首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: This study investigates changes in microbiological and physicochemical parameters during large-scale, thermophilic composting of a single batch of municipal organic waste. The inter-relationships between the microbial biomass and community structure as well as several physicochemical parameters and estimates of maturation were evaluated. METHODS AND RESULTS: Analyses of signature fatty acids with the phospholipid fatty acid and ester-linked methods showed that the total microbial biomass was highest during the early thermophilic phase. The contribution of signature 10Me fatty acids from Actinobacteria indicated a relatively constant proportion around 10% of the microbial community. However, analyses of the Actinobacteria species composition with a PCR-denaturing gradient gel electrophoresis approach targeting 16S rRNA genes demonstrated clear shifts in the community structure. CONCLUSIONS: This study demonstrates that compost quality, particularly maturity, is linked to the composition of the microbial community structure, but further studies in other full-scale systems are needed to validate the generality of these findings. SIGNIFICANCE AND IMPACT OF THE STUDY: The combination of signature lipid and nucleic acid-based analyses greatly expands the specificity and the scope for assessing the microbial community composition in composts. The results presented in this study give new information on how the development of the compost microbial community is connected to curing and maturation in the later stages of composting, and emphasizes the role of Actinobacteria in this respect.  相似文献   

2.
微生物在有机固废堆肥中的作用与应用   总被引:6,自引:3,他引:6  
好氧堆肥是实现有机固体废弃物资源化利用的主流处理方式.堆肥腐熟是一个由微生物主导的生理生化过程,堆料通过微生物发酵实现矿质化、腐殖化和无害化,转变成腐熟的有机肥.传统的好氧堆肥存在发酵周期长、养分损失、恶臭及温室气体排放等不足.在堆肥过程中添加微生物是弥补传统好氧堆肥缺陷、提高堆肥品质和功效的有效方法.近年来,国内外在...  相似文献   

3.
《植物生态学报》2017,41(12):1251
Aims Plant roots store large amount of terrestrial carbon, but little is known about humus formation processes during the decomposing root litter. Compared with coarse roots, fine roots have greater nutrients, which may be favorable to humus formation. The objective of the study was to examine how root diameters affect their humus formation processes. Methods In this study, in order to examine the accumulation of humic acid and fulvic acid of three root diameter classes (0-2, 2-5 and 5-10 mm) of two subalpine tree species (Abies faxoniana and Picea asperata) on the eastern Qinghai-Xizang Plateau of China, a two-year field experiment was conducted using a litter-bag method. Air-dried roots of A. faxoniana and P. asperata were placed in litterbags and incubated at 10 cm of soil depth in October 11th, 2013. Duplicate litter bags were collected in May (late winter) and October (late in the growing season) of 2014 and 2015, respectively. Concentrations of humic acid and fulvic acid were measured, and net accumulations were calculated for different periods. Important findings The concentrations of humic acid and fulvic acid were significantly influenced by root diameter that humic acid and fulvic acid decreased with increase in root diameter. Root diameter had significant effects on the net accumulation of humic acid, but not for the accumulation of fulvic acid. However, there were no significant differences in both humic acid and fulvic acid between A. faxoniana and P. asperata roots. Regardless of tree species, humic acid degraded during the winter but accumulated during the growing season. After two years of decomposition, the net accumulations of humic acid in 0-2, 2-5 and 5-10 mm roots were 8.0, 10.8 and 7.6 g·kg-1 for P. asperata and 15.2, 8.0 and 7.8 g·kg-1 for A. faxoniana, respectively. Conversely, the degradation of fulvic acid in 0-2, 2-5 and 5-10 mm roots were 178.0, 166.0 and 118.0 g·kg-1 for P. asperata and 170.0, 160.0 and 128.0 g·kg-1 for A. faxoniana, respectively. Our results suggest that diameter-associated variations in substrate quality could be an important driver for root litter humification in this subalpine forest. Moreover, diameter effect is dependent on decomposition period in this specific area.  相似文献   

4.
There are few reports on the material transformation and dominant microorganisms in the process of greening waste (GW) composting. In this study, the target microbial community succession and material transformation were studied in GW composting by using MiSeq sequencing and PICRUSt tools. The results showed that the composting process could be divided into four phases. Each phase of the composting appeared in turn and was unable to jump. In the calefactive phase, microorganisms decompose small molecular organics such as FA to accelerate the arrival of the thermophilic phase. In the thermophilic phase, thermophilic microorganisms decompose HA and lignocellulose to produce FA. While in the cooling phase, microorganisms degrade HA and FA for growth and reproduction. In the maturation phase, microorganisms synthesize humus using FA, amino acid and lignin nuclei as precursors. In the four phases of the composting, different representative genera of bacteria and fungi were detected. Streptomyces, Myceliophthora and Aspergillus, maintained high abundance in all phases of the compost. Correlation analysis indicated that bacteria, actinomycetes and fungi had synergistic effect on the degradation of lignocellulose. Therefore, it can accelerate the compost process by maintaining the thermophilic phase and adding a certain amount of FA in the maturation phase.  相似文献   

5.
Fewer and fewer municipal solid wastes are treated by composting in China because of the disadvantages of enormous investment, long processing cycle and unstable products in a conventional composting treatment. In this study, a continuous thermophilic composting (CTC) method, only a thermophilic phase within the process, has been applied to four bench-scale composting runs, and further compared with a conventional composting run by assessing the indexes of pH, total organic carbon (TOC), total Kjeldahl nitrogen (TKN), C/N ratio, germination index (GI), specific oxygen uptake rate (SOUR), dissolved organic carbon (DOC) and dehydrogenase activity. After composting for 14 days, 16 days, 18 days and 19 days in the four CTC runs, respectively, mature compost products were obtained, with quality similar to or better than which had been stabilized for 28 days in run A. The products from the CTC runs also showed favorable stability in room temperature environment after the short-term composting at high temperature. The study suggested CTC as a novel method for rapid degradation and maturation of organic municipal solid wastes.  相似文献   

6.
Aim: This study investigated the growth potential of Salmonella serotype Typhimurium and faecal indicator organisms in compost materials and the correlation between bacterial growth potential and the physico‐chemical composition of the compost substrate and temperature. Methods and Results: Survival of Salm. Typhimurium, Enterococcus spp. and total coliforms at 14, 24 and 37°C was determined in material of different degrees of maturity collected from composting plants for household waste and manure. All three micro‐organisms showed the potential for growth in the material from active composts (Solvita index 4) but inactivation generally occurred over time in mature compost material (Solvita index 7–8). Conclusions: Salm. Typhimurium had the potential for growth in psychrophilic/mesophilic (P/M) zones of immature compost material and its growth potential correlated negatively with the maturity of the compost and the temperature within the simulated P/M zone. Significance and Impact of the Study: The risk of pathogen regrowth in P/M zones during organic waste composting further emphasizes the importance of good management practices and of avoiding P/M zones in combination with low compost maturity.  相似文献   

7.
在实验室可控条件下,以碳氮比28.7∶1的农业有机废弃物(牛粪和稻秆)为赤子爱胜蚓(Eisenia foetida)的培养基质,研究蚯蚓的堆制作用对有机物料的化学及生物学特性的影响.结果表明: 蚯蚓堆制处理30 d后,基质pH值、碳氮比显著降低,全磷显著升高,而全氮、碱解氮、可溶性碳、速效磷、微生物生物量碳、呼吸速率和微生物熵分别提高8.5%、2.6%、18%、63%、212%、44%和300%,有机质、呼吸熵分别降低5.0%和21.9%.蚯蚓堆制处理后物料具有较高的转化酶、酸性和碱性磷酸酶活性,较低的过氧化氢酶和脲酶活性.多元数据分析结果显示,自然堆制和蚯蚓堆制处理物料的化学和生物学特性均呈现显著的差异性.蚯蚓堆制处理优于自然堆制处理,可以明显改善有机物料的化学、生物学性质,是一种高效率处理农业有机废弃物的技术.  相似文献   

8.
新型大颗粒活化腐植酸肥(LAF)在苹果化肥减量和果实稳产方面的效果显著,探明其对土壤团聚体和有机碳的影响是揭示该新型肥料对苹果土壤结构影响的重要依据。本研究设置4个LAF处理:LAF1[全量施肥,施肥时期及重量比(下同):萌芽期∶膨果期∶成熟期=3∶4∶3]、LAF2(全量施肥,萌芽期∶膨果期∶成熟期=2∶3∶5)、LAF3(减量1/4施肥,萌芽期∶膨果期∶成熟期=2∶3∶5)、LAF4(减量1/3施肥,萌芽期∶膨果期∶成熟期=2∶3∶5),以不施肥(CK)处理为对照。通过4年盆栽试验,研究苹果土壤团聚体组成、稳定性和有机碳对不同施肥处理的响应。结果表明: 1)与CK相比,LAF各处理显著提高了土壤水稳性大团聚体含量,>2 mm和2~0.25 mm粒径团聚体含量分别提高了53.4%~77.5%和12.3%~17.0%,且提高幅度随施肥量的增加而增大,其中LAF1处理土壤水稳性大团聚体含量最高。2)LAF各处理在各粒径团聚体含量上差异不显著,其中2~0.25 mm粒径团聚体含量所占的比例最高。3)与CK相比,LAF各处理均显著提高了团聚体平均重量直径(MWD)和几何平均直径(GMD),降低了分形维数(D),其中LAF1处理的MWD和GMD值最高,对土壤团聚体稳定性提升效果最好。4)除LAF4外,其他LAF处理土壤有机碳含量均显著高于CK,其中LAF2处理土壤有机碳含量最高;LAF各处理均增加了土壤各粒径团聚体有机碳含量,LAF1、LAF2、LAF3处理显著提高了>2 mm粒径团聚体有机碳含量,且>2 mm团聚体有机碳对总有机碳的贡献率最大;LAF各处理的水稳性大团聚体有机碳对总有机碳的贡献率均显著高于CK,且贡献率均在66.0%以上,其中LAF1处理最高。综上,施用LAF在促进苹果土壤水稳性大团聚体形成和稳定性、提高团聚体有机碳含量上应用效果显著,其中全量施用效果最好。施用LAF可作为改善苹果土壤结构和提升土壤肥力的有效措施。  相似文献   

9.
This paper presents results obtained on the evaluation of static composting process aimed at bioremediation of the hazardous solid olive mill waste (OMW). The static composting process carried out in gas-permeable polyethylene bags followed the fluctuating temperature and oxygen profiles similar to those seen in aerated composting systems. Static composting resulted in apparent increases and decreases in values for total nitrogen and C:N ratios respectively during the process. The amount of nitrogen (>3%) in the composting end product was in agreement with the Italian legislation (Decreto Legislativo 29 aprile 2010, n. 75) specification for nitrogen fertilizer. A gradual decrease in polyphenols during the storage of compost resulted in a non-phytotoxic composted organic matter high in humic substances. Different respirometric tests also stated high biological stability of the end compost product.  相似文献   

10.
Humic substances were extracted from a soil treated, in a 4-year experiment, at different rates with a sludge from anaerobic treatment of combined civil and industrial wastes, and with agricultural manure. Elemental and chemical analyses, molecular weight (MW) distribution and infrared (IR) spectroscopy were performed on the purified humic acids (HA). Organic wastes significantly increased the HA content of the treated soils and improved CEC. The C/N, C/H and C/O ratios of HA extracted from the original wastes showed a higher degree of humification for sludge than for manure. This difference was also noticed for the C/N ratio of soil humic extracts, indicating a faster humification process for the sludges in soil. The content of oxygen-containing functional groups was lower than the ‘model’ HA reported in the literature, and even more so for HA from sludges, reflecting their anaerobic formation. MW distribution and E4/E6 ratios showed that the sludge material had a higher molecular complexity than manure, supporting the high degree of humification attributed to the former. HA extracted from sludge-treated soils revealed a molecular dimension increasing with the application doses of waste material. Infrared spectra showed that HA formed in soils after waste additions reflected the chemical composition of the original organic material, which was rich in aliphatic groups and peptides for sludge and in carbohydrates for manure. On the basis of this study, it is concluded that not only are organic waste additions able to build up the HA content in soils but the HA formed assume the chemical characteristics and the degree of humification of the original material.  相似文献   

11.
This study aims to establish the contribution of the water soluble and water insoluble organic fractions to total oxygen uptake rate during high rate composting process of a mixture of organic fraction of municipal solid waste and lignocellulosic material. This mixture was composted using a 20 l self-heating pilot scale composter for 250 h. The composter was fully equipped to record both the biomass-temperature and oxygen uptake rate. Representative compost samples were taken at 0, 70, 100, 110, 160, and 250 h from starting time. Compost samples were fractionated in water soluble and water insoluble fractions. The water soluble fraction was then fractionated in hydrophilic, hydrophobic, and neutral hydrophobic fractions. Each fraction was then studied using quantitative (total organic carbon) and qualitative analysis (diffuse reflectance infrared spectroscopy and biodegradability test). Oxygen uptake rates were high during the initial stages of the process due to rapid degradation of the soluble degradable organic fraction (hydrophilic plus hydrophobic fractions). Once this fraction was depleted, polymer hydrolysis accounted for most of the oxygen uptake rate. Finally, oxygen uptake rate could be modeled using a two term kinetic. The first term provides the oxygen uptake rate resulting from the microbial growth kinetic type on easily available, no-limiting substrate (soluble fraction), while the second term considers the oxygen uptake rate caused by the degradation of substrate produced by polymer hydrolysis.  相似文献   

12.
微生物燃料电池(Microbial fuel cell,MFC)是一种近几年快速发展的废物处理与能源化技术,可以与污水处理、污染物降解、脱盐等环境技术结合。微生物燃料电池与堆肥技术结合可以在处理日益增长的固体废弃物的同时回收能量,具有很好的发展前景。文中分析了堆肥微生物燃料电池系统的微生物特征,探讨了堆肥过程中影响微生物燃料电池产电性能的因素,包括电极,隔膜,供氧和构型。最后归纳说明了堆肥微生物电池作为一种新的废弃物处理技术的特点:较高的微生物量并可产生较高的电流密度;对不同环境的适应性强;可以自身调节温度,能源利用效率高;质子从阳极向阴极的移动会受到不同堆肥原料的影响。  相似文献   

13.
Microbial characterization during composting of municipal solid waste   总被引:29,自引:0,他引:29  
This study investigates the prevailing physico-chemical conditions and microbial community; mesophilic bacteria, yeasts and filamentous fungi, bacterial spores, Salmonella and Shigella as well as faecal indicator bacteria: total coliforms, faecal coliforms and faecal Streptococci, present in a compost of municipal solid waste. Investigations were conducted in a semi-industrial pilot plant using a moderate aeration during the composting process. Our results showed that: (i) auto-sterilization induced by relatively high temperatures (60–55°C) caused a significant change in bacterial communities. For instance, Escherichia coli and faecal Streptococci populations decreased, respectively, from 2×107 to 3.1×103 and 107 to 1.5×103 cells/g waste dry weight (WDW); yeasts and filamentous fungi decreased from 4.5×106 to 2.6×103 cells/g WDW and mesophilic bacteria were reduced from 5.8×109 to 1.8×107 bacteria/g WDW. On the other hand, the number of bacterial spores increased at the beginning of the composting process, but after the third week their number decreased notably; (ii) Salmonella disappeared completely from compost by the 25th day as soon as the temperature reached 60°C; and (iii) the bacterial population increased gradually during the cooling phase. While Staphylococci seemed to be the dominant bacteria during the mesophilic phase and at the beginning of the thermophilic phase, bacilli predominated during the remainder of the composting cycle. The appearance of gram-negative rods (opportunistic pathogens) during the cooling phase may represent a serious risk for the sanitary quality of the finished product intended for agronomic reuse. Compost sonication for about 3 min induced the inactivation of delicate bacteria, in particular gram-negatives. By contrast, gram-positive bacteria, especially micrococcus, spores of bacilli, and fungal propagules survived, and reached high concentrations in the compost.  相似文献   

14.
Yu H  Zeng G  Huang H  Xi X  Wang R  Huang D  Huang G  Li J 《Biodegradation》2007,18(6):793-802
The changes of microbial community during agricultural waste composting were successfully studied by quinone profiles. Mesophilic bacteria indicated by MK-7 and mesophilic fungi containing Q-9 as major quinone were predominant and seemed to be important during the initial stage of composting. Actinobacteria indicated by a series of partially saturated and long-chain menaquinones were preponderant during the thermophilic period. While Actinobacteria, fungi and some bacteria, especially those microbes containing MK-7(H4) found in Gram-positive bacteria with a low G+C content or Actinobacteria were found cooperate during the latter maturating period. Since lignocellulsoe is abundant in the agricultural wastes and its degradation is essential for the operation of composting, it’s important to establish the correlation between the quinone profiles changes and lignocellulose degradation. The microbes containing Q-9 or Q-10(H2) as major quinone were found to be the most important hemicellulose and cellulose degrading microorganisms during composting. While the microorganisms containing Q-9(H2) as major quinone and many thermophilic Actinobacteria were believed to be responsible for lignin degradation during agricultural waste composting.  相似文献   

15.
Summary Phosphorus from Mussoorie rock phosphate (MRP) was solubilized and transformed into available forms when MRP was incorporated during composting of organic wastes. Clusterbean and redgram utilized phosphorus efficiently from the phosphorus enriched compost containing 3.1% P when added in the soil of pH 7.6 to 7.8. The solubilization of phosphorus during composting has been attributed to the formation of humic substances.  相似文献   

16.
Summary Humic acids from four Brazilian topsoils of different origins and four soil fungal melanins, synthesized under two cultural conditions, were subjected to 6N HCl hydrolysis and their amino acid distribution patterns qualitatively and quantitatively determined. Both soil and fungal polymers showed similar patterns with aspartic acid, glutamic acid, glycine and alanine as the dominant amino acids. Some variations noted were more quantitative than qualitative, the similarities were more pronounced than differences, indicating that the fungal melanins may play a significant role in the formation of soil humic acid polymers. The humic acids of Brazilian soils had amino acid distribution patterns similar to those reported for humic acids of other tropical and temperate soils.  相似文献   

17.
王茜  樊军  周谷  付威 《应用生态学报》2022,33(4):887-893
采用室内盆栽试验研究水基废弃钻井泥浆、岩屑等钻井废弃物配合腐植酸、木本泥炭等外源有机物质在风沙土中的施用效果,并分析其对菠菜生长的影响,以期为钻井废弃物资源化利用和风沙土改良提供参考。共设3组室内盆栽试验:基础组共4个处理,以风沙土为对照(CK),将风沙土与岩屑按质量比1∶1混合后分别添加0、2%、4%含量水基废弃钻井泥浆(干基);基础组处理分别添加1%腐植酸、1%腐植酸+3%木本泥炭混合物,作为腐植酸组和木本泥炭组。结果表明: 基础组中,与CK相比,施用钻井废弃物显著增加了土壤有机质含量,pH和电导率上升,2%含量水基废弃钻井泥浆显著促进菠菜生长。腐植酸和木本泥炭使土壤pH降低,有机质含量显著增加,电导率上升,腐植酸组株高、总叶面积、鲜重、干重等植物生长指标均高于基础组中对应处理,混合添加腐植酸和木本泥炭后对植物生长促进效果不显著。最佳处理为腐植酸组添加2%含量水基废弃钻井泥浆,土壤有机质含量为13.1 g·kg-1,播种40 d后菠菜株高、总叶面积、鲜重和干重分别比CK显著增加49.7%、93.4%、83.3%、34.6%。钻井废弃物配合有机物质施用可以显著增加土壤有机质含量,促进菠菜生长,风沙土+岩屑+水基废弃钻井泥浆(2%)+腐植酸(1%)是最佳组合模式。  相似文献   

18.
Ammonia emissions during composting result in the reduced value of agronomic production and can also pollute the air. To evaluate the influence of various carbon sources on ammonia emissions, six composting experiments were carried out with different amendments of carbon sources (glucose, sucrose and straw powder). The cumulative ammonia volatilizations were reduced from 3.11 g/kg (R6) to 2.46 g/kg (R1), 2.17 g/kg (R2), 2.23 g/kg (R4) and 1.93 g/kg (R5). Compared to the control, no significant difference of ammonia emissions and carbon degradation was observed for the mixture of R3 (3.15 g/kg), which was amended with straw powder alone. The co-addition of sucrose and straw powder led to the lowest ammonia emissions. According to these results, a higher C/N ratio did not necessarily indicate an effective solution for reducing ammonia emissions, and not all readily available carbon compounds were helpful in reducing ammonia emissions. The addition of sucrose promoted the decomposition of organic carbon during the intensive stage of ammonia emissions, and the combination of straw and sucrose prolonged this promotion. Thus, the co-addition of sucrose and straw powder made it possible to reduce ammonia emissions drastically by nitrogen immobilization.  相似文献   

19.
堆肥处理对污泥腐殖物质形态及其重金属分配的影响   总被引:10,自引:0,他引:10  
采用透析、凝胶色谱 (SephadexG 75 )研究了污泥堆肥前后腐殖质分子大小的变化及重金属Cu和Zn在各级组分中的分配。透析结果表明 ,污泥经过堆腐以后 ,腐殖质中小分子物质 (<10 0 0Da)组分的含量下降 6 4 % ,而相对高分子组分 (>2 5 0 0 0Da)却增加了 6 8%。凝胶色谱进一步证实 ,污泥经过 4 9d堆腐后 ,腐殖质中大于 2 0 0 0KDa的大分子组分是堆肥起始时的2 3倍。而小分子组分明显减少 ,表现在小分子组分的凝胶洗脱体积明显减少。堆肥腐熟以后 ,腐殖质吸附的Cu、Zn元素含量增加 ,其中Cu主要被吸附在大分子物质上 ,而Zn主要与小分子物质结合  相似文献   

20.
有机固体废弃物堆肥的物质变化及腐熟度评价   总被引:63,自引:8,他引:63  
堆肥是资源化处理有机固体废弃物的有效途径之一.有机固体废弃物的种类繁多,物科的性质差异很大,另外,由于堆肥条件的不同,也会引起堆肥的物质变化有很大差异.堆肥的稳定度和腐熟度是衡量堆肥产品质量的尺度,其评价对于安全农用有着重要意义.稳定度则重于堆肥施用对周围环境的影响,而腐熟度则重于堆肥施用对植物生长的影响,它们受堆肥物料,堆肥条件等诸多因素的综合影响,其评价指标因而多种多样.堆肥稳定度主要从堆肥的温度、颜色、CO2是最为简便的稳定度评价指标,当其趋于环境温度时,表明堆肥达到稳定.堆肥腐熟度的评价指标很多,包括化学指标、生物活性指标以及植物毒性指标3类,其中种子发芽系数作为植物毒性指标被认为是最可靠的评价指标之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号