首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The cortical endoplasmic reticulum (ER) of living onion inner epidermal cells has been studied by video-microscopy. We observed local movements of individual ER membranes, which cause transformations of the polygonal net. Membrane tubules glide along one another, causing transfiguration, reduction and decomposition of polygons. Membrane tubules and lamellae also extend from the existing net and thus increase the amount of ER. These movements occur in close correlation with organelle movements, suggesting a structural coalignment of the net with actin microfilaments (MFs). The membranes in the cortical cytoplasm are not distributed randomly but are tethered to certain domains; even when dislocated, they return to such anchoring points. This was not observed with ER reaching deeper into the cytoplasm. We therefore propose that close associations of ER and the plasma membrane (PM) stabilize the cortical ER and may stabilize coaligning MFs as well.Abbreviations AVEC-DIC Allen video-enhanced contrast-differential interference contrast - DiOC6 (3) 3,3-dihexyloxacarbocyanine iodide - ER endoplasmic reticulum - MF microfilament - MT microtubules - PM plasma membrane Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

2.
A 68,000 mol wt polypeptide has been identified as one of the few major proteins in the microfilament bundles of the microvilli present on intestinal epithelial cells. Antibodies against the purified protein have been used in indirect immunofluorescence microscopy on several cultured cells. The protein have been used in indirect immunofluorescence microscopy on several cultured cells. The protein is found particularly prominent in membrane ruffles, microspikes, and microvilli.  相似文献   

3.
Changes in the surface morphology of regenerating rabbit, rat and frog corneal endothelial cells in vivo have been investigated by scanning electron microscopy. In adult tissue these cells do not normally divide unless given a stimulus, such as injury. Surfaces of quiescent rabbit and rat cells are devoid of microvilli but display globular projections and surface pits up to 300 nm in diameter. However, regenerating endothelia are characterized by the appearance of microvilli which attain their greatest length when the cells are rounded. At this stage, cells also possess filopodia and broad processes. In cytokinesis, the microvilli have shortened and blebs and ruffles appear for the first time. In contrast to rabbits and rats, frog endothelial cells of noninjured tissue are covered by microvilli and smaller surface pits of 60-70 nm diameters. During regeneration, these cells have reduced numbers of microvilli and extensive foldings of the membrane. Neither blebs nor filopodia occur during the mitotic cycle and ruffles are not detected until cytokinesis.  相似文献   

4.
A survey study of organelle movements in a variety of cell types of plant and animal origin was made with the aid of video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy followed by fine analysis of the motile behavior of the individual organelles. We found that there exists besides Brownian motion a wide spectrum of active motions in cells, i.e. motion that is directionally biased through the expenditure of metabolic energy. The types of active motion seen range from a continuous motion (sometimes appearing as streaming) in plant cells and neurons to various types of less ordered and less well directed motion. We did not see any clear-cut qualitative difference between plant and animal cells or between systems presumed to be actin- and microtubule-based. A preliminary classification of the types of active motion is presented. The ongoing research activities, which aim at a more precise definition of the different types of motion by a set of quantitative parameters, are described, and the progress made so far is reported.  相似文献   

5.
The relationship between organelle movement and cytoplasmic structure in cultured fibroblasts or epithelial cells was studied using video-enhanced differential interference contrast microscopy and electron microscopy of directly frozen whole mounts. Two functional cytoplasmic domains are characterized by these techniques. A central domain rich in microtubules is associated with directed as well as Brownian movements of organelles, while a surrounding domain rich in f-actin supports directed but often intermittent organelle movements more distally along small but distinct individual microtubule tracks. Differences in the organization of the cytoplasm near microtubules may explain why organelle movements are typically continuous in central regions but usually intermittent along the small tracks through the periphery. The central type of cytoplasm has a looser cytoskeletal meshwork than the peripheral cytoplasm which might, therefore, interfere less frequently with organelles moving along microtubules there.  相似文献   

6.
We report on the internal ultrastructure of long, finger-like microvilli which cover the surface of the fertilized sea urchin egg. Eggs were attached to polylysine-coated surfaces; their upper portions were sheared away with a stream of buffer which left behind only their plasma membranes and adjacent cytoplasmic structures. Scanning electron microscopy (EM) of such fragments revealed intact thin protoplasmic projections radiating away from the body of the cortex. By transmission EM of cortices similarly prepared on grids, small bundles of microfilaments appear as cores within the thin cytoplasmic projections. These microfilaments are shown to be composed of actin by their ability to interact with muscle heavy meromyosin (HMM). HMM-decorated microfilaments possess repeating arrowheads which uniformly point toward the cell interior. Actin bundles in the microvilli of sea urchin eggs may mediate microvillus support and elongation.  相似文献   

7.
The integrin cytoplasmic domain-associated protein-1 (ICAP-1) binds via its C-terminal PTB (phosphotyrosine-binding) domain to the cytoplasmic tails of beta1 but not other integrins. Using the yeast two-hybrid assay, we found that ICAP-1 binds the ROCK-I kinase, an effector of the RhoA GTPase. By coimmunoprecipitation we show that ICAP-1 and ROCK form complexes in cells and that ICAP-1 contains two binding sites for ROCK. In cells transfected with both ICAP-1 and ROCK, the proteins colocalized at the cell membrane predominantly in lamellipodia and membrane ruffles, but also in retraction fibers. ROCK was not found at these sites when ICAP-1 was not co-transfected, indicating that ICAP-1 translocated ROCK. In lamellipodia ICAP-1 and ROCK colocalized with endogenous beta1 integrins and this colocalization was also observed with the isolated ICAP-1 PTB domain. The plasma membrane localization of ROCK did not depend on beta1 integrin ligation or ROCK kinase activity, and in truncated ROCK proteins it required the presence of the ICAP-1-binding domain. To show that the interaction was direct, we measured fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) fused to ICAP-1 and yellow fluorescent protein (YFP) fused to ROCK. FRET was observed in lamellipodia in cells that were induced to spread. These results indicate that ICAP-1-mediated binding of ROCK to beta1 integrin serves to localize the ROCK-I kinase to both the leading edge and the trailing edge where ROCK affects cell migration.  相似文献   

8.
The cellular localization of phospholipase A2 (PLA2) was examined in normal and ras-transformed rat fibroblasts using immunohistochemical techniques. Polyclonal antibodies were generated against porcine pancreatic PLA2 and were affinity purified for use in this study. The antibodies detected a 16-kD band on immunoblots of total cellular proteins from fibroblasts. In cell-free assays of phospholipase A2 activity, the purified antibodies inhibited the bulk of the enzyme activity whereas control IgG preparations had no effect. Immunofluorescence microscopy indicated that PLA2 was diffusely distributed throughout the cell. Increased concentration of PLA2 was detected under membrane ruffles in normal and ras-transformed cells. Specific immunofluorescence staining was also detected on the outer surface of the normal cells. Immunoelectron microscopy demonstrated the increased accumulation of PLA2 in membrane ruffles and also revealed the presence of the enzyme in microvilli and its association with intracellular vesicles. Ultrastructural localization of PLA2 and the ras oncogene protein, using a double immunogold labeling technique, indicated a spatial proximity between PLA2 and ras proteins in the ruffles of ras-transformed cells. The possible role of PLA2 in the structural rearrangements that underlie membrane ruffling is discussed.  相似文献   

9.
Scanning electron microscopy (SEM), especially low-voltage (1 KeV) high-resolution SEM, can be used in conjunction with stereo pair high-voltage (1 MeV) transmission electron microscopy (HVEM) of whole spread cells or thick sections effectively to correlate surface structure with internal structure. Surface features such as microvilli, pits, pseudopodia, ruffles, attached virus, and other surface-related morphologic characteristics can be identified using SEM, while underlying cytoskeletal structure and organelle organization can be viewed by HVEM of the same preparation. However, the need to "prepare" cells for electron microscopy precludes observation in the living state. The use of several types of video-enhanced light microscopy (VLM) permits observation of living cells such that certain surface and internal features can be observed at a relatively high level of resolution or detection. Thus, changes in living cells can be followed, and at appropriate times the cells may be chemically fixed or rapidly frozen and prepared for ultrastructural examination by electron microscopy. We have utilized VLM in conjunction with SEM and HVEM to correlate changes in shape and surface structure with changes in the internal structure of platelets. In addition, we have found it advantageous to use colloidal gold-labeling procedures, because these markers are detectable by all three forms of microscopy. Using this approach we have labeled platelet membrane GPIIb/IIIa, a receptor for RGD-containing adhesive proteins, with gold-fibrinogen or gold-anti-IIb/IIIa. The initial binding and subsequent movement of gold-fibrinogen-IIb/IIIa complexes in living platelets was followed by VLM. The movement of individual labels could be mapped. Subsequent observation by low-voltage (1 KeV) high-resolution SEM and HVEM permits visualization of the same individual receptors tracked by LM. The final position on the membrane or the position-in-transit when fixative was added was determined relative to surface ultrastructure (SEM) and internal, particularly cytoskeletal, ultrastructure (HVEM).  相似文献   

10.
Platelets are produced by megakaryocytes (MKs) through proplatelet formation (PPF), or cytoplasmic extensions, in vitro. Through the use of video-enhanced light microscopy, as well as localization of cytoskeletal proteins by confocal microscopy, the reaction of fully mature MK proplatelets, derived from murine embryonic stem cells, to various agents was studied. Calyculin A (protein phosphatase 1/2A inhibitor) treatment induced proplatelet retraction. In MKs with PPF, the expression of actin, myosin IIA, monophosphorylated myosin light chain (MLC-P1), and diphosphorylated myosin light chain (MLC-P2) was diffusely located. Following calyculin A treatment, actin was diffusely localized in retracted MKs and was expressed particularly in the periphery. MLC-P1 was also localized primarily in the periphery; however, MLC-P2 was expressed mostly in the inner area of proplatelets. Protein phosphatase inhibitors may result in increased hyperphosphorylation of localized MLC, which could alter the balance of actomyosin force in a cell, and therefore induce proplatelets retraction.  相似文献   

11.
The bacterial endotoxin LPS is a potent stimulator of monocyte and macrophage activation and induces adhesion of monocytes. Morphological changes in response to LPS have not been characterized in detail, however, nor have the signaling pathways mediating LPS-induced adhesion been elucidated. We have found that LPS rapidly induced adhesion and spreading of peripheral blood monocytes, and that this was inhibited by the Src family kinase inhibitor PP1 and the phosphatidylinositide 3-kinase inhibitor LY294002. LPS also stimulated actin reorganization, leading to the formation of filopodia, lamellipodia, and membrane ruffles in Bac1 mouse macrophages. Proline-rich tyrosine kinase 2 (Pyk2), a tyrosine kinase related to focal adhesion kinase, and paxillin, a cytoskeletal protein that interacts with Pyk2, were both tyrosine phosphorylated in response to LPS in monocytes and macrophages. Both tyrosine phosphorylation events were inhibited by PP1 and LY294002. Adhesion also stimulated tyrosine phosphorylation of Pyk2 and paxillin in monocytes, and this was further enhanced by LPS. Finally, Pyk2 and paxillin colocalized within membrane ruffles in LPS-stimulated cells. These results indicate that LPS stimulation of monocytes and macrophages results in rapid morphological changes and suggest that Pyk2 and/or paxillin play a role in this response.  相似文献   

12.
A cloned nontumorigenic control cell line of C3H mouse embryo cells (C3H/1OT1/2CL8) and two cell lines derived from it by treatment in vitro with 7,12-dimethylbenz(a)anthracene (DMBA) or 3- methylcholanthrene (MCA) were studied by scanning electron microscopy. Confluent control cells were polygonal in shape and extensively flattened with smooth surfaces. Both in vitro transformants were pleomorphic to fusiform in shape, thicker than the control cells, and lacked contact inhibition. Microvilli of variable length and small marginal ruffles were characteristic surface alterations of the MCA- transformed cells, while blebs and numerous cytoplasmic strands extending between cells were typical of the DMBA transformant. Inoculation of the DMBA-transformed cells into C3H mice and re- establishment of cells from one of the subsequent fibrosarcomas in culture revealed an increased number of microvilli on the surface of the cells and an alteration in growth pattern. Other surface characteristics remained the same. A possible relationship between surface topography and outer membrane glycolipids is discussed.  相似文献   

13.
Summary We have examined the topographical distribution of L-selectin on surface membrane domains of human lymphocytes and murine L1-2 cells transfected to express human L-selectin. L-selectin was immunolocalized using murine monoclonal DREG 200 Fab antibody and a 12 nm colloidal gold-conjugated secondary antibody. Cell surface morphology and surface distribution of gold-labelled L-selectin were visualized using backscatter electron images obtained by high-resolution, field emission scanning electron microscopy. The topographical morphologies of lymphocytes of both types were complex. The surface of human lymphocytes was composed of both microvilli and ruffles; that of the murine cells was composed of long microvilli and few, if any, ruffles. L-selectin on human lymphocytes was observed primarily as focal clusters on the apical surfaces of ruffles and microvilli. Similarly, on the transfected murine cells, L-selectin was detected predominantly on the apical surface of microvilli. We conclude that L-selectin has a common spatial distribution and clustered organization on all leukocytes examined to-date, and that these features of receptor expression likely facilitate rolling of circulating leukocytes on the endothelial surface.  相似文献   

14.
Synchronized populations of Chinese hamster ovary (CHO) cells in confluent culture have been examined by scanning electron microscopy and their surface changes noted as the cells progress through the cycle. During G1 it is characteristic for cells to show large numbers of microvilli, blebs, and ruffles. Except for the ruffles, these tend to diminish in prominence during S and the cells become relatively smooth as they spread thinly over the substrate. During G2 microvilli increase in number and the cells thicken in anticipation of rounding up for mitosis. It appears that the changes observed here reflect the changing capacity of CHO cells during the cycle to respond to contact with other cells in the population, because, as noted in the succeeding paper (Rubin and Everhart), CHO cells in sparse nonconfluent cultures do not show the same wide range of changes during the cell cycle. Normal, nontransformed cells of equivalent type in confluent culture are essentially devoid of microvilli, blebs, and ruffles. The relation of these surface configurations to the internal structure of the cell is discussed.  相似文献   

15.
Eph receptor-ephrin signals are important for controlling repulsive and attractive cell movements during tissue patterning in embryonic development. However, the dynamic cellular responses to these signals at cell-cell contact sites are poorly understood. To examine these events we have used cell microinjection to express EphB4 and ephrinB2 in adjacent Swiss 3T3 fibroblasts and have studied the interaction of the injected cells using time-lapse microscopy. We show that Eph receptors are locally activated wherever neighbouring cells make contact. This triggers dynamic, Rac-regulated membrane ruffles at the Eph-ephrin contact sites. Subsequently, the receptor and ligand cells retract from one another, concomitantly with the endocytosis of the activated Eph receptors and their bound, full-length ephrinB ligands. Both the internalization of the receptor-ligand complexes and the subsequent cell retraction events are dependent on actin polymerization, which in turn is dependent on Rac signalling within the receptor-expressing cells. Similar events occur in primary human endothelial cells. Our findings suggest a novel mechanism for cell repulsion, in which the contact between Eph-expressing and ephrin-expressing cells is destabilized by the localized phagocytosis of the ligand-expressing cell plasma membrane by the receptor-expressing cell.  相似文献   

16.
Extracellular ATP induces cation fluxes in thioglycolate-elicited mouse peritoneal macrophages and the J774 macrophage cell line apparently due to ligation of a plasma membrane receptor for ATP4-. We report that ATP permeabilizes the plasma membrane of J774 cells to 6-carboxyfluorescein (376 Da), lucifer yellow (457 Da), and fura-2 (831 Da) but not to trypan blue (961 Da), Evans blue (961 Da), or larger dye conjugates. We employed fluorescence microscopy and quantitative fluorimetry to study entry of lucifer yellow into the cytoplasm of J774 cells. Permeabilization to lucifer yellow appears to be mediated by the same ATP4- receptor that induces cation fluxes because it was inhibited by divalent cations and low pH, was mediated by the nonhydrolyzable analog adenosine 5'-(beta, gamma-imido)triphosphate, and because a variant J774 cell line resistant to ATP-induced Rb+ efflux did not take up lucifer yellow when exposed to ATP. ATP permeabilization was reversed within 5 min by removal of ATP or by addition of divalent cations. ATP also caused a transient increase in lucifer yellow uptake by pinocytosis. These data suggest that ATP4- ligates a receptor on macrophages which induces the formation of a channel admitting molecules less than or equal to 831 daltons into the cytoplasmic matrix and that removal of ATP4- from the medium causes rapid channel closure.  相似文献   

17.
Chicken oocyte growth: receptor-mediated yolk deposition   总被引:8,自引:0,他引:8  
During the rapid final stage of growth, chicken oocytes take up massive amounts of plasma components and convert them to yolk. The oocyte expresses a receptor that binds both major yolk lipoprotein precursors, vitellogenin (VTG) and very low density lipoprotein (VLDL). In the present study, in vivo transport tracing methodology, isolation of coated vesicles, ligand- and immuno-blotting, and ultrastructural immunocytochemistry were used for the analysis of receptor-mediated yolk formation. The VTG/VLDL receptor was identified in coated profiles in the oocyte periphery, in isolated coated vesicles, and within vesicular compartments both outside and inside membrane-bounded yolk storage organelles (yolk spheres). VLDL particles colocalized with the receptor, as demonstrated by ultrastructural visualization of VLDL-gold following intravenous administration, as well as by immunocytochemical analysis with antibodies to VLDL. Lipoprotein particles were shown to reach the oocyte surface by passage across the basement membrane, which possibly plays an active and selective role in yolk precursor accessibility to the oocyte surface, and through gaps between the follicular granulosa cells. Following delivery of ligands from the plasma membrane into yolk spheres, proteolytic processing of VTG and VLDL by cathepsin D appears to correlate with segregation of receptors and ligands which enter disparate sub-compartments within the yolk spheres. In small, quiescent oocytes, the VTG/VLDL receptor was localized to the central portion of the cell. At onset of the rapid growth phase, it appears that this pre-existing pool of receptors redistributes to the peripheral region, thereby initiating yolk formation. Such a redistribution mechanism would obliterate the need for de novo synthesis of receptors when the oocyte's energy expenditure is to be utilized for plasma membrane synthesis, establishment and maintenance of intracellular topography and yolk formation, and preparation for ovulation.  相似文献   

18.
Defocusing microscopy was used for real-time observation and quantification of membrane surface dynamics in murine bone marrow macrophages. Small random membrane fluctuations (SRMF), possibly metabolic driven, were detected uniformly over all membrane surface. Morphological and dynamical parameters of ruffles, such as shape, dimensions, and velocity of propagation, were analyzed. Optical tweezers were used to promote phagocytosis of single Leishmania amazonensis amastigotes by selected macrophages. Analysis of ruffling activity on the macrophages before and during phagocytosis of the parasites indicated that increased ruffling response near forming phagosomes, most likely induced by the parasite, accelerates phagocytosis. The effects of temperature decrease on the dynamics of membrane surface fluctuations and on the phagocytosis of parasites were used to determine the overall activation energies involved in these processes. The values obtained support the existence of strong correlation between membrane motility and phagocytic capacity.  相似文献   

19.
20.
Accumulation of excess non-esterified free cholesterol (FC) in macrophages is a key factor in macrophage death during late stages of atheroslerosis. Raising FC content in macrophages has been shown to trigger Rac activation and actin polymerisation and to inhibit cell migration. Here, the plasma membrane distribution of the fluorescent cholesterol-mimicking sterol dehydroergosterol (DHE) was investigated in FC-loaded J774 macrophages. Wide field fluorescence and deconvolution microscopy were combined with quantitative assessment of sterol distribution in straightened plasma membrane image segments. DHE's surface distribution matched exactly large ruffles and membrane protrusions which were pronounced in FC-loaded cells. Plasma membrane blebs, however, formed in FC-loaded J774 cells had a homogenous staining along the membrane bilayer at 20 degrees C. The results show that even in FC-loaded cells with increased membrane cholesterol content, sterols do not form a separate phase in the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号