首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method to simultaneously assess the changes in intracellular calcium concentration and cell volume in single cells was developed using the Ca2+-sensitive fluorescent probe Fura-2 and a three-dimensional image-surface reconstruction technique, respectively. Studies with this method showed that Fura-2 loading had no significant effect on the kinetics of A549 human epithelial cell swelling in a hypotonic solution, as well as the volume restoration kinetics. Significant changes in intracellular Ca2+ concentration were not observed in the examined volume modulation range. The results suggest that Ca2+-mediated signaling pathways are not involved in the autoregulation of the cell volume in A549 cells exposed to hypotonic conditions.  相似文献   

2.
C. Brownlee  J. W. Wood  D. Briton 《Protoplasma》1987,140(2-3):118-122
Summary Cytoplasmic free calcium concentration has been measured in centric diatoms using Fura-2. Cells hydrolysed Fura-2 acetoxymethyl ester and accumulated free Fura-2 in the cytoplasm. The [Ca2+] distribution in two species (Coccinodiscus concinnus andGuinardia flaccida) has been mapped using digital image analysis.Abbreviations [Ca cyt 2+ ] Cytoplasmic free calcium concentration - Quin-2/AM Quin-2 acetoxymethyl ester - Fura-2/AM Fura-2 acetoxymethyl ester DMSO dimethyl sulphoxide - CCTV closed circuit television  相似文献   

3.
Nanosecond-duration electric stimuli are distinguished by the ability to permeabilize intracellular membranes and recruit Ca2+ from intracellular stores. We quantified this effect in non-excitable cells (CHO) using ratiometric Ca2+ imaging with Fura-2. In a Ca2+-free medium, 10-, 60-, and 300-ns stimuli evoked Ca2+ transients by mobilization of Ca2+ from the endoplasmic reticulum. With 2 mM external Ca2+, the transients included both extra- and intracellular components. The recruitment of intracellular Ca2+ increased as the stimulus duration decreased. At the threshold of 200–300 nM, the transients were amplified by calcium-induced calcium release. We conclude that nanosecond stimuli mimic Ca2+ signaling while bypassing the usual receptor- and channels-mediated cascades. The recruitment of the intracellular Ca2+ can be controlled by the duration of the stimulus.  相似文献   

4.
Recent studies have demonstrated that the insecticide DDT is a tumor promoting agent. Similar to many other tumor promoting agents, DDT has been shown to inhibit gap junctional intercellular communication (GJIC) between cells in culture, and it has been suggested that DDT-induced loss of communication between adjacent cells may depend on changes in cytosolic free Ca2+ concentration ([Ca2+]i). In the present study, the role of[Ca2+]i in DDT-induced loss of GJIC was investigated in WB-F344 rat liver cells using the scrape-loading/dye transfer assay (SLDT) and the Ca2+ fourescent indicator, furà-2. Our results show that DDT at non-cytotoxic concentrations caused a reversible loss of GJIC. Inhibition of GJIC was not associated with detectable increases in [Ca2+]i, and was not prevented by loading cells with the intracellular Ca2+ chelator, BAPTA. In addition, the hydroquinone, tBuBHQ, which caused a 2+3 fold sustained increase in [Ca2+]i, did not inhibit GJIC. Conversely, when untreated cells were loaded with increasing BAPTA concentrations, GJIC were lost. These results indicate that increases in [Ca2+]i are not responsible for DDT-induced loss of communication and that, in general an increase in [Ca2+]i, within physiological levels is not sufficient to abolish GJIC. However, Ca2+-dependent processes that are active at normal resting [Ca2+ i appear to be required for the maintenance of GJIC.Abbreviations [Ca2+] cytosolic free Ca2+ concentration - GJIC gap junctional intercellular communication - SLDT scrape-loading/dye transfer assay - DDT 1,1,1-trichloro-2,2-di-(4-chlorophenyl)ethane - tBuBHQ 2,5-di(tert-butyl)-1,4-benzohydroquinone - LDH lactate dehydrogenase - ER endoplasmic reticulum - Fura-2 1-[2-(5carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxyl]-2-(2amino-5-methylphenoxy)-ethane-N,N,N,N-tetraacetic acid - BAPTA bis-(o-aminophenoxy)-ethane-N,N,N,N-tetraaceticacid - Fura-2/AM and BAPTA/AM are the cell permeant acetoxymethyl ester forms of fura-2 and BAPTA, respectively  相似文献   

5.
6.
Staphylococcal serine proteinase (SSP) can influence various functions of human polymorphonuclear leukocytes (PMNL) including chemotaxis and phagocytosis. Since the rise in intracellular free calcium concentration is an important step in signal transduction leading to phagocyte activation, we tested the ability of SSP to increase the intracellular free calcium concentration in human PMNL using the fluorescent calcium indicator Fura-2AM. PMNL isolated from healthy donors responded to SSP in the concentration range of 10 to 100 µg/ml. The highest Ca2+ rise (104 ± 47 nM) was observed for 10 µg/ml SSP. It was mainly dependent (81 ± 11%) on extracellular calcium influx, however, SSP mobilized 68 ± 7% of Ca2+ from intracellular calcium stores. Boiling of SSP or preincubation with phenylmethylsulphonylfluoride (an serine proteinase inhibitor) did not change its ability to increase intracellular free calcium concentration in PMNL. It suggests that active center of SSP is not responsible for Ca2+ mobilization. Finally, PMNL responded to each of three consecutive stimulations with SSP independently of the presence of high or low extracellular Ca2 concentration. This may be an additional mechanism responsible for activation of human PMNL and degradation of alveolar walls during the staphylococcal infection in the lower airways.  相似文献   

7.
Earlier studies have suggested a role for Ca2+ in regulatory volume decrease (RVD) in response to hypotonic stress through the activation of Ca2+-dependent ion channels (Kotera & Brown, 1993; Park et al., 1994). The involvement of Ca2+ in regulating cell volume in rat lacrimal acinar cells was therefore examined using a video-imaging technique to measure cell volume. The trivalent cation Gd3+ inhibited RVD, suggesting that Ca2+ entry is important and may be via stretch-activated cation channels. However, Fura-2 loaded cells did not show an increase in [Ca2+] i during exposure to hypotonic solutions. The absence of any changes in [Ca2+] i resulted from the buffering of cytosolic Ca2+ by Fura-2 during hypotonic shock and therefore inhibition of RVD. The intracellular Ca2+ chelator, BAPTA, also inhibited the RVD response to hypotonic shock. An increase in [Ca2+] i induced by either acetylcholine or ionomycin, was found to decrease cell volume under isotonic conditions in lacrimal acinar cells. Cell shrinkage was inhibited by tetraethylammonium ion, an inhibitor of Ca2+-activated K+ channels. On the basis of the presented data, we suggest an involvement of intracellular Ca2+ in controlling cell volume in lacrimal acinar cells. Received: 20 February 1998/Revised: 1 May 1998  相似文献   

8.
In this work we investigated the effect of concentrated metabolic products of lactobacilli (PP) on the dynamics of intracellular calcium concentration ([Ca2+]i) in rat brain neurons. [Ca2+]i was recorded using a fluorescent probe Fura-2 and a ratiometric Ca2+ imaging. It was found that PP increased [Ca2+]i, stimulating the intracellular signaling mechanisms. In these processes the activation of ryanodine receptors and protein kinase C are involved at least partially. Continuous application of PP stimulated a sustained release of Ca2+ from the endoplasmic reticulum and subsequent entry of Ca2+ into the cell. Given that PP is able to stimulate circulation and neurogenesis and is involved in calcium homeostasis in nerve cells in the brain, PP can be regarded as a product for the improvement of psychological parameters and cognitive functions of the brain.  相似文献   

9.
In the present work we have investigated the actions of the oxidizing sulfhydryl reagent thimerosal on different mechanisms which regulate intracellular free Ca2+ concentration ([Ca2+]i) in GH4C1 pituitary cells. In intact Fura-2 loaded cells, low concentrations of thimerosal potentiated the spike phase of the TRH-induced (thyrotropin-releasing hormone) rise in [Ca2+]i, whereas high thimerosal concentrations inhibited it. The effect of thimerosal on the plateau phase was always inhibitory.The effect of thimerosal on the IP3-induced calcium release (IICR) was studied in permeabilized cells using the Ca2+ indicator Fluo-3. A low concentration of thimerosal (10 μM) stimulated IICR: the Ca2+ release induced by 300 nM inositol-1,4,5-trisphosphate (IP3) was enhanced in cells treated with thimerosal for 1 or 6 min (67 ± 11 nM and 34 ± 5 nM, respectively) as compared to control cells (17 ± 2 nM). On the other hand, a high concentration of thimerosal (100 μ inhibited IICR: when IP3 (10 μM) was added after a 5 min preincubation with thimerosal, the IP3-induced rise in [Ca2+]i (46 ± 14 nM) was 57% smaller as compared with that seen in control cells (106 ± 10 nM).The effect of thimerosal on the voltage-operated Ca 2+ channels (VOCCs) was studied by depolarizing intact Fura-2 loaded cells by addition of 20 mM K+ to the cuvette. The depolarization-evoked increase in [Ca2+]i was inhibited in a dose-dependent manner by thimerosal. Direct evidence for an inhibitory effect of thimerosal on VOCCs was obtained by using the whole-cell configuration of the patch-clamp technique: thimerosal (100 μM) potently inhibited the Ba2+ currents through VOCCs.In addition, our results indicated that thimerosal inhibited the caffeine-induced increase in [Ca2+]i, and activated a capacitative Ca2+ entry pathway. The actions of thimerosal were apparently due to its oxidizing activity because the effects were mostly reversed by the thiol-reducing agent dithiothreitol (DTT).We conclude that, in GH4C1 pituitary cells, the mobilization of intracellular calcium and the different Ca2+ entry pathways are sensitive to redox modulation.  相似文献   

10.
The effect of hyposmotic and isosmotic cell swelling on the free intracellular calcium concentration ([Ca2+]i) in rat mammary acinar cells has been examined using the fura-2 dye technique. A hyposmotic shock (40% reduction) increased the [Ca2+]i in rat mammary acinar cells in a fashion which was transient; the [Ca2+]i returned to a value similar to that found under isomotic conditions within 180 sec. The increase in the [Ca2+]i was dependent upon the extent of the osmotic shock. The hyposmotically-activated increase in the [Ca2+]i could not be attributed to a reduction in extracellular Na+ or a change in the ionic strength of the incubation medium. Thapsigargin (1 M) enhanced the hyposmotically-activated increase in the [Ca2+]i. Isosmotic swelling of rat mammary acinar cells, using urea, had no significant effect on the [Ca2+]i. Similarly, a hyperosmotic shock did not affect the [Ca2+]i in rat mammary acinar cells. It appears that the effect of cell swelling on the [Ca2+]i in rat mammary acinar cells depends on how the cells are swollen (hyposmotic vs. isosmotic). This finding may have important physiological implications given that it is predicted that mammary cell volume will change in vivo under isomotic conditions.  相似文献   

11.
Calcium influx via the NMDA receptor has been proposed as a mechanism of hypoxia-induced neuronal injury. The present study tests the hypothesis that the increase of [Ca2+]i observed under hypoxic conditions is the result of an NMDA-mediated Ca2+ influx. Changes of [Ca2+]i, measured fluorometrically with Fura-2, were followed after activation of the NMDA receptor with NMDA and glutamate, in the presence of glycine, in cortical synaptosomes prepared from six normoxic and six hypoxic guinea pig fetuses. [Ca2+]i was significantly higher in hypoxic vs normoxic synaptosomes, at baseline and in the presence of glycine as well as following activation of the NMDA receptor. Increase in [Ca2+]i was not observed in a Ca2+ free medium and was significantly decreased by MK-801 and thapsigargin. These results demonstrate that hypoxia-induced modifications of the NMDA receptor ion-channel results in increased [Ca2+]i in hypoxic vs normoxic synaptosomes. This increased accumulation may be due to an initial influx of Ca2+ via the altered NMDA receptor with subsequent release of Ca2+ from intracellular stores. Increase in intracellular calcium may initiate several pathways of free radical generation including cyclooxygenase, lipoxygenase, xanthine oxidase and nitric oxide synthase, and lead to membrane lipid peroxidation resulting in neuronal cell damage.  相似文献   

12.
The influence of the neuroleptic trifluoperazine on the intracellular concentration of Ca2+ in macrophages of rats was studied using a Fura-2AM fluorescent Ca2+ probe. It was found that trifluoperazine causes a dose-dependent increase in the intracellular Ca2+ concentration associated with Ca2+ mobilization from intracellular Ca2+ stores and subsequent entry of Ca2+ into peritoneal macrophages of rats. It was also shown that inhibitors of phospholipase A2 (4-bromophenacyl bromide, prednisolone, and dexamethasone), cyclooxygenases (aspirin and indomethacin), and lipoxygenases (caffeic acid, zileuton, and baicalein) suppress Ca2+ responses induced by trifluoperazine in macrophages. The data obtained indicate the participation of enzymes and/or products of the cascade of arachidonic acid metabolism in the influence of trifluoperazine on the intracellular concentration of Ca2+ in peritoneal macrophages.  相似文献   

13.
Oscillations of the intracellular concentration of Ca2+ in cultured HEK-293 cells, which heterologously expressed the calcium-sensing receptor, were recorded with the fluorophore Fura-2 using fluorescence microscopy. HEK-293 cells are extremely sensitive to small perturbations in extracellular calcium concentrations. Resting cells were attached to cover slips and perifused with saline solution containing physiologically relevant extracellular Ca2+ concentrations in the range 0.5–5 mM. Acquired digitized images of the cells showed oscillatory fluctuations in the intracellular Ca2+ concentration over the time course, and were processed as a function of the change in Fura-2 excitation ratio and frequency at 12–37°C. Newly developed data processing techniques with wavelet analysis were used to estimate the frequency at which the rectified sinusoidal oscillations occurred; we estimated ~4 min−1 under normal conditions. Temperature variations revealed an Arrhenius relationship in oscillation frequency. A critical Ca2+ concentration of ~2 mM was estimated, below which oscillations did not occur. These data were used to develop a kinetic model of the system that was simulated using Mathematica; kinetic parameter values were adjusted to match the experimentally observed oscillations of intracellular Ca2+ concentration as a function of extracellular Ca2+ concentration, and temperature; and from these, limit cycles were obtained and control coefficients were estimated for all parameters.  相似文献   

14.
NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazole-2-one) is widely used as a large-conductance Ca2+-activated K+ (BKCa) channel opener. It was previously reported that activation of BKCa channels by NS1619 could protect the cardiac muscle against ischaemia and reperfusion injury. This study reports the effects of NS1619 on intracellular Ca2+ homeostasis in H9C2 and C2C12 cells as well as its molecular mechanism of action. The effects of NS1619 on Ca2+ homeostasis in C2C12 and H9C2 cells were assessed using the Fura-2 fluorescence method. Ca2+ uptake by sarcoplasmic reticulum (SR) vesicles isolated from rat skeletal muscles and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity were measured. The effect of NS1619 on the isometric force of papillary muscle contraction in the guinea pig heart was also examined. H9C2 and C2C12 cells treated with NS1619 released Ca2+ from internal stores in a concentration-dependent manner. Ca2+ accumulation by the SR vesicles was inhibited by NS1619 treatment. NS1619 also decreased the activity of SERCA derived from rat skeletal muscle. The calcium release from cell internal stores and inhibition of SERCA by NS1619 are pH dependent. Finally, NS1619 had a profound effect on the isometric force of papillary muscle contraction in the guinea pig heart. These results indicate that NS1619 is a potent modulator of the intracellular Ca2+ concentration in H9C2 and C1C12 cells due to its interaction with SRs. The primary target of NS1619 is SERCA, which is located in SR vesicles. The effect of NS1619-mediated SERCA inhibition on cytoprotective processes should be considered.  相似文献   

15.
Abstract: Serotonin 5-HT2C receptor-mediated intracellular Ca2+ mobilization was investigated in Chinese hamster ovary (CHO) cells transfected with 5-HT2C receptors. Fura-2 acetoxymethyl ester was used to investigate the regulation of 5-HT2C receptor function. CHO cells, transfected with a cDNA clone for the 5-HT2C receptor, expressed 287 fmol/mg of the receptor protein as determined by mianserin-sensitive [3H]mesulergine binding (KD = 0.49 nM). The addition of 5-HT mobilized intracellular Ca2+ in a dose-dependent fashion, ranging from a basal level of 99 ± 1.8 up to 379 ± 18 nM, with an EC50 value for 5-HT of 0.029 µM. Exposure to 5-HT, 1-(3-chlorophenyl)piperazine dihydrochloride (a 5-HT2C agonist), and 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (a 5-HT2C and 5-HT2A agonist) resulted in increased intracellular Ca2+ levels. Mianserin, mesulergine, ritanserin, and ketanserin each blocked 5-HT-mediated intracellular Ca2+ mobilization more effectively than spiperone. The receptor was rapidly desensitized by preexposure to 5-HT in a time- and concentration-dependent manner. Mezerein and phorbol 12-myristate 13-acetate, protein kinase C activators, weakly inhibited the intracellular Ca2+ mobilization induced by 10 µM 5-HT. Furthermore, the protein kinase C inhibitor H-7 partially prevented the protein kinase C activator-induced inhibition of the 5-HT-mediated increase in intracellular Ca2+ concentration. The desensitization induced by pretreatment with 5-HT was blocked by W-7, added in conjunction with 5-HT, and partially inhibited by W-5, a nonselective inhibitor of protein kinases and weak analogue of W-7. Therefore, the 5-HT2C receptor may be connected with protein kinase C and calcium/calmodulin turnover. These results suggest that 5-HT2C receptor activation mobilizes Ca2+ in CHO cells and that the acute desensitization of the receptor may be due to calmodulin kinase-mediated feedback.  相似文献   

16.
The intracellular free calcium concentration [Ca2+]i of sperm from 23 ejaculates was measured before and after cryopreservation using the fluorescent probe Fura-2. Spermatozoa were treated with 3.18 μM progesterone so that the regulation of [Ca2+]i in a dynamic situation could be studied. [Ca2+]i (nM) was 290 ± 13 in fresh spermatozoa vs. 550 ± 26 in cryopreserved samples (mean ± S.E.M. P < 0.0001 paired t-test). Progesterone at a dose of 3.18 μM stimulated a large and rapid increase in [Ca2+]i to a peak value > 1 μM after 10–20 seconds. [Ca2+]i then declined to a slightly raised basal level over the next 30–40 seconds. This phenomenon occurred in all the fresh samples, but about half the frozen thawed samples failed to respond. The peak [Ca2+] attained by frozen samples which did respond after the addition of progesterone was similar to that observed with fresh sperm. The calcium channel blocker verapamil (200 μM) completely inhibited the transient rise in [Ca2+]i produced by progesterone, but 100 μM verapamil had only a partial effect. We conclude that (1) cryopreservation causes a substantial elevation of the [Ca2+]i in human spermatozoa and (2) damage to the plasma membrane during cryopreservation may result in the loss of the progesterone receptor. Both factors may contribute to the loss of fertility after cryopreservation. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Using Fura-2AM microfluorimetry, the effect of oxidized glutathione (GSSG) and its pharmacological analogue glutoxim on the intracellular Ca2+ concentration in rat peritoneal macrophages was investigated. It was shown that GSSG or glutoxim increase the intracellular Ca2+ concentration by inducing Ca2+ mobilization from thapsigargin-sensitive Ca2+ stores and subsequent Ca2+ entry from external medium. Dithiothreitol, which reduces S-S-bonds in proteins, completely prevents or reverses the increase of intracellular Ca2+ concentration induced by GSSG or glutoxim. This suggests that the increase of intracellular Ca2+ concentration induced by GSSG or glutoxim can be mediated by their interactions with functionally important SH-groups of proteins involved in Ca2+-signaling.Two structurally different tyrosine kinase inhibitors genistein and methyl-2,5-dihydroxycinnamate prevent or completely reverse the increase in the intracellular Ca2+ concentration induced by GSSG or glutoxim. On the contrary, tyrosine phosphatase inhibitor Na orthovanadate enhances the increase of intracellular Ca2+ concentration evoked by oxidizing agents. The data suggest that tyrosine kinases and tyrosine phosphatases are involved in the regulatory effect of GSSG and glutoxim on the intracellular Ca2+ concentration in macrophages.  相似文献   

18.
The properties of calcium channels were studied at the period of neurogenesis in the early embryonic chick retina. The whole neural retina was isolated from embryonic day 3 (E3) chick and loaded with a Ca2+-sensitive fluorescent dye (Fura-2). The retinal cells were depolarized by puff application of high-K+ solutions. Increases in intracellular Ca2+ concentrations were evoked by the depolarization through calcium channels. The type of calcium channel was identified as l-type by the sensitivity to dihydropyridines. The Ca2+ response was completely blocked by 10 μM nifedipine, whereas it was remarkably enhanced by 5 μM Bay K 8644. Then we sought a factor to activate the calcium channel and found that GABA could activate it by membrane depolarization at the E3 chick retina. Puff application of 100 μM GABA raised intracellular Ca2+ concentrations, and this Ca2+ response to GABA was also sensitive to the two dihydropyridines. Intracellular potential recordings verified clear depolarization by bath-applied 100 μM GABA. The Ca2+ response to GABA was mediated by GABAA receptors, since the GABA response was blocked by 10 μgM bicuculline or 50 μM picrotoxin, and mimicked by muscimol but not by baclofen. Neither glutamate, kainate, nor glycine evoked any Ca2+ response. We conclude that l-type calcium channels and GABAA receptors are already are already expressed before differentiation of retinal cells and synapse formation in the chick retina. A possibility is proposed that GABA might act as a trophic factor by activating l-type calcium channels via GABAA receptors during the early period of retinal neurogenesis. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
Prolactin (PRL) release and intracellular free calcium concentration [Ca2+]i were measured in two populations of normal rat lactotrophs (light and heavy fractions) in culture. Spontaneous PRL release of heavy fraction cells was more sensitive to dihydropyridines (DHPs; Bay K 8644 and nifedipine) when compared to the light fraction lactotrophs. The stimulatory effect of thyrotropin-releasing hormone (TRH) on PRL release from heavy fraction cells was inhibited by Cd2+ and mimicked by Bay K 8644. Indo-1 experiments revealed that TRH-increased [Ca2+]i was reversibly inhibited by Cd2+. In a Ca2+-free EGTA-containing medium, TRH did not modify [Ca2+]i.Abbreviations [Ca2+]i intracellular free calcium concentration - DA dopamine - DHP dihydropyridine(s) - DMEM Dulbecco's Modified Eagle's Medium - Ins(1,4,5)P3 inositol 1,4,5-trisphosphate - PRL prolactin - RIA radioimmunoassay - TRH thyrotropin-releasing hormone - VGCC voltage-gated calcium channel  相似文献   

20.
Digitonin-permeabilized isolated neurohypophysial nerve terminals are known to release their secretory vesicle content under calcium challenge. On this preparation, we monitored intra-organelle Ca2+ concentration using digital fluorescence microscopy of Fura-2. The superfusion of artificial intracellular solution containing 10 to 50 μM Ca2+ induced an intra-organelle [Ca2+] increase. Two major organelles are candidates for this increase: secretory vesicles and mitochondria. In an attempt to detect calcium changes in the vesicles, ruthenium red was used to impair mitochondrial calcium uptake. Part of the ruthenium red-insensitive intra-organelle [Ca2+] increase was abolished by raising sodium in the solution. Removing sodium boosted the intra-organelle [Ca2+] increase. These results taken together suggest the participation of Na/Ca exchange, known to exist in the membrane of these secretory vesicles. In addition to Na/Ca exchange, there would be at least another mechanism of vesicular calcium intake, as suggested by the partial inhibition of intra-organelle [Ca2+] increase obtained under acidic compartments: neutralization with NH4Cl. This mechanism remains to be defined. The main conclusion presented here, that an intravesicular [Ca2+] increase takes place at the rate of secretion, was predicted by the hypothesis that intravesicular Ca2+ changes would be involved in stimulus-secretion coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号