首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two trials were conducted to investigate the effects of intrauterine infusion of PGE2 and uterine horn insemination on pregnancy rates in mares achieved by breeding with a suboptimal number of normal spermatozoa. Estrus was synchronized and mares were teased daily with a stallion to detect estrus. Mares in estrus were examined by transrectal palpation and ultrasonography to monitor follicular status. On the first day a 35-mm diameter follicle was present, hCG (1500 IU, iv) was administered and the mares were bred the next day. Mares (Trial 1, n = 34; Trial 2, n = 28) were inseminated with 25 million total spermatozoa from either a stallion with good semen quality (Trial 1) or poor semen quality (Trial 2). In each trial, mares were assigned to 1 of 4 treatment groups as follows: Group PGE-HI - infusion of 0.25 mg PGE2 into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the proximal end of the same uterine horn; Group PGE-BI - infusion of 0.25 mg PGE2 into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the uterine body; Group SAL-HI - infusion of 1 mL sterile saline into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the proximal end of the same uterine horn; or Group SAL-BI - infusion of 1 mL sterile saline into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the uterine body. After breeding, mares were examined daily by transrectal ultrasonography to confirm ovulation, and were re-examined 14 to 16 d after ovulation for pregnancy status. Data were analyzed by Chi-square. Overall pregnancy rates were 59% for stallion 1 and 29% for stallion 2. Group pregnancy rates did not differ for mares bred by either stallion (P > 0.10). Pregnancy rates were not altered by horn insemination for either stallion (P > 0.10). Intrauterine infusion of PGE2 improved pregnancy rate in mares bred by the stallion with good quality semen (P < 0.05), but did not alter pregnancy rate in mares bred by the stallion with poor quality semen (P > 0.10). Further research is warranted to determine if intrauterine infusion of PGE2 will enhance spermatozoal colonization of the oviduct and pregnancy rates in mares, and if PGE-treatment will improve pregnancy rates achieved by subfertile stallions.  相似文献   

2.
In this study, we tested the hypothesis that insemination of mares with twice the recommended dose of cooled semen (2 x 10(9) spermatozoa) would result in higher pregnancy rates than insemination with a single dose (1 x 10(9) spermatozoa) or with 1 x 10(9) spermatozoa on each of 2 consecutive days. A total of 83 cycles from 61 mares was used. Mares were randomly assigned to 1 of 3 treatment groups when a 40-mm follicle was detected by palpation and ultrasonography. Mares in Group 1 were inseminated with 1 x 10(9) progressively motile spermatozoa that had been cooled in a passive cooling unit to 5 degrees C and stored for 24 h. A second aliquot of semen from the same collection was stored for an additional 24 h and inseminated at 48 h after collection. Mares in Group 2 were inseminated once with 1 x 10(9) progressively motile spermatozoa that had been cooled to 5 degrees C and stored for 24 h. Group 3 mares were inseminated once with 2 x 10(9) progressively motile spermatozoa that had been cooled to 5 degrees C and stored for 24 h. All mares were given 2500 IU i.v. hCG at the first insemination. Pregnancy was determined by ultrasonography 12, 14 and 16 d after ovulation. On Day 16, mares were administered i.m. 10 mg of PGF2 alpha and, upon returning to estrus, were randomly reassigned to a group for repeated treatment. Semen was collected from one of 3 stallions every 3 d; mares with a 40-mm ovarian follicle were inseminated with semen from the stallion collected on the preceding day. Semen was allocated into doses containing 1 x 10(9) progressively motile spermatozoa, diluted with dried skim milk-glucose extender to a concentration of 25 x 10(6) motile spermatozoa/ml (total volume 40 ml), placed in a passive cooling unit and cooled to 5 degrees C for 24 or 48 h. Response was measured by number of mares showing pregnancy. Data were analyzed by Chi square. Mares inseminated twice with 1 x 10(9) progressively motile spermatozoa on each of two consecutive days had a higher pregnancy rate (16/25, 64%; P < 0.05) than mares inseminated once with 1 x 10(9) progressively motile spermatozoa (9/29, 31%) or those inseminated once with 2 x 10(9) progressively motile spermatozoa (12/29, 41%). Pregnancy rates did not differ significantly (P > 0.10) among stallions (69, 34 and 32%). Interval from last insemination to ovulation was 0.9, 2.0 and 2.0 d for mares in Groups 1, 2 and 3, respectively. Based on these results, the optimal insemination regimen is a dose of 1 x 10(9) progressively motile spermatozoa given on two consecutive days. However, a shorter interval (< or = 24 h rather than > 0.9 d) between insemination and ovulation may affect pregnancy rates, and needs to be investigated.  相似文献   

3.
It has become a common practice in the equine breeding industry to send 2 insemination doses for breeding with transported cooled semen, one to be used for the initial insemination upon arrival, and the other to be held a second insemination the next day. One fertile stallion and 36 fertile mares were used to determine if breeding once with 1 dose of semen cooled for 24 h would improve fertility compared with breeding twice, 1 d apart, with half the dose of semen cooled for 24 h on the first day of breeding and half cooled for 48 h on the second day of breeding. Mares were given two intramuscular injections of 10 mg PGF2 alpha 14 d apart. Following the second injection, mares were teased with a stallion and their ovaries were scanned by transrectal ultrasonography daily. When a dominant follicle (> 35 mm diameter) was detected, 1500 units hCG were injected intravenously, and the mares were inseminated. Semen was collected in advance of anticipated breeding, mixed in nonfat dry milk solids-glucose extender to a concentration of 25 million sperm/mL, and placed in 2 commercial cooling containers for 24 or 48 h of storage prior to breeding. Mares were randomly assigned to 1 of 2 insemination treatment groups: 1) Group T1 (n = 18), in which mares were inseminated on the day of hCG injection with 500 million spermatozoa cooled for 24 h, or 2) Group T2 (n = 18), in which mares were inseminated on the day of hCG injection with 250 million spermatozoa cooled for 24 h, and again on the following day with 250 million spermatozoa cooled for 48 h. Pregnancy status was confirmed by transrectal ultrasonographic examination at 14 and 16 d after ovulation. Pregnancy rates were the same for both insemination treatment groups (12/18; 67%). There was no advantage to holding half of the insemination dose for rebreeding on the following day.  相似文献   

4.
This study investigated the effects of different artificial insemination (AI) regimes on the pregnancy rate in mares inseminated with either cooled or frozen-thawed semen. In essence, the influence of three different factors on fertility was examined; namely the number of inseminations per oestrus, the time interval between inseminations within an oestrus, and the proximity of insemination to ovulation. In the first experiment, 401 warmblood mares were inseminated one to three times in an oestrus with either cooled (500 x 10(6) progressively motile spermatozoa, stored at +5 degrees C for 2-4 h) or frozen-thawed (800 x 10(6) spermatozoa, of which > or =35% were progressively motile post-thaw) semen from fertile Hanoverian stallions, beginning -24, -12, 0, 12, 24 or 36 h after human chorionic gonadotrophin (hCG) administration. Mares were injected intravenously with 1500 IU hCG when they were in oestrus and had a pre-ovulatory follicle > or =40mm in diameter. Experiment 2 was a retrospective analysis of the breeding records of 2,637 mares inseminated in a total of 5,305 oestrous cycles during the 1999 breeding season. In Experiment 1, follicle development was monitored by transrectal ultrasonographic examination of the ovaries every 12 h until ovulation, and pregnancy detection was performed sonographically 16-18 days after ovulation. In Experiment 2, insemination data were analysed with respect to the number of live foals registered the following year. In Experiment 1, ovulation occurred within 48 h of hCG administration in 97.5% (391/401) of mares and the interval between hCG treatment and ovulation was significantly shorter in the second half of the breeding season (May-July) than in the first (March-April, P< or =0.05). Mares inseminated with cooled stallion semen once during an oestrus had pregnancy rates comparable to those attained in mares inseminated on two (48/85, 56.5%) or three (20/28, 71.4%) occasions at 24 h intervals, as long as insemination was performed between 24 h before and 12 h after ovulation (78/140, 55.7%). Similarly, a single frozen-thawed semen insemination between 12 h before (31/75, 41.3%) and 12 h after (24/48, 50%) ovulation produced similar pregnancy rates to those attained when mares were inseminated either two (31/62, 50%) or three (3/9, 33.3%) times at 24 h intervals.In the retrospective study (Experiment 2), mares inseminated with cooled semen only once per cycle had significantly lower per cycle foaling rates (507/1622, 31.2%) than mares inseminated two (791/1905, 41.5%), three (464/1064, 43.6%) or > or =4 times (314/714, 43.9%) in an oestrus (P< or =0.001). In addition, there was a tendency for per cycle foaling rates to increase when mares were inseminated daily (619/1374, 45.5%) rather than every other day (836/2004, 42.1%, P = 0.054) until ovulation.It is concluded that under conditions of frequent veterinary examination, a single insemination per cycle produces pregnancy rates as good as multiple insemination, as long as it is performed between 24 h before and 12 h after AI for cooled semen, or 12 h before and 12 h after AI for frozen-thawed semen. If frequent scanning is not possible, fertility appears to be optimised by repeating AI on a daily basis.  相似文献   

5.
Insemination of recipients for oocyte transfer and gamete intrafallopian transfer (GIFT) in five experiments were reviewed, and factors that affected pregnancy rates were ascertained. Oocytes were transferred into recipients that were (1) cyclic and ovulated at the approximate time of oocyte transfer, (2) cyclic with aspiration of the preovulatory follicle, and (3) noncyclic and treated with hormones. Recipients were inseminated before, after, or before and after transfer. Intrauterine and intraoviductal inseminations were done.Pregnancy rates were not different between cyclic and noncyclic recipients (8/15, 53% and 37/93, 39%). The highest numerical pregnancy rates resulted when recipients were inseminated with fresh semen from fertile stallions before oocyte transfer or inseminated with cooled transported semen before and after oocyte transfer. Oxytocin was administered to recipients before oocyte transfer when fluid was imaged within the uterus. Administration of oxytocin to recipients at the time of oocyte transfer resulted in significantly higher pregnancy rates than when oxytocin was not administered (17/26, 65% and 28/86, 33%). Intraoviductal and intrauterine inseminations of recipients during oocyte transfer resulted in similar embryo development rates when fresh semen was used (12/22, 55% and 14/26, 55%). However, embryo development rates significantly reduced when frozen (1/21, 5%) versus fresh sperm were inseminated into the oviduct.Results suggest that insemination of a recipient before and after transfer could be beneficial when semen quality is not optimal; however, a single insemination before transfer was adequate when fresh semen from fertile stallions was used. Absence of a preovulatory follicle did not appear to affect pregnancy rates in the present experiments. The transfer of sperm and oocytes (GIFT) into the oviduct was successful and repeatable as an assisted reproductive technique in the equine.  相似文献   

6.
A colloid with a species specific silane-coated, silica-based formulation, optimized for stallion (Androcoll-E™), enables a better sub-population of spermatozoa to be selected from stallion ejaculates. However, such a practice has not been critically evaluated in stallions with fertility problems. In this study we evaluate whether single-layer centrifugation (SLC) through Androcoll-E™ could be used to enhance fertility rates in a subfertile stallion. Ejaculates were obtained from two different stallions, one Lusitano (fertile) and one Sorraia (subfertile), with distinct sperm characteristics and fertility. Motility, morphology, plasma membrane structural (eosin-nigrosin) and functional integrity (HOS test), mitochondrial functionality (Δψm; JC-1) and longevity (motility after 72 h cooling) after centrifugation in Androcoll-E™, as well as pregnancy rates obtained after artificial insemination (AI), with and without (control group) SLC-treated sperm were assessed. The effect of SLC on sperm characteristics, and fertility results were evaluated by ANOVA and Fisher procedures, respectively. Our results showed that SLC-selected sperm did not differ from the raw semen in terms of viability, morphology, response to hypo-osmotic conditions (HOS test) and mitochondrial membrane potential (↑ΔΨmit; JC-1). Sperm motility in cooled samples was not improved by SLC treatment. Our data show that SLC through Androcoll-E™ has no effect on pregnancy rates in the stallions used in this trial.  相似文献   

7.
Mares are generally inseminated with 500 million progressively motile fresh sperm and approximately 1 billion total sperms that have been cooled or frozen. Development of techniques for low dose insemination would allow one to increase the number of mares that could be bred, utilize stallions with poor semen quality, extend the use of frozen semen, breed mares with sexed semen and perhaps reduce the incidence of post-breeding endometritis. Three low dose insemination techniques that have been reported include: surgical oviductal insemination, deep uterine insemination and hysteroscopic insemination.Insemination techniques: McCue et al. [J. Reprod. Fert. 56 (Suppl.) (2000) 499] reported a 21% pregnancy rate for mares inseminated with 50,000 sperms into the fimbria of the oviduct.Two methods have been reported for deep uterine insemination. In the study of Buchanan et al. [Theriogenology 53 (2000) 1333], a flexible catheter was inserted into the uterine horn ipsilateral to the corpus luteum. The position of the catheter was verified by ultrasound. Insemination of 25 million or 5 million spermatozoa resulted in pregnancy rates of 53 and 35%, respectively. Rigby et al. [Proceedings of 3rd International Symposium on Stallion Reproduction (2001) 49] reported a pregnancy rate of 50% with deep uterine insemination. In their experiment, the flexible catheter was guided into position by rectal manipulation.More studies have reported the results of using hysteroscopic insemination. With this technique, a low number of spermatozoa are placed into or on the uterotubal junction. Manning et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 84] reported a 22% pregnancy rate when 1 million spermatozoa were inserted into the oviduct via the uterotubal junction. Vazquez et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 82] reported a 33% pregnancy rate when 3.8 million spermatozoa were placed on the uterotubal junction. Recently, Morris et al. [J. Reprod. Fert. 188 (2000) 95] utilized the hysteroscopic insemination technique to deposit various numbers of spermatozoa on the uterotubal junction. They reported pregnancy rates of 29, 64, 75 and 60% when 0.5, 1, 5 and 10 million spermatozoa, respectively, were placed on the uterotubal junction.Insemination of sex-sorted spermatozoa: One of the major reasons for low dose insemination is insemination of X- or Y-chromosome-bearing sperm. Through the use of flow cytometry, spermatozoa can be accurately separated into X- or Y-bearing chromosomes. Unfortunately, only 15 million sperms can be sorted per hour. At that rate, it would take several days to sort an insemination dose containing 800 million to 1 billion spermatozoa. Thus, low dose insemination is essential for utilization of sexed sperm. Lindsey [Hysteroscopic insemination with low numbers of fresh and cryopreserved flow-sorted stallion spermatozoa, M.S. Thesis, Colorado State University, Fort Collins, CO, USA, 2000] utilized either deep uterine insemination or hysteroscopic insemination to compare pregnancy rates of mares inseminated with sorted, fresh stallion sperm to those inseminated with non-sorted, fresh stallion sperm. Hysteroscopic insemination resulted in more pregnancies than ultrasound-guided deep uterine insemination. Pregnancy rate was similar for mares bred with either non-sorted or sex-sorted spermatozoa.In a subsequent study, Lindsey et al. [Proceedings of 5th International Symposium on Equine Embryo Transfer (2000) 13] determined if insemination of flow-sorted spermatozoa adversely affected pregnancy rates and whether freezing sex-sorted spermatozoa would result in pregnancies. Mares were assigned to one of four groups: group 1 was inseminated with 5 million non-sorted sperms using hysteroscopic insemination; group 2 was inseminated with 5 million sex-sorted sperms using hysteroscopic insemination; group 3 was inseminated with non-sorted, frozen-thawed sperm; and group 4 was inseminated with sex-sorted frozen sperm. Pregnancy rates were similar for mares inseminated with non-sorted fresh sperm, sex-sorted fresh sperm and non-sorted frozen sperm (40, 37.5 and 37.5%, respectively). Pregnancy rates were reduced dramatically for those inseminated with sex-sorted, frozen-thawed sperm (2 out of 15, 13%). These studies demonstrated that hysteroscopic insemination is a practical and useful technique for obtaining pregnancies with low numbers of fresh spermatozoa or low numbers of frozen-thawed spermatozoa. Further studies are needed to determine if this technique can be used to obtain pregnancies from stallions with poor semen quality. In addition, further studies are needed to develop techniques of freezing sex-sorted spermatozoa.  相似文献   

8.
The aim of the project was to use current simple and practical laboratory tests and compare results with the foaling rates of mares inseminated with commercially produced frozen semen. In Exp. 1, semen was tested from 27 and in Exp. 2 from 23 stallions; 19 stallions participated in both experiments. The mean number of mares per stallion in both experiments was 37 (min. 7, max. 121). Sperm morphology was assessed and bacterial culture performed once per stallion. In Exp. 1, progressive motility after 0, 1, 2, 3, and 4 h of incubation using light microscopy, motility characteristics measured with an automatic sperm analyzer, plasma membrane integrity using carboxyfluorescein diacetate/propidium iodide (CFDA/PI) staining and light microscopy, plasma membrane integrity using PI staining and a fluorometer, plasma membrane integrity using a resazurin reduction test, and sperm concentration were evaluated. In Exp. 2, the same tests as in Exp. 1 and a hypo-osmotic swelling test (HOST) using both light microscopy and a fluorometer were performed immediately after thawing and after a 3-h incubation. Statistical analysis was done separately to all stallions and to those having ≥ 20 mares; in addition, stallions with foaling rates < 60 or ≥ 60% were compared. In Exp. 1, progressive motility for all stallions after a 2 – 4-h incubation correlated with the foaling rate (correlation coefficients 0.39 – 0.51), (p < 0.05). In stallions with > 20 mares, the artificial insemination dose showed a correlation coefficient of -0.58 (p < 0.05). In Exp. 2, the HOST immediately after thawing showed a negative correlation with foaling rate (p < 0.05). No single test was consistently reliable for predicting the fertilizing capacity of semen, since the 2 experiments yielded conflicting results, although the same stallions sometimes participated in both. This shows the difficulty of frozen semen quality control in commercially produced stallion semen, and on the other hand, the difficulty of conducting fertility trials in horses.  相似文献   

9.
Sieme H  Katila T  Klug E 《Theriogenology》2004,61(4):769-784
This study analyzed effects of different methods and intervals of semen collection on the quantity and quality of fresh, cool-stored, and frozen-thawed sperm and fertility of AI stallions. In Experiment 1, ejaculates were obtained from six stallions (72 ejaculates per stallion) using fractionated versus non-fractionated semen collection techniques. Initial sperm quality of the first three jets of the ejaculate was not different from that of total ejaculates. Centrifugation of sperm-rich fractions before freezing improved post-thaw motility and sperm membrane integrity when compared to non-centrifuged sperm-rich fractions or non-fractionated centrifuged ejaculates (P<0.05). In Experiment 2, semen from four stallions (60-70 ejaculates per stallion) was collected either once daily or two times 1h apart every 48 h. The first ejaculates of double collections had significantly higher sperm concentrations, percentages of progressively motile sperm (PMS) after storage for 24h at 5 degrees C and lower percentages of midpiece alterations than single daily ejaculates. Semen collected once daily showed significantly lower values of live sperm after freezing and thawing than the first ejaculate of two ejaculates collected 1h apart every 48 h. In Experiment 3, semen was collected from 36 stallions (> or =12 ejaculates per stallion) during the non-breeding season and the time to ejaculation and the number of mounts was recorded. When time to ejaculation and the number of mounts increased, volume and total sperm count (TSC) also increased (P<0.05), whereas a decrease was observed in sperm concentration, percentage of PMS after storage for 24 h at 5 degrees C, percentage of membrane-intact sperm in fresh semen (P<0.05) as well as motility and percentage of membrane-intact sperm of frozen-thawed sperm (P<0.05). In Experiment 4, AI data of 71 stallions were retrospectively analyzed for the effect of number of mounts per ejaculation and frequency, time interval of semen collections on pregnancy, and foaling rates (FRs) of mares. Semen volume increased, but sperm concentration and percentage of PMS after 24-h cool-storage decreased with increasing number of mounts on the phantom (P<0.05). A statistically significant inter-relationship was demonstrated between frequency and interval of semen collection and FR. Mares inseminated with stallions from which semen was collected frequently (> or =1 on an average per day) showed significantly higher FRs than mares inseminated with semen from stallions with a daily collection frequency of 0.5-1 or <0.5. FR of mares inseminated with stallions having 0.5-1 days between semen collections was significantly better than FR of mares that were inseminated with stallions having semen collection intervals of 1-1.5 days or >2.5 days.  相似文献   

10.
Semen from 3 stallions was extended using 2 methods (Kenney extender and a modified Kenney extender), slowly cooled, and stored for 41 ± 6 (s.d.) h before insemination. An insemination dose (40 ml) contained 1.5-2 billion spermatozoa. In the experiment, 26 mares were inseminated in 30 cycles. The pregnancy rate per cycle obtained with sperm stored in the Kenney extender was 87% (n=15). When the semen was extended with the modified extender, centrifuged and stored, the pregnancy rate was 60% (n=15). Inseminations were done every other day until ovulation was detected. If a mare ovulated more than 24 h after the last insemination, she was inseminated also after ovulation. The single-cycle pregnancy rate was 58% when the mares were inseminated only before ovulation (n=19) but the rate was 100% when the inseminations were done both before and after ovulation (n=9) or only after ovulation (n=2). The difference in pregnancy rates was significant (p<0.05), indicating that postovula-tory inseminations probably serve to ensure the pregnancies. The extending and handling methods used in this study resulted in a combined pregnancy rate of 73%, and appear thus to be useful for storing stallion semen for approximately 2 days.  相似文献   

11.
Stallions are not selected for fertility but for other criteria (pedigree, conformation, performances, progeny), therefore valuable but subfertile stallions with poor semen quality are frequently used in commercial breeding programs. The object of this study was to evaluate whether sperm selection through a silane-coated silica colloid gradient centrifugation, with or without the addition of seminal plasma of a high fertile stallion, could improve the pregnancy rates of an oligospermic valuable stallion in a commercial breeding program. In 2008 breeding season (experiment 1, n=104 mares), simple centrifugation and density gradient centrifugation of the sperm were compared. In 2009 and 2010 breeding seasons (experiment 2, n=125 mares), the effect of the addition of 5% seminal plasma to the extender after sperm selection was evaluated. In all mares deep horn uterine insemination was performed with 1 ml containing 50×10(6) morphologically normal progressive motile spermatozoa, 24-30 h after induction of ovulation with hCG. Pregnancy diagnosis by ultrasonography was performed 14 days following ovulation. Results showed a higher per cycle pregnancy rate (P>0.05) when sperm selection through a density gradient was used (62% vs. 42.3%, exp 1), while the addition of 5% seminal plasma did not influence the outcome (45.9% vs. 47.6%, exp 2) (P>0.05). An age-related decrease in the fertility of the stallion was observed when comparing the results from the different breeding seasons (P<0.05). In conclusion, sperm selection through a discontinuous density gradient enabled a normal per cycle pregnancy rate to be achieved from an oligospermic-subfertile stallion in a commercial breeding program, and no differences were observed regarding the addition of seminal plasma.  相似文献   

12.
A successful outcome after artificial insemination with cooled semen is dependent on many factors, the sperm quality of the ejaculate being one. Previous studies have shown that spermatozoa with good motility, normal morphology, and good chromatin integrity can be selected by means of colloid centrifugation, particularly single layer centrifugation (SLC) using species-specific colloids. The purpose of the present study was to conduct an insemination trial with spermatozoa from “normal” ejaculates, i.e., from stallions with no known fertility problem, to determine whether the improvements in sperm quality seen in SLC-selected sperm samples compared with uncentrifuged controls in laboratory tests are reflected in an increased pregnancy rate after artificial insemination. In a multicentre study, SLC-selected sperm samples and uncentrifuged controls from eight stallions were inseminated into approximately 10 mares per treatment per stallion. Ultrasound examination was carried out approximately 16 days after insemination to detect an embryonic vesicle. The pregnancy rates per cycle were 45% for controls and 69% for SLC-selected sperm samples, which is statistically significant (P < 0.0018). Thus, the improvement in sperm quality reported previously for SLC-selected sperm samples is associated with an increase in pregnancy rate, even for ejaculates from stallions with no known fertility problem.  相似文献   

13.
Routine semen analysis of stallions is based on light microscopy (LM). However, there are still a number of animals that are subfertile or even infertile not being identified with conventional semen analysis. The objective of this study was to investigate the suitability of transmission electron microscopy (TEM) for advanced fertility diagnosis in stallion. We examined ejaculates of 46 stallions with known fertility. Animals were divided into three different groups: group 1, fertile stallions (pregnant mares> or =70%, n=29); group 2, subfertile stallions (pregnant mares 10-69%, n=14); group 3, infertile stallions (pregnant mares<10%, n=3). Ejaculates were collected in spring 2002. Conventional semen analysis (volume, sperm concentration, motility, live:dead ratio and percentage of morphologically normal sperm) was immediately performed after semen collection. Ultrastructural analysis included the evaluation of 200 acrosomes, heads, midpieces and cross-sections of tails as well as 100 longitudinal sections of tails from every ejaculate. Using LM, we found a significant increase of morphological deviations from 24.5% (x ) in group 1 to 34.5% in group 2 and 73.5% in group 3. Using TEM, we found a significant increase of detached acrosomes from 6.1% in group 1 to 7.6% in group 2 and 21.4% in group 3. Deviations in tubule pattern were also increased (but not significant) from 2.7% in fertile and 2.8% in subfertile to 11.4% in infertile stallions as well as multiple tails from 1.9% in fertile to 2.0% in subfertile and 8.9% in infertile. Our data indicate that TEM is suitable for advanced fertility diagnostic in stallions, giving a connection between fertility and morphology. It suggests that the most likely reason for sub- and infertility in stallion in case of increased LM pathomorphology of semen are acrosomal alterations, especially detached acrosomes.  相似文献   

14.
Sieme H  Bonk A  Hamann H  Klug E  Katila T 《Theriogenology》2004,62(5):915-928
The effects of different artificial insemination (AI) techniques and sperm doses on pregnancy rates of normal Hanoverian breed mares and mares with a history of barrenness or pregnancy failure using fresh or frozen-thawed sperm were investigated. The material included 187 normal mares (148 foaling and 39 young maiden mares) and 85 problem mares with abnormal reproductive history. Mares were randomly allotted into groups with respect to AI technique (routine AI into the uterine body, transrectally controlled deep intracornual AI ipsilateral to the preovulatory follicle, or hysteroscopic AI onto the uterotubal junction ipsilateral to the preovulatory follicle), storage method of semen (fresh, frozen-thawed), AI volume (0.5, 2, 12 ml), and sperm dose (50 x 10(6) or 300 x 10(6) progressively motile sperm (pms) for fresh semen and 100 or 800 x 10(6) frozen-thawed sperm with >35% post-thaw motility). The mares were inseminated once per cycle, 24 h after hCG administration when fresh semen was used, or 30 h for frozen-thawed semen. Differences in pregnancy rates between treatment groups were analyzed by Chi-squared test, and for most relevant factors (insemination technique, mare, semen, and stallion) expectation values and confidence intervals were calculated using multivariate logistic models. Neither insemination technique, volume, sperm dose, nor mare or stallion had significant effects (P > 0.05) on fertility. Type of semen, breeding mares during foal heat, and an interaction between insemination technique, semen parameters, and mares did have significant effects (P < 0.05). In problem mares, frozen semen AI yielded significantly lower pregnancy rates than fresh semen AI (16/43, 37.2% versus 25/42, 59.5%), but this was not the case in normal mares. In normal mares, hysteroscopic AI with fresh semen gave significantly (P < 0.05) better pregnancy rates than uterine body AI (27/38, 71% versus 18/38, 47.3%), whereas in problem mares this resulted in significantly lower pregnancy rates than uterine body AI (5/15, 33.3% versus 16/19, 84.2%). Our results demonstrate that for problem mares, conventional insemination into the uterine body appears to be superior to hysteroscopic insemination and in normal mares, the highest pregnancy rates can be expected by hysteroscopic insemination.  相似文献   

15.
Information on the number of motile spermatozoa needed to maximize pregnancy rates for frozen-thawed stallion semen is limited. Furthermore, concentration of spermatozoa per 0.5-mL straw has been shown to affect post-thaw motility (7). The objectives of this study were 1) to compare the effect of increasing the concentration of spermatozoa in 0.5-mL straws from 400 to 1,600 x 10(6) spermatozoa/mL on pregnancy rate of mares, and 2) to determine whether increasing the insemination dose from approximately 320 to 800 million progressively motile spermatozoa after thawing would increase pregnancy rates. Several ejaculates from each of 5 stallions were frozen in a skim milk-egg yolk based freezing medium at 2 spermatozoal concentrations in 0.5-mL polyvinyl-chloride straws. Half of each ejaculate was frozen at 400 x 10(6) cells/mL and half at 1,600 x 10(6) cells/mL. Insemination doses were based on post-thaw spermatozoal motility and contained approximately 320 x 10(6) (320 to 400) motile spermatozoa or approximately 800 x 10(6) (800 to 900) motile spermatozoa. Sixty-three mares were assigned to 1 of 4 spermatozoal treatments (1--low spermatozoal number, low concentration; 2--low spermatozoal number, high concentration; 3--high spermatozoal number, low concentration; 4--high spermatozoal number, high concentration) and were inseminated daily. Post-thaw spermatozoal motility was similar for cells frozen at both spermatozoal concentrations (P > 0.1). One-cycle pregnancy rates were 15, 40, 28 and 33%, respectively, for Treatments 1, 2, 3 and 4. Packaging spermatozoa at the high concentration tended to increase pregnancy rates vs packaging at the low concentration (37 vs 22%; P = 0.095). Furthermore, when the lower spermatozoal number was used, there tended (P < 0.1) to be a higher pregnancy rate if spermatozoa were packaged at the higher concentration. There was no increase in pregnancy rates when higher numbers of motile spermatozoa were inseminated (27 vs 31%; P > 0.1). Based on these results, a single 0.5-mL straw dose containing 800 x 10(6) spermatozoa should be used and each insemination dose should contain approximately 320 x 10(6) motile spermatozoa. Fertility trials utilizing other freezing extenders are necessary before recommending a single 0.5-mL insemination dose for all freezing extenders.  相似文献   

16.
Placement of sperm deep in the equine uterine horn allows fewer sperm to be inseminated while maintaining acceptable fertility, and has been promoted for use in circumstances when fertility would be expected to be low if standard insemination were used (e.g., semen from a subfertile stallion, or frozen-thawed semen). Two main techniques, transrectally guided (TRG) and hysteroscopic (HYS) insemination, have been developed for this purpose; however, there is some controversy regarding their comparative efficacy. This study was conducted to compare pregnancy rates when mares were inseminated by TRG or HYS, using sperm numbers approaching and under the minimum threshold, resulting in reduced fertility. When 1 × 106 sperm were inseminated, pregnancy rates were not different (P > 0.10) between techniques HYS (10/13, 77%) and TRG (11/15, 73%). Similarly, when 0.5 × 106 sperm were inseminated, pregnancy rates were not different (P > 0.10) between techniques HYS (3/15, 20%) and TRG (4/13, 31%). Combined pregnancy rates for the two treatments were 13/28 (46%) for HYS and 15/28 (54%) for TRG (P > 0.10). Pregnancy rates using a subthreshold number of sperm were not significantly affected by a deep-horn insemination technique.  相似文献   

17.
Pregnancy rates with cooled equine semen can be unsatisfactory and show great variation. Information about first cycle pregnancy rates and pregnancy rates per cycle are often lacking from publicly available records. This retrospective cohort study was performed to evaluate the fertility of the Norwegian Coldblooded trotter. The aim of the study was to compare the breeding results after insemination with fresh, extended with those of cooled, shipped semen among Norwegian Coldblooded trotter mares. First cycle pregnancy rate was the main parameter used to measure fertility. Stud-books were collected from four studs from the years 2006–2010. Statistical analyses were done in Stata using Chi square test and multivariable analyses where different models were compared based on Akaike’s information criterion. First cycle pregnancy rate, seasonal pregnancy rate and foaling rate all showed significant differences (P < 0.0001) when comparing mares inseminated at stud with mares inseminated with cooled, shipped semen, favoring artificial insemination (AI) at stud. First cycle pregnancy rate was 55.1 % for mares inseminated at stud with fresh extended semen and 42.2 % for mares inseminated with cooled shipped semen. The overall pregnancy rate per cycle was 84.4 % for AI at stud and 66.9 % for cooled, shipped semen. The parameters stud, mare age, number of inseminations within an estrus cycle and individual stallion were also investigated for influence on fertility. Few retrospective studies include the parameter of first cycle pregnancy rates. Our study does not differ dramatically when comparing seasonal pregnancy rates and foaling rates with similar studies. Fertility parameters for the Norwegian Coldblooded trotter do not differ significantly from most other studies of Coldblooded mares and other mare breeds around the world. But the difference in fertility parameters between AI at stud to AI with cooled semen between our study and others, indicates that higher pregnancy rates in Norwegian Coldblooded trotter may be possible.  相似文献   

18.
The freezability of stallion semen defined as the number of selected ejaculates/total number of ejaculates frozen from 161 different stallions was analyzed. Of the stallions, 19, 30, 27 and 24% had a freezability of 0%, 0 to 33%, 33 to 66%, over 66%, respectively In 85 different stallions, the correlation of freezability between first and second year was 0.60 (P < 0.001). The relationship between fertility with fresh and frozen semen and freezability was analyzed in 40 stallions whose freezability and fertility information was recorded during 5 years. There was a strong relationship between fertility of fresh semen and semen freezability (P < 0.001). However, the relationship between fertility of frozen semen and freezability was not as marked (P < 0.05). Analysis of the field fertility per cycle results when mares were bred with 300 or 150 x 10(6) total spermatozoa at different frequencies until ovulation indicated that mares that were inseminated 2 times or more per estrus show an improved fertility in comparison with mares inseminated only once (34%, n = 1576 vs 26%, n = 626; P < 0.001). Foaling rate when mares were inseminated with frozen semen (1858 mares during 8 breeding seasons) was mainly influenced by mare age (< 16 years: 54% vs >/= 16 years 42% p < 0.001). Date of first insemination (before May 15: 58% vs after May 15: 37%) also had a significant effect on foaling rate (P < 0.001).  相似文献   

19.
Practical application of sex-selected spermatozoa in the horse industry would be greatly improved by the ability to develop simplified methods for shipping, storing, and inseminating sex-selected spermatozoa. Acceptable pregnancy rates have been achieved using fresh sex-sorted stallion sperm, however many stallion owners are reluctant to send their stallions to the sorter location for collection during the breeding season. Furthermore, the technology would be more applicable if the hysteroscopic insemination technique was not necessary for adequate pregnancy rates. Hysteroscopic insemination requires expensive equipment and specially trained personnel. In the present study, stallion sperm were sex-sorted after being stored at either 5 degrees C or 15 degrees C for 18 h. Twenty million sex-sorted sperm were then inseminated using one of two insemination techniques: the hysteroscopic method or the rectally guided, deep-uterine technique. Results were determined based on 16-day pregnancy status. A first-cycle pregnancy rate of 72% (18/25) was achieved when sperm were shipped at 15 degrees C, sex-sorted, and then inseminated using the hysteroscopic method. With these results, it can be concluded that stallions are not necessary at the sorter location to achieve acceptable fertility with sex-sorted sperm. There was a tendency for more mares to become pregnant when sperm were shipped at 15 degrees C prior to sorting, when compared to shipment at 5 degrees C. Similarly, there was a tendency for more mares to become pregnant when hysteroscopic insemination was utilized, when compared to the rectally guided, deep-uterine technique. These trends suggest that if larger group numbers were available, significant differences between the treatments may be revealed.  相似文献   

20.
A breeding trial was conducted to evaluate the effect of insemination timing on the fertility of mares bred with frozen/thawed equine semen. One stallion and 60 reproductively sound, estrous-synchronized mares were included in the study. Mares were assigned to one of three groups (n = 20): 1) insemination with fresh semen every other day during estrus from detection of a 35-mm follicle until ovulation, 2) insemination with frozen/thawed semen every day during estrus from detection of a 35-mm follicle until ovulation or 3) insemination with frozen/thawed semen once, within 6 h after ovulation. Single-cycle 18-d pregnancy rates resulting from insemination with fresh semen (70%), preovulation insemination with frozen/thawed semen (60%) and postovulation insemination with frozen/thawed semen (55%) were not different (P > 0.05). Possibly, equivalent pregnancy rates could be achieved with frozen/thawed semen using either daily inseminations until ovulation occurs or frequent ovarian palpations with a single post-ovulation insemination. Further studies regarding the effect of insemination timing on stallion fertility are needed since the present investigation included only one stallion and a small number of mares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号