共查询到20条相似文献,搜索用时 0 毫秒
1.
Five star polymers based on the positively ionizable hydrophilic 2-(dimethylamino)ethyl methacrylate (DMAEMA) and the hydrophobic but hydrolyzable tetrahydropyranyl methacrylate (THPMA) were prepared by group-transfer polymerization (GTP) using ethylene glycol dimethacrylate (EGDMA) as the coupling agent. In particular, four isomeric star copolymers (one heteroarm, two star block, and the statistical star), all with a 3:1 DMAEMA:THPMA molar ratio, plus one star homopolymer of DMAEMA, with degrees of polymerization of the arms equal to 15, were synthesized. After star polymer preparation and preliminary characterization, the THPMA units were hydrolyzed to negatively ionizable hydrophilic methacrylic acid (MAA) untis, thus yielding star polyampholytes. All the star polyampholytes as well as the commercially available transfection reagent SuperFect were evaluated for their ability to transfect human cervical HeLa cancer cells with the modified plasmid pRLSV40 bearing the enhanced green fluorescent protein (EGFP) as the reporter gene. The transfection efficiency was affected by star architecture. The DMAEMA15-star-MAA5 polyampholyte presented the highest transfection efficiency of all the star polymers tested but lower than that of SuperFect at its optimum conditions. All four star copolymers showed decreased toxicity compared to the DMAEMA star homopolymer for the same amounts of star polymer tested and also compared to the SuperFect at its optimum conditions. 相似文献
2.
Georgiou TK Vamvakaki M Patrickios CS Yamasaki EN Phylactou LA 《Biomacromolecules》2004,5(6):2221-2229
Seven star polymers with degrees of polymerization (DPs) of the arms from 10 to 100 and dimensions in the nanometer range were prepared using sequential group transfer polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA, hydrophilic positively ionizable monomer) and ethylene glycol dimethacrylate (hydrophobic neutral cross-linker). The polymers were characterized in tetrahydrofuran by gel permeation chromatography and static light scattering to determine the molecular weights and the weight-average number of arms for each sample. The number of arms of the star polymers varied from 20 to 72. Aqueous solutions of the star polymers were studied by turbidimetry, hydrogen ion titration, and dynamic light scattering to determine their cloud points, pKs, and hydrodynamic diameters. The cloud points of the larger star polymers, with arm DP 30-100, were found to be 29-34 degrees C, almost independent of the DP of the arms. Similarly, the pKs of all star polymers were calculated to range between 6.7 and 7.0, again independent of the arm DP. In contrast, the hydrodynamic diameters of the star polymers strongly depended on the DP of the arms. In particular, by increasing the DP of the arms from 20 to 100, the hydrodynamic diameters in water increased from 7 to 31 nm. All star polymers were evaluated for their ability to transfect human cervical HeLa cancer cells with the modified plasmid pRLSV40 with the enhanced green fluorescent protein as the reporter gene. Our results showed that as the DP of the arms of the DMAEMA star homopolymers increased from 10 to 100, the overall transfection efficiency decreased, with the star polymer with DP of the arms of 10 emerging as the best transfection reagent. Systematic variation of the amounts of star polymer and plasmid DNA used in the transfections led to an optimization of the performance of this star polymer, yielding overall transfection efficiencies of 15%, comparable to the optimum overall transfection efficiency of the commercially available transfection reagent SuperFect of 13%. 相似文献
3.
Amphiphilic star polymers offer substantial promise for a range of drug delivery applications owing to their ability to encapsulate guest molecules. One appealing but underexplored application is transdermal drug delivery using star block copolymer reverse micelles as an alternative to the more common oral and intravenous routes. We prepared 6- and 12-arm amphiphilic star copolymers via atom transfer radical polymerization (ATRP) of sequential blocks of polar oligo (ethylene glycol)methacrylate and nonpolar lauryl methacrylate from brominated dendritic macroinitiators based on 2,2-bis(hydroxymethyl) propionic acid. These star block copolymers demonstrate the ability to encapsulate polar dyes such as rhodamine B and FITC-BSA in nonpolar media via UV/vis spectroscopic studies and exhibit substantially improved encapsulation efficiencies, relative to self-assembled "1-arm" linear block copolymer analogs. Furthermore, their transdermal carrier capabilities were demonstrated in multiple dye diffusion studies using porcine skin, verifying penetration of the carriers into the stratum corneum. 相似文献
4.
Alhoranta AM Lehtinen JK Urtti AO Butcher SJ Aseyev VO Tenhu HJ 《Biomacromolecules》2011,12(9):3213-3222
A series of amphiphilic star and linear block copolymers were synthesized using ATRP. The core consisted of either polystyrene (PS) or poly(n-butyl acrylate) (PBuA), having different glass-transition (T(g)) values. These polymers were used as macroinitiators in the polymerization of the cationic 2-(dimethylamino)ethyl methacrylate (DMAEMA). The polymers were used to study the effects of polymer architecture and flexibility on the self-assembling properties, DNA complexation, and transfection. All polymers formed core-shell micelles in aqueous solutions and condensed plasmid DNA. Linear PDMAEMA-PBuA-PDMAEMA has transfection efficiency comparable to PEI25K in ARPE19 cell line. Glassy state of the micellar core and star-shaped architecture decreased the DNA transfection compared with the rubbery and linear polymer structures. The polymers showed low cellular toxicity at low nitrogen/phosphate (n/p) ratios. 相似文献
5.
Synthesis, characterization, and DNA adsorption studies of ampholytic model conetworks based on cross-linked star copolymers 总被引:1,自引:0,他引:1
Five model conetworks based on cross-linked star ampholytic copolymers were synthesized by group transfer polymerization. The ampholytic copolymers were based on two hydrophilic monomers: the positively ionizable 2-(dimethylamino)ethyl methacrylate (DMAEMA) and the negatively ionizable methacrylic acid (MAA). Ethylene glycol dimethacrylate was used as the cross-linker. These five ampholytic model conetworks were isomers based on equimolar DMAEMA-MAA copolymer stars of different architectures: heteroarm (two), star block (two), and statistical. The two networks based on the homopolymer stars were also synthesized. The MAA units were introduced via the polymerization of tetrahydropyranyl methacrylate and the acid hydrolysis of the latter after network formation. All the precursors to the (co)networks were characterized in terms of their molecular weights using gel permeation chromatography (GPC). The mass of the extractables from the (co)networks was measured and characterized in terms of molecular weight and composition using GPC and proton nuclear magnetic resonance (1H NMR) spectroscopy, respectively. The degrees of swelling (DS) of all the ampholytic conetworks were measured as a function of pH and were found to present a minimum at a pH value which was taken as the isoelectric point, pI. The DS and the pI values did not present a dependence on conetwork architecture. Finally, DNA adsorption studies onto the ampholyte conetworks indicated that DNA binding was governed by electrostatics. 相似文献
6.
Fukukawa K Rossin R Hagooly A Pressly ED Hunt JN Messmore BW Wooley KL Welch MJ Hawker CJ 《Biomacromolecules》2008,9(4):1329-1339
The synthesis of core-shell star copolymers via living free radical polymerization provides a convenient route to three-dimensional nanostructures having a poly(ethylene glycol) outer shell, a hydrophilic inner shell bearing reactive functional groups, and a central hydrophobic core. By starting with well-defined linear diblock copolymers, the thickness of each layer, overall size/molecular weight, and the number of internal reactive functional groups can be controlled accurately, permitting detailed structure/performance information to be obtained. Functionalization of these polymeric nanoparticles with a DOTA-ligand capable of chelating radioactive (64)Cu nuclei enabled the biodistribution and in vivo positron emission tomography (PET) imaging of these materials to be studied and correlated directly to the initial structure. Results indicate that nanoparticles with increasing PEG shell thickness show increased blood circulation and low accumulation in excretory organs, suggesting application as in vivo carriers for imaging, targeting, and therapeutic groups. 相似文献
7.
Synthesis of novel double-hydrophilic diblock copolypeptides (BCPs), poly(l-glutamic acid)-block-poly(N-isopropylacrylamide) (PLGnPNm), and their thermoresponsive properties in aqueous solutions at different pH values are described. The diblock copolypeptides were synthesized by a combination of ring-opening polymerization (ROP) of gamma-benzyl-l-glutamate N-carboxyanhydrides (BLG-NCA) and reversible addition-fragmentation chain transfer (RAFT) polymerization of N-isopropylacrylamide (NiPAM). A new class of RAFT agents (CTA-2 and CTA-3) with amino-functional groups was designed for this purpose. Two different strategies, i.e., macrochain transfer agent (CTA) and macroinitiator routes, were utilized and compared on the control of the chemical structures of the resulting BCPs. Their block ratios and lengths are broadly varied (n = 21-600 and m =180-442). Their thermally switchable aggregation behaviors in aqueous solutions were investigated at the microscopic level by 1H NMR spectroscopy and at the macroscopic level by turbidity measurements using UV/vis spectroscopy. The latter was also utilized for their lower critical aggregation temperature (LCAT) determination. The effects of block lengths and ratios as well as solution pH values on the collapse of NiPAM chain and aggregation process of BCPs were examined. This aggregation process was also followed by dynamic light scattering (DLS) measurements, and the thermally induced aggregate structures were investigated by transmission electron microscopy (TEM). 相似文献
8.
Four cationic hydrophilic star homopolymers based on the novel hydrophilic, positively ionizable cross-linker bis(methacryloyloxyethyl)methylamine (BMEMA) were synthesized using sequential group transfer polymerization (GTP) and were, subsequently, evaluated for their ability to deliver siRNA to mouse myoblast cells. The nominal degrees of polymerization (DP) of the arms were varied from 10 to 50. For the polymerizations, 2-(dimethylamino)ethyl methacrylate (DMAEMA) was employed as the hydrophilic, positively ionizable monomer. For comparison, four linear DMAEMA homopolymers were also synthesized, whose nominal DPs were the same as those of the arms of the stars. The numbers of arms of the star homopolymers were determined using gel permeation chromatography with static light scattering detection, and found to range from 7 to 19, whereas the hydrodynamic diameters of the star homopolymers in aqueous solution were measured using dynamic light scattering and found to increase with the arm DP from 13 to 26 nm. The presence of the hydrophilic BMEMA cross-linker enabled the solubility of all star homopolymers in pure water. The cloud points of the star homopolymers in aqueous solution increased with the arm DP from 23 to 29 °C, while the cloud points of the linear homopolymers were found to decrease with their DP, from 42 to 32 °C. The effective pK values of the DMAEMA units were in the range of 6.9 to 7.3 for the star homopolymers, whereas they ranged between 7.3 and 7.4 for the linear homopolymers. Subsequently, all star and linear homopolymers were evaluated for their ability to deliver siRNA to the C2C12 mouse myoblast cell line, expressing the reporter enhanced green fluorescent protein (EGFP). All star homopolymers and the largest linear homopolymer presented significant EGFP suppression, whereas the smaller linear homopolymers were much less efficient. For all star homopolymers and the largest linear homopolymer both the EGFP suppression and the cell toxicity increased with polymer loading. The siRNA-specific EGFP suppression, calculated by subtracting the effect of cell toxicity on EGFP suppression, slightly increased with star polymer loading for the two smaller stars, whereas it presented a shallow maximum and a decrease for the other two stars. Moreover, the siRNA-specific EGFP suppression also increased slightly with the DP of the arms of the DMAEMA star homopolymers. Overall, the EGFP suppression efficiencies with the present star homopolymers were at levels comparable to that of the commercially available transfection reagent Lipofectamine. 相似文献
9.
DNA represents a promising therapeutic and prophylactic macromolecule in treating genetic diseases, infectious diseases and cancers. The therapeutic potential of DNA is directly related to how DNA transports within the targeted tissue. In this study, fluorescence photobleaching recovery was used to examine the diffusion of plasmid DNAs with various size (2.7-8.3 kb), topology, and in the presence of transfection reagents in mucus. We observed that DNAs diffused slower when size of DNAs increased; supercoiled DNAs diffused faster than linear ones; mucus did not reduce the diffusion of linear DNAs but retarded the diffusion of supercoiled DNAs. Diffusion data were fitted to models of a polymer chain diffusing in gel systems. Diffusion of linear DNAs in mucus were better described by the Zimm model with a scaling factor of -0.8, and supercoiled DNAs showed a reptational behavior with a scaling factor of -1.3. Based on the Zimm model, the pore size of bovine mucus was estimated and agreed well with previous experimental data. In the presence of transfection reagents, e.g., liposomes, the diffusion of DNAs increased by a factor of 2 in mucus. By using bovine mucus as a model system, this work suggests that DNA size, topology, and the presence of transfection reagents may affect the diffusion of DNA in tissues, and thus the therapeutic effects of DNA. 相似文献
10.
Two types of 32 arm star polymers incorporating amphiphilic block copolymer arms have been synthesized and characterized. The first type, stPCL-PEG 32, is composed of a polyamidoamine (PAMAM) dendrimer as the core with radiating arms having poly(epsilon-caprolactone) (PCL) as an inner lipophilic block in the arm and poly(ethylene glycol) (PEG) as an outer hydrophilic block. The second type, stPLA-PEG 32, is similar but with poly(L-lactide) (PLA) as the inner lipophilic block. Characterization with SEC, (1)H NMR, FTIR, and DSC confirmed the structure of the polymers. Micelle formation by both star copolymers was studied by fluorescence spectroscopy. The stPCL-PEG 32 polymer exhibited unimolecular micelle behavior. It was capable of solubilizing hydrophobic molecules, such as pyrene, in aqueous solution, while not displaying a critical micelle concentration. In contrast, the association behavior of stPLA-PEG 32 in aqueous solution was characterized by an apparent critical micelle concentration of ca. 0.01 mg/mL. The hydrophobic anticancer drug etoposide can be encapsulated in the micelles formed from both polymers. Overall, the stPCL-PEG 32 polymer exhibited a higher etoposide loading capacity (up to 7.8 w/w % versus 4.3 w/w % for stPLA-PEG 32) as well as facile release kinetics and is more suitable as a potential drug delivery carrier. 相似文献
11.
Novel amphiphilic six-arm star diblock copolymers based on biocompatible and biodegradable poly(delta-valerolactone) (PVL) and methoxy poly(ethylene glycol) (MePEG) were synthesized by a two-step process. First, the hydrophobic star-shaped PVL with hydroxyl terminated functional groups was synthesized using a multifunctional alcohol, dipentaerythritol (DPE), as the initiator and fumaric acid as the catalyst. The amphiphilic six-arm star copolymer of poly(delta-valerolactone)-b-methoxy poly(ethylene glycol), (PVL-b-MePEG)(6), was then synthesized by coupling the hydroxyl terminated six-arm PVL homopolymer with alpha-methoxy-omega-chloroformate-poly(ethylene glycol) (MePEG-COCl). (1)H NMR and GPC analyses confirmed the successful synthesis of star-shaped copolymers with predicted compositions and narrow molecular weight distributions. DSC analysis revealed that the glass transition temperatures of the star PVL homopolymers with M(n) between 5000 and 49 000 are not dependent on their molecular weights, whereas the melting temperatures of both the PVL homopolymers and the amphiphilic (PVL-b-MePEG)(6) copolymers increase with an increase in the PVL molecular weight. Micelles were prepared from the (PVL-b-MePEG)(6) copolymers via the dialysis method and found to have effective mean diameters ranging from 10 to 45 nm, depending on the copolymer composition. In addition, the (PVL-b-MePEG)(6) copolymers having lower PVL content were found to form micelles with a narrow monomodal size distribution, whereas the copolymers having higher PVL content tended to form aggregates with a bimodal size distribution. The noncytotoxicity of the copolymers was also confirmed in CHO-K1 fibroblast cells using a cell viability assay, indicating that the (PVL-b-MePEG)(6) copolymers are suitable for biomedical applications such as drug delivery. 相似文献
12.
Loizou E Triftaridou AI Georgiou TK Vamvakaki M Patrickios CS 《Biomacromolecules》2003,4(5):1150-1160
Group transfer polymerization (GTP) was used for the preparation of eight networks based on two hydrophilic monomers, 2-(dimethylamino)ethyl methacrylate (DMAEMA) and poly(ethylene glycol) methacrylate (PEGMA). Ethylene glycol dimethacrylate (EGDMA) served as the cross-linker, whereas 1,4-bis(methoxytrimethylsiloxymethylene)cyclohexane (MTSMC) was used as a bifunctional initiator. Seven of the networks had linear segments of accurate molecular weight between the cross-links, i.e., they were model networks, whereas the eighth was an equimolar randomly cross-linked network. Five of the seven model networks were based on ABA triblock copolymers with PEGMA midblocks and DMAEMA endblocks, in which the DMAEMA/PEGMA ratio was varied. The remaining two model networks were equimolar isomers, the one based on BAB triblocks (with a DMAEMA midblock) and the other based on the statistical copolymer. The degrees of swelling of all of the networks were measured as a function of pH and were found to increase below pH 7. The degrees of swelling at low pH values increased with the percentage of the DMAEMA monomer, which is ionized under these conditions. These swelling results were confirmed qualitatively by theoretical calculations. Finally, the pH-dependence of the adsorption of the proteins pepsin, bovine serum albumin, and lysozyme onto one of the model networks was studied. 相似文献
13.
Novel chitosan-based graft copolymers (CECTS-g-PDMA) were synthesized through homogeneous graft copolymerization of (N,N-dimethylamino)ethyl methacrylate (DMA) onto N-carboxyethylchitosan (CECTS) in aqueous solution by using ammonium persulfate (APS) as the initiator. The effect of polymerization variables, including initiator concentration, monomer concentration, reaction time and temperature, on grafting percentage was studied. XRD, FTIR, DSC and TGA were used to characterize the graft copolymers. Surface-tension measurements, turbidity measurements and temperature-variable (1)H NMR analysis were combined to investigate the thermal sensitivity of CECTS-g-PDMAs in aqueous solution. 相似文献
14.
Glycopolymer-polypeptide triblock copolymers of the structure, poly(l-alanine)-b-poly(2-acryloyloxyethyl-lactoside)-b-poly(l-alanine) (AGA), have been synthesized by sequential atom transfer radical polymerization (ATRP) and ring-opening polymerization (ROP). Controlled free radical polymerization of 2-O-acryloyl-oxyethoxyl-(2,3,4,6-tetra-O-acetyl-beta-d-galactopyranosyl)-(1-4)-2,3,6-tri-O-acetyl-beta-d-glucopyranoside (AEL) by ATRP with a dibromoxylene (DBX)/CuBr/bipy complex system was used to generate a central glycopolymer block. Telechelic glycopolymers with diamino end groups were obtained by end group transformation and subsequently used as macroinitiators for ROP of l-alanine N-carboxyanhydride monomers (Ala-NCA). Gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy analysis demonstrated that copolymer molecular weight and composition were controlled by both the molar ratios of the Ala-NCA monomer to macroinitiator and monomer conversion and exhibited a narrow distribution (Mw/Mn = 1.06-1.26). FT-IR spectroscopy of triblock copolymers revealed that the ratio of alpha-helix/beta-sheet increased with poly(l-alanine) block length. Of note, transmission electron microscopy (TEM) demonstrated that selected amphiphilic glycopolymer-polypeptide triblock copolymers self-assemble in aqueous solution to form nearly spherical aggregates of several hundreds nanometer in diameter. Significantly, the sequential application of ATRP and ROP techniques provides an effective method for producing triblock copolymers with a central glycopolymer block and flanking polypeptide blocks of defined architecture, controlled molecular weight, and low polydispersity. 相似文献
15.
Synthesis and characterization of two fluorescent sulfhydryl reagents 总被引:20,自引:0,他引:20
16.
Synthesis and in vitro evaluation of novel star-shaped block copolymers (blocked star vectors) for efficient gene delivery 总被引:1,自引:0,他引:1
Nakayama Y Kakei C Ishikawa A Zhou YM Nemoto Y Uchida K 《Bioconjugate chemistry》2007,18(6):2037-2044
Novel 4-branched diblock copolymers consisting of cationic chains as an inner domain and nonionic chains as an outer domain were prepared by iniferter-based living radial polymerization and evaluated as a polymeric transfectant. The cationic polymerization of 3-(N,N-dimethylamino)propyl acrylamide (DMAPAAm) using 1,2,4,5-tetrakis( N,N-diethyldithiocarbamylmethyl)benzene as a 4-functional iniferter followed by the nonionic block polymerization of N,N-dimethylacrylamide (DMAAm) afforded 4-branched diblock copolymers with controlled compositions. By changing the solution or irradiation conditions, 4-branched PDMAPAAms with molecular weights of 10,000, 20,000, and 50,000 were synthesized. In addition, by graft polymerization, PDMAPAAm-PDMAAm blocked copolymers with copolymer composition (unit ratio of DMAAm/DMAPAAm) ranging from 0.18 to 1.0 for each cationic polymer were synthesized. All polymers were shown to interact with and condense plasmid DNA to yield polymer/DNA complexes (polyplexes). A transfection study on COS-1 cells showed that the polyplexes from block copolymers with cationic chain length of approximately 50,000 and a nonionic chain length of 30,000, which were approximately 200 nm in diameter and very stable in aqueous media, had the most efficient luciferase activity with minimal cellular cytotoxicity under a charge ratio of 20 (vector/pDNA). The PDMAPAAm-PDMAAm-blocked, star-shaped polymers are an attractive novel class of nonviral gene delivery systems. 相似文献
17.
Zhang XX Prata CA Berlin JA McIntosh TJ Barthelemy P Grinstaff MW 《Bioconjugate chemistry》2011,22(4):690-699
A series of charge-reversal lipids were synthesized that possess varying chain lengths and end functionalities. These lipids were designed to bind and then release DNA based on a change in electrostatic interaction with DNA. Specifically, a cleavable ester linkage is located at the ends of the hydrocarbon chains. The DNA release from the amphiphile was tuned by altering the length and position of the ester linkage in the hydrophobic chains of the lipids through the preparation of five new amphiphiles. The amphiphiles and corresponding lipoplexes were characterized by DSC, TEM, and X-ray, as well as evaluated for DNA binding and DNA transfection. For one specific charge-reversal lipid, stable lipoplexes of approximately 550 nm were formed, and with this amphiphile, effective in vitro DNA transfection activities was observed. 相似文献
18.
In the present study, thiol-functionalization of tamarind seed polysaccharide was carried out by esterification with thioglycolic acid. Thiol-functionalization was confirmed by SH stretch in Fourier-transformed infra-red spectra at 2586cm(-1). It was found to possess 104.5mM of thiol groups per gram. The results of differential scanning calorimetry and X-ray diffraction study indicate increase in crystallinity. Polymer compacts of thiolated tamarind seed polysaccharide required 6.85-fold greater force to detach from the mucin coated membrane than that of tamarind seed polysaccharide. Comparative evaluation of Carbopol-based metronidazole gels containing thiolated tamarind seed polysaccharide with gels containing tamarind seed polysaccharide for mucoadhesive strength using chicken ileum by modified balance method revealed higher mucoadhesion of gels containing thiolated tamarind seed polysaccharide. Further, the gels containing tamarind seed polysaccharide and thiolated tamarind seed polysaccharide released the drug by Fickian-diffusion following the first-order and Higuchi's-square root release kinetics, respectively. 相似文献
19.
Virginie Dulong Georgeta MocanuLuc Picton Didier Le Cerf 《Carbohydrate polymers》2012,87(2):1522-1531
The synthesis of thermosensitive copolymers based on pullulan and polyether amine was performed in water using a water-soluble carbodiimide and N-hydroxysuccinimide as activators. Jeffamine® M2005 was chosen as a polyether to impart thermosensitive character to the copolymer. Pullulan was modified into carboxymethylpullulan, to bring carboxylate groups to the polysaccharide so as to further the grafting reaction. The copolymers were characterized by FT-IR, 1H NMR spectroscopy and molecular weights measurements (by SEC coupled with MALS/DRI/Viscometer lines). The thermosensitive behaviour of CMP-g-M2005 copolymers was studied by fluorescence spectroscopy of pyrene, by rheometry and microDSC measurements. The sol-gel transition temperature was found dependent on the solvent, the grafting degree of M2005 and the concentration of the copolymer. For example it was 35 °C in water, 28 °C in acid buffer (0.1 M, pH 5.4) and 26 °C in saline phosphate buffer (0.15 M, pH 7.4) for a grafting degree of 0.20 at a concentration of 5 wt%. 相似文献
20.
Novel pyrazole integrated 1,3,4-oxadiazoles: Synthesis,characterization and antimicrobial evaluation
《Bioorganic & medicinal chemistry letters》2014,24(1):245-248
A novel series of 2-(5-methyl-1,3-diphenyl-1H-pyrazol-4-yl)-5-phenyl-1,3,4-oxadiazoles 7(a–m) were synthesized either by cyclization of N′-benzoyl-5-methyl-1,3-diphenyl-1H-pyrazole-4-carbohydrazide 4a using POCl3 at 120 °C or by oxidative cyclization of hydrazones derived from various arylaldehyde and (E)-N′-benzylidene-5-methyl-1,3-diphenyl-1H-pyrazole-4-carbohydrazide 5(a–d) using chloramine-T as oxidant. Newly synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR and LC–MS) methods. The synthesized compounds were evaluated for their antimicrobial activity and were compared with standard drugs. The compounds demonstrated potent to weak antimicrobial activity. Among the synthesized compounds, compound 7m emerged as an effective antimicrobial agent, while compounds 7d, 7f, 7i and 7l showed good to moderate activity. The minimum inhibitory concentration of the compounds was in the range of 20–50 μg mL−1 against bacteria and 25–55 μg mL−1 against fungi. The title compounds represent a novel class of potent antimicrobial agents. 相似文献