首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Historically, it has been theorized that the oxidant sensitivity of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes arises as a direct consequence of an inability to maintain cellular gluthione (GSH) levels. This study alternatively hypothesizes that decreased NADPH concentration leads to impaired to catalase activity which, in turn, underlies the observed oxidant susceptibility. To investigate this hypothesis, normal and G6PD-deficient erythrocytes and hemolysates were challenged with a H2O2-generating agent. The results of this study demonstrated that catalase activity was severely impaired upon H2O2 challenge in the G6PD-deficient cell whiel only decrease was observed in normal cells. Supplmentation of either normal or G6PD-deficient hemolysates with purified NADPH was found to significantly (P < 0.001) inhibit catalase inactivation upon oxidant challenge while addition of NADP+ had no effect. Analysis of these results demonstrated direct correlation between NADPH concentration and catalase activity (r = 0.881) and an inverse correlation between catalase activity and erythrocyte oxidant sensitivity (r = 0.906). In contrast, no correlation was found to exist between glutathione concentration (r = 0.170) and oxidant sensitivity. Analysis of NADPH/NADPt ration in acatalasemic mouse erythrocytes demonstrated that NADPH maintenance alone was not sufficient to explain oxidant resistance, and that catalase activity was required. This study supports the hypothesis that impaired catalase activity underlies the enhanced oxidant sensitivity of G6PD-deficient erythrocytes and elucidates the importance of NADPH in the maintenance of normal catalase activity.  相似文献   

2.
Hepatic microsomes of acatalasemic Csb mice subjected to heat inactivation displayed decreased catalatic activity but NADPH dependent microsomal ethanol oxidation (MEOS) remained active and unaffected. Even without heat inactivation, in the Csb strain, the NADPH dependent metabolism of ethanol was much more active than the H2O2 mediated one whereas microsomes of Csa control mice displayed equal rates of H2O2 and NADPH dependent ethanol oxidation. Addition of catalase to liver microsomes in vitro abolished this difference whereas the catalase inhibitor azide established in the Csa mice a pattern similar to that of the Csb, namely a much more active NADPH dependent than a H2O2 mediated ethanol oxidation. The selective persistence in the Csb mice of NADPH dependent ethanol oxidation contrasting with the reduction in the H2O2 mediated metabolism of ethanol supports the existence of a microsomal ethanol oxidizing system independent of catalase.  相似文献   

3.
Tissue-specific catalase activity in 3-week-old animals from inbred mouse strains 129/ReJ, BALB/c, C3H/HeAnl/Cas-1b, C3H/HeSnJ, C3H/S, C57BL/6J, and Swiss-Webster was found to be highly variable by analysis of variance (P=0.01). Appropriate crosses were made among strains which were classified as normal (BALB/c, C3H/HeSnJ, C3H/S), hypocatalasemic (129/ReJ, C57BL/6J), and acatalasemic (C3H/HeAnl/Cas-1b) with respect to blood catalase activity to study the inheritance of the blood, kidney, liver, and lung catalase activity levels in a number of generations (reciprocal F1's, F2, two backcrosses —BC1 and BC2— and some RI lines). Segregation analysis and statistical methods which tested different models of inheritance as well as calculations of heritability were used in an effort to assess and evaluate genetic parameters that affect catalase activity. Results indicate that the inheritance of blood catalase activity in the cross involving acatalasemic and normal (BALB/c, C3H/HeSnJ) strains is compatible with the single-locus difference between the parental strains; however, the difference between the acatalasemic and the hypocatalasemic strain (C57BL/6J) would require additional genetic interaction for a satisfactory explanation. A similar pattern of generalization also applies to the inheritance of kidney catalase activity. The segregation pattern for the liver and lung catalase activity in most crosses is significantly different from the expectations of the single locus model. These results are compatible with the concept that a number of genes must affect tissue-specific catalase activity in mice. These may include previously described (e.g., Ce-1 and Ce-2) or novel genetic regulators/modifiers which interact with a single structural gene (Cas-1) or its product to produce the catalase phenotype characteristic of specific tissues in each strain.This investigation was supported by a Natural Sciences and Engineering Research Council of Canada operating grant to S.M.S.  相似文献   

4.
Monomeric, dimeric and tetrameric forms of mouse liver catalase have been shown to express peroxidatic activity while the tetrameric form expresses the catalic activity. Autosomally inherited acatalasemia, produced by X-ray irradiation of mice results in almost complete loss of catalic activity of catalase but has no effect on the peroxidatic activity. Liver catalase from normal and acatalasemic mice was purified by following the catalic and peroxidatic activity, respectively. Antiserum produced in rabbit against catalase from normal mouse completely precipitated the catalatic and peroxidatic activity from normal liver, and peroxidatic activity from the acatalasemic liver homogenate. Similar results were obtained when antiserum against peroxidase from acatalasemic mice was used. These studies indicate that acatalasemia in mice is due to a structural gene mutation which leads to synthesis of structurally altered catalase subunits. The altered subunits express peroxidatic activity but do not combine to form a tetramer which expresses catalatic activity.  相似文献   

5.
Oxidative stress occurs as a result of imbalance between generation and detoxification of reactive oxygen species (ROS). This kind of stress was rarely discussed in connection with foreign protein production in Escherichia coli. Relation between cytoplasmic recombinant protein expression with H2O2 concentration and catalase activity variation was already reported. The periplasmic space of E. coli has different oxidative environment in relative to cytoplasm and there are some benefits in periplasmic expression of recombinant proteins. In this study, hydrogen peroxide concentration and catalase activity following periplasmic expression of mouse IL-4 were measured in E. coli. After construction of pET2mIL4 plasmid, the expression of recombinant mouse interleukin-4 (mIL-4) was confirmed. Then, the H2O2 concentration and catalase activity variation in the cells were studied in exponential and stationary phases at various ODs and were compared to those of wild type cells and empty vector transformed cells. It was revealed that empty vector introduction and periplasmic recombinant protein expression increased significantly the H2O2 concentration of the cells. However, the H2O2 concentration in mIL-4 expressing cells was significantly higher than its concentration in empty vector transformed cells, demonstrating more effects of recombinant mIL-4 expression on H2O2 elevation. Likewise, although catalase activity was reduced in foreign DNA introduced cells, it was more lowered following expression of recombinant proteins. Correlation between H2O2 concentration elevation and catalase activity reduction with cell growth depletion is also demonstrated. It was also found that recombinant protein expression results in cell size increase.  相似文献   

6.
Pyruvate dehydrogenase (PDHC) and α-ketoglutarate dehydrogenase complex (KGDHC) are important sources of reactive oxygen species (ROS). In addition, it has been found that mitochondria can also serve as sinks for cellular hydrogen peroxide (H2O2). However, the ROS forming and quenching capacity of liver mitochondria has never been thoroughly examined. Here, we show that mouse liver mitochondria use catalase, glutathione (GSH), and peroxiredoxin (PRX) systems to quench ROS. Incubation of mitochondria with catalase inhibitor 3-amino-1,2,4-triazole (triazole) induced a significant increase in pyruvate or α-ketoglutarate driven O2/H2O2 formation. 1-Choro-2,4-dinitrobenzene (CDNB), which depletes glutathione (GSH), elicited a similar effect. Auranofin (AF), a thioredoxin reductase-2 (TR2) inhibitor which disables the PRX system, did not significantly change O2/H2O2 formation. By contrast catalase, GSH, and PRX were all required to scavenging extramitochondrial H2O2. In this study, the ROS forming potential of PDHC, KGDHC, Complex I, and Complex III was also profiled. Titration of mitochondria with 3-methyl-2-oxovaleric acid (KMV), a specific inhibitor for O2/H2O2 production by KGDHC, induced a ~ 86% and ~ 84% decrease in ROS production during α-ketoglutarate and pyruvate oxidation. Titration of myxothiazol, a Complex III inhibitor, decreased O2/H2O2 formation by ~ 45%. Rotenone also lowered ROS production in mitochondria metabolizing pyruvate or α-ketoglutarate indicating that Complex I does not contribute to ROS production during forward electron transfer from NADH. Taken together, our results indicate that KGDHC and Complex III are high capacity sites for O2/H2O2 production in mouse liver mitochondria. We also confirm that catalase plays a role in quenching either exogenous or intramitochondrial H2O2.  相似文献   

7.
Catalase from acatalasemic dog liver was purified to homogeneity and its properties were compared with those of normal dog liver catalase. The purified acatalasemic and normal dog liver catalases were found to have the same molecular weight (230,000 Da) and isoelectric point (pI: 6.0-6.2) and both enzymes contained four hematins per molecule. The catalytic activity of catalase from acatalasemic dog was normal. Furthermore, there was no difference between the acatalasemic and normal dog catalases in the binding affinity to NADPH (apparent Kd: 0.11-0.12 microM) and in the sensitivity to oxidative stress by hydrogen peroxide, the normal substrate of catalase. The acatalasemic dog enzyme was stable only in a narrow pH range (pH 6-9) although the normal enzyme was stable in a wide pH range (pH 4-10). Acatalasemic dog liver catalase also showed a slight low thermal stability at 37 degrees C and the heat-lability was remarkable at 45 degrees C, compared to the normal dog enzyme. These results indicated that the acatalasemic dog catalase is catalytically normal although it is associated with an unstable molecular structure.  相似文献   

8.
9.
Catalase activity of the dual-function heme enzyme catalase-peroxidase (KatG) depends on several structural elements, including a unique adduct formed from covalently linked side chains of three conserved amino acids (Met-255, Tyr-229, and Trp-107, Mycobacterium tuberculosis KatG numbering) (MYW). Mutagenesis, electron paramagnetic resonance, and optical stopped-flow experiments, along with calculations using density functional theory (DFT) methods revealed the basis of the requirement for a radical on the MYW-adduct, for oxyferrous heme, and for conserved residues Arg-418 and Asp-137 in the rapid catalase reaction. The participation of an oxyferrous heme intermediate (dioxyheme) throughout the pH range of catalase activity is suggested from our finding that carbon monoxide inhibits the activity at both acidic and alkaline pH. In the presence of H2O2, the MYW-adduct radical is formed normally in KatG[D137S] but this mutant is defective in forming dioxyheme and lacks catalase activity. KatG[R418L] is also catalase deficient but exhibits normal formation of the adduct radical and dioxyheme. Both mutants exhibit a coincidence between MYW-adduct radical persistence and H2O2 consumption as a function of time, and enhanced subunit oligomerization during turnover, suggesting that the two mutations disrupting catalase turnover allow increased migration of the MYW-adduct radical to protein surface residues. DFT calculations showed that an interaction between the side chain of residue Arg-418 and Tyr-229 in the MYW-adduct radical favors reaction of the radical with the adjacent dioxyheme intermediate present throughout turnover in WT KatG. Release of molecular oxygen and regeneration of resting enzyme are thereby catalyzed in the last step of a proposed catalase reaction.  相似文献   

10.
Summary The enzymatic destruction of oxidizing products produced during metabolic reduction of oxygen in the cell (such as singlet oxygen, H2O2 and OH radical) involves the concerted action of superoxide dismutase-which removes O 2 - and yields H2O2-and H2O2 removing enzymes such as catalase and glutathione peroxidase. A difference in distribution or ratio of these enzymes in various tissues may result in a different reactivity of oxygen radicals.It was found that in red blood cells superoxide dismutase and catalase are extracted in the same fraction as hemoglobin, while glutathione peroxidase appears to be loosely bound to the cellular structure. This suggests that in red blood cells catalase acts in series with superoxide dismutase against bursts of oxygen radicals formed from oxyhemoglobin, while glutathione & peroxidase may protect the cell membrane against low concentrations of H2O2. On the other hand, catalase activity is absent in various types of ascites tumor cells, while glutathione peroxidase and superoxide dismutase are found in the cytoplasm. However, the peroxidase/dismutase ratio is lower than in liver cells, and this may provide an explanation for the higher susceptibility of tumor cells to treatments likely to involve oxygen radicals.  相似文献   

11.
《Free radical research》2013,47(1):451-454
The presence of superoxide dismutase was demonstrated in 21 strains of mollicutes, including achuloplas-mas, mycoplasmas and ureaplasmas. Additionally, catalase activities were demonstrated in nearly 50% of the cell lysates. whereas no peroxide activities were detectable. The production of O2-and H2O2 with glucose as substrate was demonstrated for 8 strains of 10 strains tested. Anaerobic mycoplasmas showed the highest amount of radical production, whereas superoxide dismutase and catalase activities were in the range of activities estimated for aerobic mollicutes. Some pathogenic strains additionally released compounds into the culture medium, which stimulated O2-production by PMNs.  相似文献   

12.
underlying mechanism of ROS-induced cell injury remains to be defined. This study was undertaken to examine the role of lipid peroxidation and poly (ADP-ribose) polymerase (PARP) activation in H2O2-induced cell death in A172 cells, a human glioma cell line. H2O2 induced a dose- and time-dependent cell death. The cell death was prevented by thiols (dithiothreitol and glutathione), iron chelators (deferoxamine and phenanthroline), H2O2 scavengers (catalase and pyruvate), and a hydroxyl radical scavenger (dimethylthiourea). Antioxidants N,N-diphenyl-p-phenylenediamine (DPPD) and Trolox had no effect on the H2O2-induced cell death. Lipid peroxidation did not increase in human glioma cells exposed to H2O2. The PARP inhibitor 3-aminobenzamide prevented the cell death induced by H2O2. The PARP activity was increased by H2O2 and the H2O2 effect was prevented by 3-aminobenzamide, dithiothreitol, and phenanthroline. The ATP depletion induced by H2O2 was prevented by catalase, dithiothreitol, phenanthroline, and 3-aminobenzamide, but not by DPPD. These results indicate that the H2O2-induced cell death is mediated by PARP activation but not by lipid peroxidation in human glioma cells.  相似文献   

13.
Previous studies have shown that the hydroxyl radical derived from hydrogen peroxide (H2O2) is involved in lignin degradation by Phanerochaete chrysosporium. In the present study, the ultrastructural sites of H2O2 production in ligninolytic cells of P. chrysosporium were demonstrated by cytochemically staining cells with 3,3′-diaminobenzidine (DAB). Hydrogen peroxide production, as evidenced by the presence of oxidized DAB deposits, appeared to be localized in the periplasmic space of cells from ligninolytic cultures grown for 14 days in nitrogen-limited medium. When identical cells were treated with DAB in the presence of aminotriazole, periplasmic deposits of oxidized DAB were not observed, suggesting that the deposits resulted from the H2O2-dependent peroxidatic oxidation of DAB by catalase. Cells from cultures grown for 3 or 6 days in nitrogen-limited medium or for 14 days in nitrogen-sufficient medium had little ligninolytic activity and low specific activity for H2O2 production and did not contain periplasmic oxidized DAB deposits. The results suggest that in cultures grown in nitrogen-limited medium, there is a positive correlation between the occurrence of oxidized DAB deposits, the specific activity for H2O2 production in cell extracts, and ligninolytic activity.  相似文献   

14.
Stable hydrogen peroxide (H2O2)-resistant variants of the Chinese hamster ovary HA-1 line have been isolated by culturing cells in progressively increasing concentrations of H2O2 (>200 days, in 50–800 μM H2O2). Increases in catalase activity in these variant cell lines were shown to correlate with increased H2O2 resistance. Stable (>240 days) H2O2-resistant cell lines, seven quasidiploid (21–22 chromosomes/cell) and six quasitetraploid (40–44 chromosomes/cell) were clonally isolated from the 800 μM adapted H2O2-resistant variants which were heterogeneous with respect to ploidy. The H2O2 dose-modifying factors (DMFs) were 3, 5, 8, 13, 15, 26, and 27 for the seven quasidiploid cell lines, and 21, 32, 38, 40, 42, and 49 for the six quasitetraploid cell lines. The mean DMF was 14±10 for the former and 37±10 for the latter. Our data show that on the average the quasitetraploid cell lines were significantly more resistant to H2O2-mediated cell killing than the quasidiploid cell lines derived from the same mixed population of 800 μM H2O2-adapted cells. When catalase activities (k units/cell) of the HA-1 cells and three of the clonally derived cell lines (two quasidiploid and one quasitetraploid) were determined and plotted vs. H2O2–DMF, a positive linear correlation was obtained (correlation coefficient = 0.99). This result was further confirmed when immunoreactive catalase protein/cell was detected by Western blots. Our data show that chronic exposure of cells to H2O2 stress (800 μM) was accompanied by increases in quasitetraploid cells within the population. Quasitetraploid cell lines derived from this population demonstrated increased stable H2O2-resistance which may be related to stable increases in the expression of catalase.  相似文献   

15.
Catalase in hemolysates of normal, heterozygous hypocatalasemic and acatalasemic Japanese was immunotitrated with an anti-human blood catalase rabbit serum. Equivalence points were calculated from the regression lines between catalase activity added and catalase activity remaining in the supernatant. Catalase activities at the equivalence points of Japanese normal, hypocatalasemia and acatalasemia were similar. The results indicate that the specific activities of catalase in the normal and of the variant bloods are identical. Catalase in hemolysates of normal and variant mice was immunotitrated with an anti-mouse liver catalase rabbit serum. In contrast to Japanese acatalasemic subject, the equivalence points of catalase in heterozygous hypocatalasemic, homozygous hypocatalasemic, acatalasemic and normal hemolysates were different, and the ratios of specific activity in these variant mice to that in normal were 0.72, 0.46 and 0.21, respectively. The differences in catalase activities at equivalence points were also supported by the statistical analysis on parameters of regression lines of catalase activities remaining in the supernatant on catalase activities added in the immunotitration. These findings suggest that the molecular properties of residual catalase of Japanese acatalasemia and those of mouse acatalasemia are entirely different.  相似文献   

16.
An inhibitor of catalase accumulated when leaves of chilling-sensitive species were stored in the dark at 0°C. The inhibitor could be removed from crude extracts by passing them through a column of Sephadex G-25. After this treatment, the catalase activity of extracts of chilled tissues was found to be equal to that of extracts from unchilled leaves. When chilled tissues were incubated at 20°C, the inhibitor of catalase was lost, unless the tissues had been irreversibly damaged. It specifically inhibited plant catalase, and had no effect on mammalian catalase, plant malic dehydrogenase, or plant superoxide dismutase.

Despite the presence of catalase inhibitor in extracts of chilled plants, no increase in the level of H2O2 in chilled tissues was found, suggesting either that the inhibitor is compartmentalized and not in contact with catalase in vivo, or that the level of H2O2 is controlled by means other than through catalase activity. Plant tissues normally contain H2O2 which is destroyed by catalase when they are damaged. After chilling, H2O2 leaking from already injured cells would not be so readily removed by the inhibited catalase, and could contribute to further injury by acting as a source of free radical oxidants.

  相似文献   

17.
The catalase activities in blood and organs of the acatalasemic (C3H/AnLCsbCsb) mouse of the C3H strain are lower than those of the normal (C3H/AnLCsaCsa) mouse. We conducted a study to examine changes in the activities of antioxidant enzymes, such as catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPX), the total gluathione content, and the lipid peroxide level in the brain, which is more sensitive to oxidative stress than other organs, at 3, 6, or 24 hr following X-ray irradiation at doses of 0.25, 0.5, or 5.0 Gy to the acatalasemic and the normal mice. No significant change in the lipid peroxide level in the acatalasemic mouse brain was seen under non-irradiation conditions. However, the acatalasemic mouse brain was more damaged than the normal mouse brain by excessive oxygen stress, such as a high-dose (5.0 Gy) X-ray. On the other hand, we found that, unlike 5.0 Gy X-ray, a relatively low-dose (0.5 Gy) irradiation specifically increased the activities of both catalase and GPX in the acatalasemic mouse brain making the activities closer to those in the normal mouse brain. These findings may indicate that the free radical reaction induced by the lack of catalase is more properly neutralized by low dose irradiation.  相似文献   

18.
We have previously reported that when garter snakesThamnophis sirtalis parietalis, a freeze tolerant species, were exposed to 5 h freezing at –2.5° C organs showed increases in the activities of anti-oxidant enzymes, especially catalase in skeletal muscle. This was interpreted to be an adaptation to deal with the potentially injurious postischemic situation of thawing. The present work analyzesin vitro oxidative inactivation of a possible target of postischemic-induced free radical damage, the secondary anti-oxidant defense glutathione-S transferase, and the protective role of endogenous catalase. Approximately 50% of GST activity from snake muscle homogenates was lost within 2 min after addition of H2O2 plus Fe(II) (0.4–2 mM) in media containing azide whereas addition of iron alone resulted in no damaging effects. The opposing effects of dimethyl sulfoxide and EDTA in modifying this process strongly suggested the involvement of ·OH radicals in the GST inactivation. A partial recovery of the activity was promoted by mercaptoethanol, indicating that sulphydryl groups oxidation participate in the mechanism of GST inactivation. Pre-incubation of the reaction media containing H2O2 caused protection of the GST activity only in the absence of azide, indicating that endogenous catalase modulates the extent of oxyradical damage. The protective pre-incubation effect was more efficacious when employing homogenates from lung and liver, organs that have higher catalase activities, as well as homogenates from freezing-exposed muscle (that show an 80% increase in catalase activity, compared with control). The protection against GST inactivation observed in muscle from frozen snakes demonstrates that increased anti-oxidant defenses during freezing exposure can be a key factor in controllingin vitro oxyradical damage. The implications for natural freeze tolerance are discussed.  相似文献   

19.
The supply of heterotrophically growing suspensions of Alcaligenes eutrophus PHB?4 with oxygen formed by the continuous addition of H2O2 in the presence of bovine liver catalase was found to be restricted to well-defined conditions. The catalase-H2O2 system proved to be suitable during the growth at low cell densities equivalent to 2 g dry weight/liter. When under these conditions the oxygen concentration was held constant at 1.8 mg O2/liter, the cells grew for 6–8 hr at a rate almost identical to that observed with conventional aeration. However, aeration with H2O2 for longer durations (10–20 hr) and at higher cell densities (5?20 g dry weight/liter) led invariably to cell damage and retardation of growth. The impairment of growth observed during the oxygen supply by the catalase?H2O2 system was traced back to the formation of gradually increasing steady-state concentrations of H2O2 in the medium. Possible sites of cell damage by H2O2 such as membrane function, excretion and function of siderophores, and synthesis of cell polymers have been studied, and the cytotoxic mechanism of low concentrations of H2O2 was discussed.  相似文献   

20.
Rat liver peroxisomes are membrane-bounded organelles containing catalase and oxidases producing H2O2. Diffusion effects in the metabolism of H2O2 and the physiological significance of the structure of peroxisomes are explored on the basis of two models. Model I considers the liver cell as consisting of two rapidly mixed compartments, the peroxisomal contents and the rest of the cell, separated by a membrane. On the basis of model I, it is concluded that in order to maintain a minimal H2O2 concentration in the cytoplasm, there must be an H2O2 destroying system in the cytoplasm, but the capacity of this system need be only a small fraction of that of the catalase in the peroxisomes. Model II takes account of the detailed morphology of peroxisomes and includes the effect of peroxisomal membrane permeability to H2O2 and H2O2 diffusion inside and outside the peroxisomes. On the basis of previously published experimental data and model II, it is concluded that the latency of catalase activity in intact peroxisomes is due chiefly to a permeability barrier to H2O2 at the peroxisomal membrane rather than to a restriction of H2O2 diffusion within the peroxisomes. Peroxisomes are calculated to be very efficient at destroying the H2O2 produced within them, whether the H2O2 is produced in the catalase-free core or in the catalase-containing matrix. Less than 2% of the H2O2 produced in peroxisomes leaves the particles. The efficiency of H2O2 trapping is the consequence of the membrane permeability barrier. A similar H2O2 trapping efficiency could be achieved by particles without a membrane barrier only if H2O2 diffusion within such particles were reduced by many orders of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号