首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modulation of [3H]dopamine release by cholinergic agents (acetylcholine, atropine, d-tubocurarine, oxotremorine, and nicotine) was studied in primary cell cultures derived from whole brains of foetal rats (17 days of gestation). Monolayer and aggregated neuron-enriched cultures were maintained for 17 days in vitro [3H]Dopamine basal outflow was enhanced by acetylcholine, nicotine, and atropine and was unaffected by oxotremorine, hexamethonium, and d-tubocurarine. The action of nicotine was antagonized by d-tubocurarine, and that of atropine was partially blocked by oxotremorine. A similar picture was seen when the influence of cholinergic agents was studied under depolarizing conditions. The action of oxotremorine was dependent on nerve activity. The presence of both muscarinic and nicotinic antagonists was necessary for abolishing the effect of acetylcholine on the dopamine outflow. These results show that dopamine release in both types of neuron-enriched cultures can be influenced by cholinergic agents and that both muscarinic and nicotinic receptors are involved in regulation of the amine's outflow.  相似文献   

2.
The technique of intracerebral dialysis in combination with a sensitive and specific radioenzymatic method was used for recovery and quantification of endogenous extracellular acetylcholine from the striata of freely moving rats. A thin dialysis tube was inserted transversally through the caudate nuclei, and the tube was perfused with Ringer solution, pH 6.1, at a constant rate of 2 microliter min-1. The perfusates were collected at 10-min intervals. In the presence of 1 and 10 microM physostigmine, acetylcholine release was 4.5 +/- 0.02 and 7.3 +/- 0.3 pmol/10 min, respectively (not corrected for recovery). The latter concentration of the acetylcholinesterase inhibitor was used in all experiments. Under basal conditions, acetylcholine output was stable over at least 4 h. A depolarizing K+ concentration produced a sharp, reversible 87% increase in acetylcholine output. Both the basal and K+-stimulated release were Ca2+ dependent. The choline uptake inhibitor hemicholinium-3 (20 micrograms intracerebroventricularly) reduced striatal acetylcholine output to 35% of the basal value within 90 min. Scopolamine (0.34 mg/kg s.c.) provoked a sharp enhancement of acetylcholine release of approximately 63% over basal values, whereas oxotremorine (0.53 mg/kg i.p.) transiently reduced acetylcholine release by 54%. These results indicate the physiological and pharmacological suitability of transstriatal dialysis for monitoring endogenous acetylcholine release.  相似文献   

3.
A vertical-type in vivo microdialysis probe and a sensitive, specific radioimmunoassay (RIA) were used to study the mechanism of acetylcholine (ACh) release in the striatum of anesthetized rats. Without the use of physostigmine, a cholinesterase inhibitor, our RIA could still detect the amount of ACh present in the perfusate (5.6 +/- 0.6 fmol/min, n = 16). Tetrodotoxin (1 microM) produced a significant decrease in the amount of ACh collected in the perfusate, suggesting that basal ACh determined under the present experimental conditions was related to cholinergic neural activity. Atropine (0.1-1 microM) applied topically via the dialysis probe did not affect the amount of ACh recovered in the perfusate in the absence of physostigmine. Addition of physostigmine (10 microM) to the perfusion fluid produced about a 100-fold increase in the amount of ACh collected. In the presence of physostigmine, topical administration of atropine and pirenzepine (0.01-1 microM) through a dialysis probe produced a further three- to fourfold increase in ACh output, whereas a slight increase was produced by AF-DX 116 at the highest concentration (1 microM). These results indicate that presynaptic modulation of ACh release in the striatum does not occur under basal conditions, and that presynaptic M1 muscarinic receptors are involved in the modulation of ACh release when the ACh concentration is raised under certain conditions.  相似文献   

4.
The effect of McN-A-343 and oxotremorine on acetylcholine (ACh) release and choline (Ch) transport was studied in corticocerebral synaptosomes of the guinea pig. The synaptosomes were preloaded with [3H]Ch after treatment with the irreversible cholinesterase inhibitor, diisopropyl fluorophosphate, and then tested for their ability to release isotope-labeled ACh and Ch in the presence and absence of these agents. The kinetics of release were determined at the resting state (basal release) and in the presence of 50 mM K+. Under either condition, McN-A-343 enhanced the release of isotope-labeled ACh, whereas oxotremorine inhibited the K(+)-evoked release but had no effect on the basal release. The enhancing effect of McN-A-343 on basal ACh release was fully blocked by the selective M1 muscarinic antagonist, pirenzepine (100 nM). In contrast to its enhancing effect on ACh release, McN-A-343 potently inhibited Ch efflux as well as Ch influx. These effects were not blocked by atropine, a nonselective muscarinic antagonist. Oxotremorine had no effect on Ch transport. Binding studies showed that McN-A-343 was 3.6-fold more potent in displacing radiolabeled quinuclidinyl benzilate from cerebral cortex muscarinic receptors (mostly M1 subtype) than from cerebellar receptors (mostly M2 subtype), whereas oxotremorine was 2.6-fold more potent in the cerebellum. The displacements of radio-labeled pirenzepine and cis-dioxolane confirmed the M1 subtype preference of McN-A-343 and the M2 subtype preference of oxotremorine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effects of acetylethylcholine mustard and its aziridinium derivative (AMMA) on acetylcholine (ACh) release and [3H]quinuclidinyl benzilate (QNB) binding were studied in rat cortical synaptosomes. After incubation for 5 min at 37 degrees C, AMMA reduced [3H]QNB binding with an IC50 of 9 microM. Following incubation for 5 min with 50 microM AMMA and washing, there was a 62% reduction in the [3H]QNB binding capacity with no change in the KD value for the remaining receptors, a result indicating the irreversibility of the AMMA binding. AMMA and oxotremorine both reduced the basal and 30 mM K+-induced release of newly synthesized [3H]ACh in dose-dependent manners over a 2.5-min period. At identical 50 microM concentrations, AMMA produced a much longer inhibition of basal [3H]ACh release than oxotremorine did. The inhibition of basal and 30 mM K+-induced [3H]ACh release by AMMA (10-250 microM) was blocked by 2 microM atropine during a 2.5-min release incubation, but not during a 30-min release incubation. After synaptosomes were treated with 50 microM AMMA for 5 min and the unbound drug was washed out from the tissue, [3H]ACh release (basal and K+-induced) was reduced. AMMA (50 microM) reduced high-affinity choline uptake and ACh synthesis by greater than 90% in this tissue, but these effects did not account for the [3H]ACh release inhibition, because they were not atropine sensitive and hemicholinium-3 had no effect on [3H]ACh release under the conditions used in these studies, i.e., after extracellular [3H]choline was washed out. Taken together, these results suggest that AMMA may be an irreversible agonist at presynaptic muscarinic autoreceptors.  相似文献   

6.
The modulation of striatal cholinergic neurons by somatostatin (SOM) was studied by measuring the release of acetylcholine (ACh) in the striatum of freely moving rats. The samples were collected via a transversal microdialysis probe. ACh level in the dialysate was measured by the high performance liquid chromatography method with an electrochemical detector. Local administration of SOM (0.1, 0.5 and 1 microM) produced a long-lasting and concentration-dependent increase in the basal striatal ACh output. The stimulant effect of SOM was antagonized by the SOM receptor antagonist cyclo(7-aminopentanoyl-Phe-D-Trp-Lys-Thr[BZL]) (1 microM). In a series of experiments, we studied the effect of 6,7-dinitroquinoxaline-2, 3-dione (DNQX), a selective non-NMDA (N-methyl-D-aspartate) glutamatergic antagonist, on the basal and SOM-induced ACh release from the striatum. DNQX, 2 microM, perfused through the striatum had no effect on the basal ACh output but inhibited the SOM (1 microM)-induced ACh release. The non-NMDA glutamatergic receptor antagonist 1-(4-aminophenyl)-4-methyl-7,8-methylendioxy-5H-2,3- benzodiazepine (GYKI-52466), 10 microM, antagonized the SOM (1 microM)-induced release of ACh in the striatum. Local administration of the NMDA glutamatergic receptor antagonist, 2-amino-5-phosphonopentanoic acid (APV), 100 microM, blocked SOM (1 microM)-evoked ACh release. Local infusion of tetrodotoxin (1 microM) decreased the basal release of ACh and abolished the 1 microM SOM-induced increase in ACh output suggesting that the stimulated release of ACh depends on neuronal firing. The present results are the first to demonstrate a neuromodulatory role of SOM in the regulation of cholinergic neuronal activity of the striatum of freely moving rats. The potentiating effect of SOM on ACh release in the striatum is mediated (i) by SOM receptor located on glutamatergic nerve terminals, and (ii) by NMDA and non-NMDA glutamatergic receptors located on dendrites of cholinergic interneurones of the striatum.  相似文献   

7.
This study characterizes the muscarinic cholinergic receptors associated with the inhibition of adenylate cyclase on N18TG2 neuroblastoma cell membranes. Agonists could be divided into two classes: oxotremorine, acetylcholine, carbachol and arecoline exerted the most efficacious and potent inhibition, while McN-A343, bethanechol and AHR-602 were partial agonists. Both quinuclidinyl benzilate and atropine maximally antagonized the inhibitory effect of McN-A343, carbachol and oxotremorine. Pirenzepine was almost as potent as atropine in reversing the inhibitory effect of McN-A343, but was 300 times less potent than atropine or quinuclidinyl benzilate in antagonizing the effects of either carbachol or oxotremorine. Gallamine was ineffective as an antagonist at concentrations up to 1 mM. These results suggest that the receptors that modulate this inhibition are of the M2 type, since they were activated by carbachol, acetylcholine and oxotremorine, but much less by McN-A343 and AHR-602 (both M1 selective agonists). The full agonists were blocked by atropine and quinuclidinyl benzilate but not by low concentrations of pirenzepine (M1 selective antagonist).  相似文献   

8.
Various putative striatal transmitters and related compounds were studied for their effects on the release of gamma-aminobutyric acid (GABA) from slices of the head of the rabbit caudate nucleus. The slices were preincubated with [3H]GABA and then superfused and stimulated electrically at 5 or 20 Hz. Aminooxyacetic acid was present throughout. The main changes observed were the following. The basal and, less consistently, the electrically evoked overflow of [3H]GABA were enhanced by 3,4-dihydroxyphenylethylamine (dopamine), an effect not blocked by cis-flupentixol or domperidone and not mimicked by apomorphine and D1-selective agonists. The electrically evoked overflow was diminished by 5-hydroxytryptamine (serotonin); the inhibition was prevented by methiothepin. The basal but not the electrically evoked overflow was enhanced by carbachol; acetylcholine and nicotine also accelerated the basal outflow whereas oxotremorine caused no consistent change; the effect of carbachol and acetylcholine were blocked by hexamethonium but not by atropine or by tetrodotoxin. These findings indicate that the GABA neurons in the caudate nucleus may be stimulated by dopamine, although the receptor type involved remains unclear; inhibited by serotonin; and stimulated by acetylcholine acting via a nicotine receptor. However, all drug effects observed were relatively small. No evidence was obtained for autoreceptors, alpha 2-adrenoceptors or receptors for opioids, adenosine or substance P at the GABA neurons.  相似文献   

9.
The present study demonstrates the feasibility of measuring acetylcholine in perfusion samples collected by means of in vivo brain dialysis in the striata of freely moving rats. The output of the dialysis device was directly connected to an automated sample valve of a HPLC-assay system that comprises a cation exchanger, a post-column enzyme reactor, and an electrochemical detector. The presence of an acetylcholinesterase inhibitor (neostigmine) in the perfusion fluid was required for the detection of acetylcholine in the perfusate. Increasing concentrations of neostigmine induced increasing amounts of acetylcholine. Continuous perfusion with a fixed concentration (2 microM) of neostigmine resulted in gradually increasing amounts of collected acetylcholine over time although a considerable variation between successive samples exists. The brain dialysis technique was further validated by studying the effect of various drugs. Systemically administered atropine increased the output of acetylcholine, whereas the addition of tetrodotoxin to the perfusion fluid resulted in a complete disappearance of the neurotransmitter.  相似文献   

10.
Dopaminergic nerve endings in the corpus striatum possess nicotinic (nAChRs) and muscarinic cholinergic receptors (mAChRs) mediating release of dopamine (DA). Whether nAChRs and mAChRs co-exist and interact on the same nerve endings is unknown. We here investigate on these possibilities using rat nucleus accumbens synaptosomes pre-labeled with [3H]DA and exposed in superfusion to cholinergic receptor ligands. The mixed nAChR–mAChR agonists acetylcholine (ACh) and carbachol provoked [3H]DA release partially sensitive to the mAChR antagonist atropine but totally blocked by the nAChR antagonist mecamylamine. Addition of the mAChR agonist oxotremorine at the minimally effective concentration of 30 μmol/L, together with 3, 10, or 100 μmol/L (−)nicotine provoked synergistic effect on [3H]DA overflow. The [3H]DA overflow elicited by 100 μmol/L (−)nicotine plus 30 μmol/L oxotremorine was reduced by atropine down to the release produced by (−)nicotine alone and it was abolished by mecamylamine. The ryanodine receptor blockers dantrolene or 8-bromo-cADP-ribose, but not the inositol 1,4,5-trisphosphate receptor blocker xestospongin C inhibited the (−)nicotine/oxotremorine evoked [3H]DA overflow similarly to atropine. This overflow was partly sensitive to 100 nmol/L methyllycaconitine which did not prevent the synergistic effect of (−)nicotine/oxotremorine. Similarly to (−)nicotine, the selective α4β2 nAChR agonist RJR2403 exhibited synergism when added together with oxotremorine. To conclude, in rat nucleus accumbens, α4β2 nAChRs exert a permissive role on the releasing function of reportedly M5 mAChRs co-existing on the same dopaminergic nerve endings.  相似文献   

11.
Abstract: Basal levels of endogenous 3,4-dihydroxyphenylalanine (DOPA) were detected by HPLC coupled with coulometric detection in dialysates from freely moving rats implanted 48–72 h earlier with transversal dialysis fibers in the dorsal caudate. Because decarboxylase inhibitor is absent in the Ringer's solution, this method allows monitoring of basal output of dopamine (DA) and 3,4-dihydroxyphenylacetic acid, as well as DOPA. Extracellular DOPA concentrations were reduced by the tyrosine hydroxylase inhibitor α-methylparatyrosine (200 mg/kg, i.p.) and by the dopaminergic agonist apomorphine (0.25 mg/kg, s.c.). The dopaminergic antagonist haloperidol (0.2 mg/kg, s.c.) stimulated DOPA output by about 60% over basal values. γ-Butyrolactone, at doses of 700 mg/kg, i.p., which are known to block dopaminergic neuronal firing and which reduce DA release, stimulated DOPA output maximally by 130% over basal values. Tetrodotoxin, which blocks DA release by blocking voltage-dependent Na+ channels, increased DOPA output maximally by 100% over basal values. The results indicate that basal DOPA can be detected and monitored in the extracellular fluid of the caudate of freely moving rats by transcerebral dialysis and can be taken as a dynamic index of DA synthesis in pharmacological conditions.  相似文献   

12.
The purpose of this study was to determine whether the cholinergic system might have a regulatory role on vasoactive intestinal peptide (VIP) synthesis and release in the rat hippocampus and frontal cortex. Incubation of hippocampal or frontal cortical slices with the muscarinic agonist oxotremorine or antagonist atropine did not significantly alter VIP release. The nicotinic agonist methylcarbamylcholine (MCC) and the nicotinic antagonist dihydro-beta-erythroidine were also ineffective in altering VIP release. Chronic atropine (20 mg/kg, s.c., b.i.d., 10 days) and nicotine (0.59 mg/kg, s.c., b.i.d., 10 days) treatment significantly decreased the VIP content of the frontal cortex, by 42% and 26%, respectively. In contrast, neither treatment significantly altered the VIP content of the hippocampus. Both drug treatments decreased the amount of VIP released from tissue slices depolarized with veratridine in both cerebral cortex and hippocampus. Therefore, long-term treatment with atropine and nicotine results in changes in the synthesis and release of VIP in the cerebral cortex, whereas in the hippocampus the effect is limited to an alteration of VIP release. These results suggest that the acetylcholine regulates VIP neurotransmission in the rat frontal cortex and hippocampus by an action on muscarinic and nicotinic receptors.  相似文献   

13.
By immunohistochemistry galanin-like immunoreactivity and vasoactive intestinal polypeptide (VIP)-like immunoreactivity were found in nerve cell bodies mostly in the submucous plexus and in nerve fibres in the mucosa, submucosa and muscularis including the myenteric plexus of the porcine ileum and were found to co-exist in most of these structures. Using isolated, perfused porcine ileum we studied the release of galanin and VIP in response to electrical stimulation of the mixed periarterial nerves or to intraarterial infusions of different neuroactive agents. Nerve stimulation (4-10 Hz) inhibited the basal release of galanin and VIP from the ileum (to 69 +/- 6 and 62 +/- 6% of basal release). After infusion of the alpha-adrenergic blocker, phentolamine, (10(-6) M) electrical stimulation increased the release of both galanin and VIP (to 140 +/- 12 and 133 +/- 13% of basal output). This increase was abolished by atropine (10(-6) M) and by hexamethonium (3.10(-5) M). Infusion of norepinephrine (10(-6) M) inhibited, whereas acetylcholine (10(-6) M) stimulated the release of both peptides. The effect of the latter was abolished by atropine. The inhibitory effect of nerve stimulation was not influenced by atropine. Our results suggest that the galanin- and VIP-producing intrinsic neurons receive inhibitory signals by noradrenergic nerve fibers and stimulatory signals mediated by cholinergic nerves, possibly via a cholinergic interneuron.  相似文献   

14.
《Insect Biochemistry》1984,14(3):337-344
Synaptosomes prepared from ganglia of Locusta migratoria, are able to accumulate [3H]choline and convert most of it to acetylcholine. Exposure of the labelled synaptosomes to media containing elevated K+ concentrations evoked a large increase in the efflux of tritiated acetylcholine. Some characteristics of acetylcholine release from insect nerve terminals were studied by continously perfusing synaptosomes with various solutions. Depolarization of the nerve endings with veratridine or K+ induced a release which was dependent on extracellular calcium, whereas Mg2+ inhibited the release. Pretreatment with the Ca2+-ionophore, A 23187, allowed a calcium-induced release under non-depolarizing conditions. The calcium-dependent efflux is thought to reflect stimulus-secretion coupling processes. In the presence of eserine and carbamylcholine the release was inhibited. Analysis of various cholinergic drugs revealed that the evoked efflux was susceptible to muscarinic ligands, it was enhanced by atropine and reduced by oxotremorine. The results suggest a feed-back regulation of acetylcholine release via muscarinic autoreceptors.  相似文献   

15.
To simultaneously monitor acetylcholine release from pre-ganglionic adrenal sympathetic nerve endings and catecholamine release from post-ganglionic adrenal chromaffin cells in the in vivo state, we applied microdialysis technique to anesthetized rats. Dialysis probe was implanted in the left adrenal medulla and perfused with Ringer's solution containing neostigmine (a cholinesterase inhibitor). After transection of splanchnic nerves, we electrically stimulated splanchnic nerves or locally administered acetylcholine through dialysis probes for 2 min and investigated dialysate acetylcholine, choline, norepinephrine and epinephrine responses. Acetylcholine was not detected in dialysate before nerve stimulation, but substantial acetylcholine was detected by nerve stimulation. In contrast, choline was detected in dialysate before stimulation, and dialysate choline concentration did not change with repetitive nerve stimulation. The estimated interstitial acetylcholine levels and dialysate catecholamine responses were almost identical between exogenous acetylcholine (10 microM) and nerve stimulation (2 Hz). Dialysate acetylcholine, norepinephrine and epinephrine responses were correlated with the frequencies of electrical nerve stimulation, and dialysate norepinephrine and epinephrine responses were quantitatively correlated with dialysate acetylcholine responses. Neither hexamethonium (a nicotinic receptor antagonist) nor atropine (a muscarinic receptor antagonist) affected the dialysate acetylcholine response to nerve stimulation. Microdialysis technique made it possible to simultaneously assess activities of pre-ganglionic adrenal sympathetic nerves and post-ganglionic adrenal chromaffin cells in the in vivo state and provided quantitative information about input-output relationship in the adrenal medulla.  相似文献   

16.
To determine the basal aceylcholine level in the dialysate of rat frontal cortex, a horseradish peroxidase-osmium redox polymer-modified glassy carbon electrode (HRP-GCE) was employed instead of the conventional platinum electrode used in high-performance liquid chromatography-electrochemical detection (HPLC-ED). In initial experiments, an oxidizable unknown compounds interfered with the detection of basal acetylcholine release on HPLC-HRP-GCE. An immobilized peroxidase-choline oxidase precolumn (pre-reactor) was included in the HPLC system, to eliminate the interference from the unknown compound. This combination could detect less than 10 fmol of standard acetylcholine and basal acetylcholine levels in the dialysate from a conventional concentric design microdialysis probe, without the use of cholinesterase inhibitor, and may facilitate physiological investigation of cholinergic neuronal activity in the central nervous system.  相似文献   

17.
Presynaptic receptors modulating the release of acetylcholine (ACh) were studied in fetal septal neurons cultured in a growth medium to which various drugs were added from day 3 in vitro (DIV 3) to DIV 14. The influence of these drugs on the function of the presynaptic muscarinic (M-) autoreceptor was determined at DIV 14 by measuring the inhibitory effect of the M-agonist oxotremorine on the electrically-evoked release of [(3)H]ACh from cultures pre-incubated with [(3)H]choline. The presence of the M-agonists oxotremorine (100 micromol/L) or carbachol (100 micromol/L) from DIV 3 to DIV 14, or from DIV 13 to DIV 14, abolished M-autoreceptor function at DIV 14, whereas the presence of the M-antagonist atropine (10 micromol/L from DIV 3 to DIV 14) during growth left M-autoreceptor function unaltered. Inhibition of ACh esterase by donepezil (1 micromol/L from DIV 3 to DIV 14) weakly decreased M-autoreceptor function at DIV 14; inhibition of neuronal firing by 0.1 tetrodotoxin (0.1 micromol/L from DIV 3 to DIV 14) did not tend to affect M-autoreceptor function at DIV 14. Co-cultivation of fetal septal and raphe neurons for 2 weeks yielded cell cultures containing both vesicular ACh transporter- and tryptophan hydroxylase-immunopositive cells. From these cultures, the release of both [(3)H]ACh and [(3)H]5-HT could be induced by electrical field stimulation. In co-cultured neurons versus septal-only ones the inhibitory effect of oxotremorine on the evoked release of [(3)H]ACh appeared almost normal, whereas that of the selective 5-HT(1B) agonist 3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrollo[3,2-b]pyrid-5-one (CP-93,129) was completely abolished. The effects of CP-93,129 were also absent on DIV 14 in septal mono-cultures grown in the presence of CP-93,129 (10 micromol/L) from DIV 3 to DIV 14. It is therefore concluded that the regulation of presynaptic receptor function strongly depends on the concentrations of endogenous transmitters in the neuronal environment.  相似文献   

18.
By immunohistochemistry, CGRP-like immunoreactive (CGRP-LI) nerve fibres were found in the lamina propria along small vessels and in the lamina muscularis mucosae in the porcine ileum. Immunoreactive nerve cell bodies were found in the submucous and myenteric plexus. Upon HPLC-analysis of ileal extracts, CGRP-LI corresponded entirely to porcine CGRP plus smaller amounts of oxidised CGRP. Using isolated vascularly perfused segments of the ileum, we studied the release of CGRP-LI in response to electrical stimulation of the mixed extrinsic periarterial nerves and to infusion of different neuroblockers. In addition, the effect of infusion of capsaicin was studied. The basal output of CGRP-LI was 2.9+/-0.7 pmol/5 min (mean+/-S.D.). Electrical nerve stimulation (8 Hz) significantly increased the release of CGRP-LI to 167+/-16% (mean+/-S.E.M.) of the basal output (n=13). This response was unaffected by the addition of atropine (10(-6) M). Nerve stimulation during infusion of phentolamine (10(-5) M) with and without additional infusion of atropine resulted in a significant further increase in the release of CGRP-LI to 261+/-134% (n=5) and 240+/-80% (n=9), respectively. This response was abolished by infusion of hexamethonium (3x10(-5) M). Infusion of capsaicin (10(-5) M) caused a significant increase in the release of CGRP-LI to 485+/-82% of basal output (n=5). Our results suggest a dual origin of CGRP innervation of the porcine ileum (intrinsic and extrinsic). The intrinsic CGRP neurons receive excitatory input by parasympathetic, possibly vagal, preganglionic fibres, via release of acetylcholine acting on nicotinic receptors. The stimulatory effect of capsaicin suggests that CGRP is also released from extrinsic sensory neurons.  相似文献   

19.
The actions of acetylcholine and cholinergic ligands have been studied using dorsal midline neurones from the rnetathoracic ganglion of the cockroach Periplaneta americana.Both nicotine and oxotremorine depolarized dorsal midline neuronal cell bodies.Dose-response curves for nicotine and oxotremorine saturated at different levels. Nicotine-induced depolarizations were completely or partially blocked by mecamylamine, d-tubocurarine, strychnine, and bicuculline, but were insensitive to alpha-bungarotoxin(100 nM), atropine (100 micronM),Scopolamine (10 micronM), and pirenzepine (50 micronM). Following pretreatment with collagenase, the dorsal midline neurones were sensitive to high doses of alpha-bungarotoxin (3 micronM). Oxotremorine-induced depolarizations were blocked by scopolamine (10 micronM) atropine (100 micronM), and pirenzepine (50 micronM) and were insensitive to mecamylamine (10 micronM) and d-tubocurarine (100 micronM). The results indicate the coexistence of at least two distinct acetylcholine receptors on dorsal midline neuronal cell bodies in the cockroach metathoracic ganglion.  相似文献   

20.
Spontaneous and potassium-induced acetylcholine release from embryonic (E12 and E18) chick dorsal root ganglia explants at 3 and 7 days in culture was investigated using a chemiluminescent procedure. A basal release ranging from 2.4 to 13.8 pm/ganglion/5 min was detected. Potassium application always induced a significant increase over the basal release. The acetylcholine levels measured in E12 explants were 6.3 and 38.4 pm/ganglion/5 min at 3 and 7 days in culture, respectively, while in E18 explant cultures they were 10.7 and 15.5 pm/ganglion/5 min. In experiments performed in the absence of extracellular Ca2+ ions, acetylcholine release, both basal and potassium-induced, was abolished and it was reduced by cholinergic antagonists. A morphometric analysis of explant fibre length suggested that acetylcholine release was directly correlated to neurite extension. Moreover, treatment of E12 dorsal root ganglion-dissociated cell cultures with carbachol as cholinergic receptor agonist was shown to induce a higher neurite outgrowth compared with untreated cultures. The concomitant treatment with carbachol and the antagonists at muscarinic receptors atropine and at nicotinic receptors mecamylamine counteracted the increase in fibre outgrowth. Although the present data have not established whether acetylcholine is released by neurones or glial cells, these observations provide the first evidence of a regulated release of acetylcholine in dorsal root ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号