mice. Moreover, folic acid caused a reduction in PTEN (phosphatase and tensin homolog deleted on chromosome 10) expression, an increase in the phosphorylation of endothelial nitric oxide synthase (eNOSSer1177) and AktSer473, and an enhanced interaction of heat shock protein 90 (HSP90) with eNOS in both strains, with greater magnitude observed in +db/+db mice. In conclusion, folic acid consumption improved blunted acetylcholine-induced relaxation in +db/+db mice. The mechanism may be, at least partly, attributed to enhancement of PI3K/HSP90/eNOS/Akt cascade, reduction in plasma resistin level, down-regulation of PTEN and slight modification of oxidative state.  相似文献   

14.
We describe here the design, syntheses and structure–activity relationships (SAR) of novel zwitterionic compounds as non-thiazolidinedion (TZD) based peroxisome proliferator activated receptor (PPAR) α/γ dual agonists. We commenced the medicinal research with compound 1 originated by Eli Lilly, which was reported to possess PPAR α/γ dual agonist activity. We incorporated an amine linker and optimized it on the nitrogen of the linker, thereby envisioning the enhancement of the PPAR α/γ dual agonist activity together with altering the physicochemical properties. As a result, we could generate compounds showing the PPAR α/γ dual activity, especially among which compound 22e had a franylmethyl group on the linker and 2,6-dimethyl phenyl ring at the carboxylic acid head group furnishing a highly potent dual agonist activity, together with a great glucose lowering effect. Moreover, it remedied the lipid profile, that is, triglyceride without body weight gain in the db/db mice model.  相似文献   

15.
Low levels of adiponectin, a fat‐derived hormone, are found to be correlated with coronary heart disease, type 2 diabetes, obesity, and insulin resistance. Conversely, high adiponectin levels are predictive of reduced coronary risk in long‐term epidemiologic studies. However, the precise role of adiponectin in cardiomyocyte function is still not clear. This study was designed to examine the role of adiponectin in cardiac contractile function in the db/db model of diabetic obesity. Mechanical properties and intracellular Ca2+ transients were evaluated in cardiomyocytes from lean control and db/db mice with or without adiponectin (10 µg/ml) treatment. Expression and phosphorylation of IRS‐1, Akt, c‐Jun, and c‐Jun N terminal kinase (JNK) as well as markers of endoplasmic reticulum (ER) stress were evaluated using western blotting. Cardiomyocytes from db/db mice exhibited greater cross‐sectional area, depressed peak shortening (PS), and maximal velocity of shortening/re‐lengthening as well as prolonged duration of re‐lengthening. Consistently, myocytes from db/db mice displayed a reduced electrically stimulated rise in intracellular Ca2+ and prolonged intracellular Ca2+ decay, which were abrogated by adiponectin treatment. Ratios between phosphorylated c‐Jun and c‐Jun as well as phosphorylated IRS‐1 and IRS‐1 were increased in db/db mice, the effect of which was attenuated by adiponectin. Levels of the phosphorylated ER stress makers PERK (Thr980), IRE‐1, and eIF2α were significantly elevated in db/db mice compared with lean controls, although the effect was unaffected by adiponectin. Collectively, our data suggest that adiponectin improves cardiomyocyte dysfunction in db/db diabetic obese mice through a mechanism possibly related to c‐Jun and IRS‐1.  相似文献   

16.
Oxamate (OXA) is a pyruvate analogue that directly inhibits the lactate dehydrogenase (LDH)-catalyzed conversion process of pyruvate into lactate. Earlier and recent studies have shown elevated blood lactate levels among insulin-resistant and type 2 diabetes subjects and that blood lactate levels independently predicted the development of incident diabetes. To explore the potential of OXA in the treatment of diabetes, db/db mice were treated with OXA in vivo. Treatment of OXA (350–750 mg/kg of body weight) for 12 weeks was shown to decrease body weight gain and blood glucose and HbA1c levels and improve insulin secretion, the morphology of pancreatic islets, and insulin sensitivity in db/db mice. Meanwhile, OXA reduced the lactate production of adipose tissue and skeletal muscle and serum lactate levels and decreased serum levels of TG, FFA, CRP, IL-6, and TNF-α in db/db mice. The PCR array showed that OXA downregulated the expression of Tnf, Il6, leptin, Cxcr3, Map2k1, and Ikbkb, and upregulated the expression of Irs2, Nfkbia, and Pde3b in the skeletal muscle of db/db mice. Interestingly, LDH-A expression increased in the islet cells of db/db mice, and both treatment of OXA and pioglitazone decreased LDH-A expression, which might be related to the improvement of insulin secretion. Taken together, increased lactate production of adipose tissue and skeletal muscle may be at least partially responsible for insulin resistance and diabetes in db/db mice. OXA improved glycemic control and insulin sensitivity in db/db mice primarily via inhibition of tissue lactate production. Oxamic acid derivatives may be a potential drug for the treatment of type 2 diabetes.  相似文献   

17.

Background

Selective PPARγ modulators (sPPARγM) retains insulin sensitizing activity but with minimal side effects compared to traditional TZDs agents, is thought as a promising strategy for development of safer insulin sensitizer.

Methods

We used a combination of virtual docking, SPR-based binding, luciferase reporter and adipogenesis assays to analyze the interaction mode, affinity and agonistic activity of L312 to PPARγ in vitro, respectively. And the anti-diabetic effects and underlying molecular mechanisms of L312 was studied in db/db mice.

Results

L312 interacted with PPARγ-LBD in a manner similar to known sPPARγM. L312 showed similar PPARγ binding affinity, but displayed partial PPARγ agonistic activity compared to PPARγ full agonist pioglitazone. In addition, L312 displayed partial recruitment of coactivator CBP yet equal disassociation of corepressor NCoR1 compared to pioglitazone. In db/db mice, L312 (30 mg/kg·day) treatment considerably improved insulin resistance with the regard to OGTT, ITT, fasted blood glucose, HOMA-IR and serum lipids, but elicited less weight gain, adipogenesis and hemodilution compared with pioglitazone. Further studies demonstrated that L312 is a potent inhibitor of CDK5-mediated PPARγ phosphorylation and displayed a selective gene expression profile in epididymal WAT.

Conclusions

L312 is a novel sPPARγM.

General significance

L312 may represent a novel lead for designing ideal sPPARγM for T2DM treatment with advantages over current TZDs.  相似文献   

18.

Background

Two recent studies demonstrated that bariatric surgery induced remission of type 2 diabetes very soon after surgery and far too early to be attributed to weight loss. In this study, we sought to explore the mechanism/s of this phenomenon by testing the effects of proteins from the duodenum-jejunum conditioned-medium (CM) of db/db or Swiss mice on glucose uptake in vivo in Swiss mice and in vitro in both Swiss mice soleus and L6 cells. We studied the effect of sera and CM proteins from insulin resistant (IR) and insulin-sensitive subjects on insulin signaling in human myoblasts.

Methodology/Principal Findings

db/db proteins induced massive IR either in vivo or in vitro, while Swiss proteins did not. In L6 cells, only db/db proteins produced a noticeable increase in basal 473Ser-Akt phosphorylation, lack of GSK3β inhibition and a reduced basal 389Thr-p70-S6K1 phosphorylation. Human IR serum markedly increased basal 473Ser-Akt phosphorylation in a dose-dependent manner. Human CM IR proteins increased by about twofold both basal and insulin-stimulated 473Ser-Akt. Basal 9Ser-GSK3β phosphorylation was increased by IR subjects serum with a smaller potentiating effect of insulin.

Conclusions

These findings show that jejunal proteins either from db/db mice or from insulin resistant subjects impair muscle insulin signaling, thus inducing insulin resistance.  相似文献   

19.
Diabetic nephropathy (DN) associated with type 2 diabetes is the most common cause of end-stage renal disease (ESRD) and a serious health issue in the world. Currently, molecular basis for DN has not been established and only limited clinical treatments are effective in abating the progression to ESRD associated with DN. Here we found that diabetic db/db mice which lack the leptin receptor signaling can be used as a model of ESRD associated with DN. We demonstrated that p70S6-kinase was highly activated in mesangial cells in diabetic obese db/db mice. Furthermore, systemic administration of rapamycin, a specific and potent inhibitor of mTOR, markedly ameliorated pathological changes and renal dysfunctions. Moreover, rapamycin treatment shows a significant reduction in fat deposits and attenuates hyperinsulinemia with few side effects. These results indicate that mTOR activation plays a pivotal role in the development of ESRD and that rapamycin could be an effective therapeutic agent for DN.  相似文献   

20.
AimsHepatic endoplasmic reticulum (ER) stress plays a key role in the development of obesity-induced insulin resistance. This study evaluated the effects of peptides from black soybean (BSP) on ER stress and insulin signaling in vitro and in vivo.Main methodsUsing C2C12 myotubes or HepG2 cells, we evaluated the effects of BSP on the expression of proteins involved in insulin signaling and in the ER stress response in insulin-sensitive or insulin-resistant cells. BSP was given orally to db/db mice for 5 weeks to investigate its antidiabetic effects in vivo and the underlying mechanisms.Key findingsBSP increased GLUT4 translocation and glucose transport in myotubes and stimulated Akt-mediated glycogen synthase kinase-3β (GSK-3β) and Foxo1 phosphorylation in HepG2 cells. BSP significantly restored the suppression of insulin-mediated Akt phosphorylation in insulin-resistant cells. BSP significantly inhibited the activation of ER stress-responsive proteins by thapsigargin. BSP also significantly reduced blood glucose and improved glucose tolerance in db/db mice. The serum lipid profile (triglyceride and high-density lipoprotein concentrations) improved concomitantly with the BSP-induced downregulation of hepatic fatty acid synthase expression in db/db mice. Consistent with the results observed in HepG2 cells, BSP downregulated the elevated hepatic ER stress response in diabetic mice concomitantly with an increased expression of phospho-Foxo1.SignificanceA peptide mixture, BSP, showed beneficial effects through multiple mechanisms involving the suppression of hepatic ER stress and restoration of insulin resistance, suggesting that it has potential as an antidiabetic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号