共查询到20条相似文献,搜索用时 0 毫秒
1.
Satoshi Muraki Masahiro Yamasaki Kojiro Ishii Kunio Kikuchi Kunihiro Seki 《European journal of applied physiology and occupational physiology》1995,71(1):28-32
The purpose of this study was to examine whether arm cranking exercise induces changes in skin blood flow in the paralyzed lower limbs of people with injuries to the spinal cord (PISC). Ten PISC with lesions located between Th5 and L5 and six control subjects performed arm cranking exercise for 6 min at three intensities, 10, 30 and 50 W, at a room temperature of 25°C. Oxygen uptake (Vo2) and heart rate (HR) were measured for the last 2 min of each exercise period. The skin blood flow at the anterior thigh (BFsk,t) was continuously monitored using laser Doppler flowmetry for the whole 6-min period and for the first 10 min of recovery following exercise. During exercise, the PISC showed lower Vo2 and greater HR than the control subjects. No increase in BFsk,t was found in six of the PISC with lesions at or above Th12, irrespective of the exercise intensity. On the other hand, in PISC with lesions at L1 or below, BFsk,t increased significantly (P < 0.05) with an increase in Vo2 and HR, although the BFsk,t at a given Vo2 and HR was lower than that in the control subjects. These results would suggest that arm exercise can promote the blood circulation in the skin of the lower limbs if the injury level is below L1. 相似文献
2.
Contracture, or loss of range of motion (ROM) of a joint, is a common clinical problem in individuals with spinal cord injury (SCI). In order to measure the possible contribution of changes in muscle length to the loss of ankle ROM, the active force vs. angle curves for the tibialis anterior (TA) and gastrocnemiussoleus (GS) were measured in 20 participants, 10 with SCI, and 10 gender and age matched, neurologically intact (NI) individuals. Electrical stimuli were applied to the TA and GS motor nerves at incremented angles of the entire ROM of the ankle and the resulting ankle and knee torques were measured using a multi-axis load cell. The muscle forces of the TA and GS were calculated from the torque measurements using estimates of their respective moment arms and the resulting forces were plotted against joint angle. The force–angle relation for the GS at the ankle (GSA) was significantly shifted into plantar flexion in SCI subjects, compared to NI controls (t-test, p<0.001). Similar results were obtained based upon the GS knee (GSK) force–angle measurements (p<0.05). Conversely, no significant shift in the force–angle relation was found for the TA (p=0.138). Differences in the passive ROM were consistent with the force–angle changes. The ROM in the dorsiflexion direction was significantly smaller in SCI subjects compared to NI controls (p<0.05) while the plantar flexion ROM was not significantly different (p=0.114). Based upon these results, we concluded that muscle shortening is an important component of contracture in SCI. 相似文献
3.
Gholamhossein Hassanshahi Masoud Amin Anandakumar Shunmugavel Reza Vazirinejad Alireza Vakilian Mojtaba Sanji Ali Shamsizadeh Houshang RafatPanah Nahide Masood Poor Seyyed Reza Moosavi Saeid Taheri 《Neurochemistry international》2013
Chemokines, a subclass of cytokine superfamily have both pro-inflammatory and migratory role and serve as chemoattractant of immune cells during the inflammatory responses ensuing spinal cord injury (SCI). The chemokines, especially CXCL-1, CXCL-9, CXCL-10 and CXCL-12 contribute significant part in the inflammatory secondary damage of SCI. Inhibiting chemokine’s activity and thereby the secondary damage cascades has been suggested as a chemokine-targeted therapeutic approach to SCI. To optimize the inhibition of secondary injury through targeted chemokine therapy, accurate knowledge about the temporal profile of these cytokines following SCI is required. Hence, the present study was planned to determine the serum levels of CXCL-1, CXCL-9, CXCL-10 and CXCL-12 at 3–6 h, 7 and 28 days and 3 m after SCI in male and female SCI patients (n = 78) and compare with age- and sex-matched patients with non-spinal cord injuries (NSCI, n = 70) and healthy volunteers (n = 100). ANOVA with Tukey post hoc analysis was used to determine the differences between the groups. The data from the present study show that the serum level of CXCL-1, CXCL-9 and CXCL-10 peaked on day 7 post-SCI and then declined to the control level. In contrast, significantly elevated level of CXCL-12 persisted for 28 days post SCI. In addition, post-SCI expression of CXCL-12 was found to be sex-dependent. Male SCI patients expressed significantly higher CXCL-12 when compared to control and SCI female. We did not observe any change in chemokines level of NSCI. Further, the age of the patients did not influence chemokines expression after SCI. These observations along with SCI-induced CSF-chemokine level should contribute to the identification of selective and temporal chemokine targeted therapy after SCI. 相似文献
4.
Rob A. Binkhorst Berend Oeseburg Maria T. E. Hopman 《European journal of applied physiology and occupational physiology》1992,65(1):73-78
The purpose of this study was to examine cardiovascular responses during arm exercise in paraplegics compared to a well-matched control group. A group of 11 male paraplegics (P) with complete spinal cord-lesions between T6 and T12 and 11 male control subjects (C), matched for physical activity, sport participation and age performed maximal arm-cranking exercise and submaximal exercise at 20%, 40% and 60% of the maximal load for each individual. Cardiac output (Qc) was determined by the CO2 rebreathing method. Maximal oxygen uptake was significantly lower and maximal heart rate (fc) was significantly higher in P compared to C. At the same oxygen uptakes no significant differences were observed in Qc between P and C; however, stroke volume (SV) was significantly lower and fc significantly higher in P than in C. The lower SV in P could be explained by an impaired redistribution of blood and, therefore, a reduced ventricular filling pressure, due to pooling of venous blood caused by inactivity of the skeletal muscle pump in the legs and lack of sympathetic vasoconstriction below the lesion. In conclusion, in P maximal performance appears to have been limited by a smaller active muscle mass and a lower SV despite the higher fc,max. During submaximal exercise, however, this lower SV was compensated for by a higher fc and, thus at the same submaximal oxygen uptake, Qc was similar to that in the control group. 相似文献
5.
M. Gaviria F. Ohanna 《European journal of applied physiology and occupational physiology》1999,80(2):145-153
The aim of this study was to determine the effect of the time after spinal cord injury (less than and greater than 10 months) on the mechanical and electrophysiological characteristics of muscle fatigue of the paralyzed electrically stimulated quadriceps muscle. Morphologically and histochemically, a relationship was observed between muscle fatigue and the delay from injury, revealing a critical period of enzymatic turning and a maximum peak of atrophy around the 10th month after the injury, followed by a long-term stabilization. Knee-torque output and M-wave variables (amplitude, latency, duration, and root mean square, RMS) of two muscular heads of the quadriceps were recorded in 19 paraplegic patients during a 120-s isometric contraction. The fatiguing muscle contraction was elicited by supramaximal continuous 20-Hz electrical stimulation. Compared to the chronic group, the acutely paralyzed group showed a greater resistance to fatigue (amount and rate of force decline, P < or = 0.01), smaller alterations of the M-wave amplitude and RMS, and a limited decrease of the muscle fiber conduction velocity (P < 0.05). Mechanical and electrophysiological changes during fatigue provided a clear functional support of the transformation of skeletal muscle under the lesion and of the existence of a critical period of muscular turn. In conclusion, when considering the artificial restoration of motor function, the evolution of the endurance and force-generating capabilities of the muscle actuator must be taken into account, particularly when tasks require important safety conditions (e.g., standing and walking). 相似文献
6.
Protective effect of vitamin E on spinal cord injury by compression and concurrent lipid peroxidation 总被引:6,自引:0,他引:6
Studies were made on the influence of vitamin E on the effects of compression injury of the spinal cord associated with ischemia in rats. The motor disturbance induced by spinal cord injury was greatly reduced by vitamin E supplementation. After injury, the spinal cord evoked potentials showed greater recovery of both amplitude and latency in the vitamin E-supplemented group than in the control group. Spinal cord blood flow was promptly restored and remained normal after injury in the vitamin E-supplemented group, but was significantly decreased from 3 h after injury in the control group. Thiobarbituric acid (TBA)—reactive substances in the spinal cord was immediately increased by compression injury in both groups, and after injury it persisted at a high value for 24 h in the control group, but decreased within 1 h in the vitamin E-supplemented group. Pathological examination of the spinal cord showed less damage, such as bleeding and edema, in the vitamin E-supplemented group than in the control group. Vitamin E may have protective effects on the spinal cord by inhibiting damage induced by lipid peroxidation and/or by sustaining the blood flow by maintaining the normal metabolism of arachidonic acid. 相似文献
7.
目的探讨缺血预处理(IPC)对兔脊髓缺血再灌注损伤后水通道蛋白-4(AQP-4)表达的影响。方法日本大耳白兔72只,随机分为3组:假手术组(S组)、脊髓缺血再灌注损伤组(I/R组)和缺血预处理组(IPC组)。I/R组和IPC组阻断腹主动脉30min造成脊髓缺血再灌注损伤,IPC组在损伤前短暂阻断腹主动脉5min二次实施预处理,S组暴露肾动脉下腹主动脉但不阻断。分别于再灌注损伤后4h和24h进行神经功能评分,并取L4—6脊髓缺血节段,计算脊髓组织含水量,免疫组化法测定脊髓组织中AQP-4表达水平。结果与S组比较,I/R组神经运动功能评分降低,脊髓组织含水量增加,AQP-4表达增加(P〈0.05)。与I/R组比较,IPC组神经运动功能评分增高,脊髓组织含水量降低,AQP-4表达减少(P〈0.05)。结论IPC可抑制脊髓损伤后AQP-4的表达,进而减轻脊髓水肿,保护缺血再灌注损伤的脊髓。 相似文献
8.
9.
Teruaki Endo Hirokazu Inoue Takashi Yashiro Yuichi Hoshino Eiji Kobayashi 《Biochemical and biophysical research communications》2009,381(3):339-326
Rehabilitation is important for the functional recovery of patients with spinal cord injury. However, neurological events associated with rehabilitation remain unclear. Herein, we investigated neuronal regeneration and exercise following spinal cord injury, and found that assisted stepping exercise of spinal cord injured rats in the inflammatory phase causes allodynia. Sprague-Dawley rats with thoracic spinal cord contusion injury were subjected to assisted stepping exercise 7 days following injury. Exercise promoted microscopic recovery of corticospinal tract neurons, but the paw withdrawal threshold decreased and C-fibers had aberrantly sprouted, suggesting a potential cause of the allodynia. Tropomyosin-related kinase B (TrkB) receptor for brain-derived neurotrophic factor (BDNF) was expressed on aberrantly sprouted C-fibers. Blocking of BDNF-TrkB signaling markedly suppressed aberrant sprouting and decreased the paw withdrawal threshold. Thus, early rehabilitation for spinal cord injury may cause allodynia with aberrant sprouting of C-fibers through BDNF-TrkB signaling. 相似文献
10.
Michael J. Castro David F. Apple Jr Ellen A. Hillegass Gary A. Dudley 《European journal of applied physiology and occupational physiology》1999,80(4):373-378
In this study we examined the influence of complete spinal cord injury (SCI) on affected skeletal muscle morphology within 6 months of SCI. Magnetic resonance (MR) images of the leg and thigh were taken as soon as patients were clinically stable, on average 6 weeks post injury, and 11 and 24 weeks after SCI to assess average muscle cross-sectional area (CSA). MR images were also taken from nine able-bodied controls at two time points separated from one another by 18 weeks. The controls showed no change in any variable over time. The patients showed differential atrophy (P = 0.0001) of the ankle plantar or dorsi flexor muscles. The average CSA of m. gastrocnemius and m. soleus decreased by 24% and 12%, respectively (P = 0.0001). The m. tibialis anterior CSA showed no change (P = 0.3644). As a result of this muscle-specific atrophy, the ratio of average CSA of m. gastrocnemius to m. soleus, m. gastrocnemius to m. tibialis anterior and m. soleus to m. tibialis anterior declined (P = 0.0001). The average CSA of m, quadriceps femoris, the hamstring muscle group and the adductor muscle group decreased by 16%, 14% and 16%, respectively (P< or =0.0045). No differential atrophy was observed among these thigh muscle groups, thus the ratio of their CSAs did not change (P = 0.6210). The average CSA of atrophied skeletal muscle in the patients was 45-80% of that of age- and weight-matched able-bodied controls 24 weeks after injury. In conclusion, the results of this study suggest that there is marked loss of contractile protein early after SCI which differs among affected skeletal muscles. While the mechanism(s) responsible for loss of muscle size are not clear, it is suggested that the development of muscular imbalance as well as diminution of muscle mass would compromise force potential early after SCI. 相似文献
11.
A spinal cord injury (SCI) is one of the most common neurological disorders. In this paper, we examined the consequences of upper SCI in a male participant on the cerebral blood flow velocity. In particular, transcranial Doppler was used to study these effects through middle cerebral arteries (MCA) during resting-state periods and during cognitive challenges (non-verbal word-generation tasks and geometric-rotation tasks). Signal characteristics were analyzed from raw signals and envelope signals (maximum velocity) in the time domain, the frequency domain and the time–frequency domain. The frequency features highlighted an increase of the peak frequency in L-MCA and R-MCA raw signals, which revealed stronger cerebral blood flow during geometric/verbal processes respectively. This underlined a slight dominance of the right hemisphere during word-generation periods and a slight dominance of the left hemisphere during geometric processes. This finding was confirmed by cross-correlation in the time domain and by the entropy rate in information-theoretic domain. A comparison of our results to other neurological disorders (Alzheimer’s disease, Parkinson’s disease, autism, epilepsy, traumatic brain injury) showed that the SCI had similar effects such as general decreased cerebral blood flow and similar regular hemispheric dominance in a few cases. 相似文献
12.
Ying Yin Weifeng Sun Zaiwang Li Bin Zhang Hua Cui Lingxiao Deng Ping Xie Jie Xiang Jian Zou 《Neurochemistry international》2013
Methylprednisolone (MP) has been widely used as a standard therapeutic agent for the treatment of spinal cord injury (SCI). Because of its controversial beneficial effects, the combination of MP and other pharmacological agents aimed at enhancing functional recovery is desirable. The phosphodiesterase 4 (PDE4) inhibitor rolipram has been implicated in promotion of regeneration due to elevating cAMP. In the present study, we sought to determine the effects of MP and rolipram, administered in combination, after spinal cord injury (SCI) in adult rats. Here we show that in vitro administration of rolipram and MP significantly increased neuron survival and promoted neurite outgrowth of neurons on the inhibitory substrate CSPGs by upregulation of MMP-2 expression; in vivo administration of rolipram and MP inhibited CSPG expression and increase CSPG digestion after rat SCI. Rolipram and MP combining treatment promoted significant neuroprotection through reduced motoneuron death, minimized lesion cavity, and increased regeneration of lesioned corticospinal tract (CST) axons beyond the lesion site after SCI. Enhanced functional recovery was also observed. Overall, our study strongly suggested that the combination treatment of MP and rolipram may represent a promising strategy for clinically applicable pharmacological therapy for rapid initiation of neuroprotection after SCI. 相似文献
13.
Tiziana Genovese Emanuela Mazzon Emanuela Esposito Rosanna Di Paola Kanneganti Murthy Lewis Neville 《Free radical research》2013,47(7):631-645
The aim of the present study was to assess the effect of a metalloporphyrinic peroxynitrite decomposition catalyst, ww-85, in the pathophysiology of spinal cord injury (SCI) in mice. Spinal cord trauma was induced by the application of vascular clips to the dura via a four-level T5–T8 laminectomy. SCI in mice resulted in severe trauma characterized by oedema, neutrophil infiltration, production of inflammatory mediators, tissue damage and apoptosis. ww-85 treatment (30–300 µg/kg, i.p. 1 h after the SCI) significantly reduced in a dose-dependent manner: (1) the degree of spinal cord inflammation and tissue injury, (2) neutrophil infiltration (myeloperoxidase activity), (3) nitrotyrosine formation and PARP activation, (4) pro-inflammatory cytokines expression, (5) NF-κB activation and (6) apoptosis. Moreover, ww-85 significantly ameliorated the recovery of limb function (evaluated by motor recovery score) in a dose-dependent manner. The results demonstrate that ww-85 treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma. 相似文献
14.
Several experimental and computational studies have investigated the effect of bone fragment impact on the spinal cord during trauma. However, the effect of the impact velocity of a fragment generated by a burst fracture on the stress and strain inside the spinal cord has not been computationally investigated, even though spinal canal occlusion and peak pressure at various impact velocities were provided in experimental studies. These stresses and strains are known factors related to clinical symptoms or injuries. In this study, a fluid-structure interaction model of the spinal cord, dura mater, and cerebrospinal fluid was developed and validated. The von-Mises stress distribution in the cord, the longitudinal strain, the cord compression and cross-sectional area at the impact center, and the obliteration of the cerebrospinal fluid layer were analyzed for three pellet sizes at impact velocities ranging from 1.5 m/s to 7.5 m/s. The results indicate that stress in the cord was substantially elevated when the initial impact velocity of the pellet exceeded a threshold of 4.5 m/s. Cord compression, reduction in cross-sectional area, and obliteration of the cerebrospinal fluid increased gradually as the velocity of the pellet increased, regardless of the size of the pellet. The present study provides insight into the mechanisms underlying spinal cord injury. 相似文献
15.
Analysis of interaction between etoricoxib and tramadol against mechanical hyperalgesia of spinal cord injury in rats 总被引:3,自引:0,他引:3
Drug combinations have the potential advantage of greater analgesia over monotherapy. The present study was aimed to assess any possible interaction (additive or potentiation) in the antinociceptive effects of etoricoxib; a novel cyclooxygenase-2 inhibitor, and tramadol; a typical opioid agonist when administered in combination against mechanical hyperalgesia induced by spinal cord injury in rats. The nature of interaction was analyzed using surface of synergistic interaction (SSI) analysis and an isobolographic analysis. Etoricoxib or tramadol when administered alone to rats, exhibited different antihyperalgesic potencies (ED50 etoricoxib: 0.58+/-0.19 mg/kg, po; ED50 tramadol: 9.85+/-0.57 mg/kg, po). However, both the drugs were found to be long acting against this model of hyperalgesia. Further, etoricoxib and tramadol were co-administered in fixed ratios of ED50 fractions. One combination (0.29/4.79 mg/kg, po: etoricoxib/tramadol) exhibited additivity and other three combinations (0.15/2.39, 0.08/1.19, and 0.04/0.59 mg/kg, po: etoricoxib/tramadol) resulted in potentiation when analyzed by SSI. The SSI was calculated from the total antihyperalgesic effect produced by the combination after the subtraction of the antihyperalgesic effect produced by each of the individual drug. In the isobolographic analysis, the experimental ED50 was found to be far below the line of additivity also indicating a significant (P < 0.05) synergistic antihyperalgesic effect when etoricoxib and tramadol was co-administered to rats. The synergistic antihyperalgesic effect of etoricoxib and tramadol combination suggests that these combinations may have clinical utility in mechanical hyperalgesia associated with spinal injury. 相似文献
16.
目的采用电生理的研究方法,观察脑源性神经营养因子(BDNF)基因修饰的骨髓间充质干细胞对脊髓损伤的修复作用。方法随机将大鼠分成3组:空白组10只(只切除椎板,暴露脊髓硬脊膜);SCI组10只;SCI术后细胞移植组10只;从以上三组大鼠随机抽取8只于细胞移植后1 d、7 d、14 d、21 d、30 d、60 d进行SEP(皮层体感诱发电位)、MEP(运动诱发电位)等电生理检测技术,并观察大鼠的运动评分恢复程度。结果细胞移植4d后,大鼠饮食和活动开始增加;后肢变化过程如下:损伤后1~4 d损伤侧后肢迟缓性瘫痪,拖地行走,损伤对侧后肢由损伤初期的运动减弱逐渐恢复,损伤后5~9 d损伤侧后肢痉挛性瘫痪;10~14 d损伤侧下肢恢复少量活动,损伤对侧后肢恢复至较损伤前稍弱的状态;15~21 d损伤侧后肢活动能力较之前有明显改善,至30 d损伤侧后肢活动能力及肌张力恢复程度最明显,30 d以后无更明显改善。免疫组化发现损伤处诱导标记的骨髓间充质干细胞存活,行为学观察发现细胞移植改善了损伤大鼠运动能力。结论骨髓间充质干细胞经BDNF基因修饰后可以促进脊髓损伤大鼠的神经再生及部分传导功能恢复。 相似文献
17.
Roger Kaprielian Michael J. Plyley Panagiota Klentrou Leonard S. Goodman Jack M. Goodman 《European journal of applied physiology and occupational physiology》1998,78(2):141-147
Exercise intolerance in persons with paraplegia (PARAS) is thought to be secondary to insufficient venous return and a subnormal
cardiac output at a given oxygen uptake. However, these issues have not been resolved fully. This study utilized lower-body
positive pressure (LBPP) as an intervention during arm crank exercise in PARAS in order to examine this issue. Endurance-trained
(TP, n= 7) and untrained PARAS (UP, n= 10) with complete lesions between T6 and T12, and a control group consisting of sedentary able-bodied subjects (SAB, n= 10) were tested. UP and TP subjects demonstrated a diminished cardiac output (via CO2 rebreathing) during exercise compared to SAB subjects. Peak oxygen uptake (V˙O2peak) remained unchanged for all groups following LBPP. LBPP resulted in a significant decrease in heart rate (HR) in UP and TP
(P≤0.05), but not SAB subjects. LBPP produced an insignificant increase in cardiac output (Q˙) and stroke volume (SV). The significant decrease in HR in both PARA groups may indicate a modest hemodynamic benefit of
LBPP at higher work rates where circulatory sufficiency may be most compromised. We conclude that PARAS possess a diminished
cardiac output during exercise compared to the able-bodied, and LBPP fails to ameliorate significantly their exercise response
irrespective of the conditioning level. These results support previous observations of a lower cardiac output during exercise
in PARAS, but indicate that lower-limb blood pooling may not be a primary limitation to arm exercise in paraplegia.
Accepted: 11 December 1997 相似文献
18.
Although glia have been historically classified as the structurally supporting cells of the central nervous system, their
role in tissue mechanics is still largely unstudied. The influence of myelin and glia on the mechanical properties of spinal
cord tissue was examined by testing embryonic day 18 chick embryo spinal cords in uniaxial tension following disruption of
the glial matrix using either ethidium bromide (EB) or an antibody against galactocerebroside (αGalC) in the presence of complement. Demyelination was confirmed by myelin basic protein immunoreactivity and quantified using
osmium tetroxide staining. A substantial loss of astrocytes and oligodendrocytes concurrent with demyelination was observed
following EB injection but not αGalC injection. No morphological changes were observed following injection of saline or IgG with complement as controls for
EB and αGalC. Demyelinated spinal cords demonstrated significantly lower stiffness and ultimate tensile stress than myelinated spinal
cords. No significant differences were observed in the tensile response between the two demyelinating protocols. The results
demonstrate that the glial matrix provides significant mechanical support to the spinal cord, and suggests that myelin and
cellular coupling of axons via the glial matrix in large part dictates the tensile response of the tissue. 相似文献
19.
缺血预适应对大鼠肢体缺血/再灌注后肺损伤的影响 总被引:2,自引:0,他引:2
目的:观察肢体缺血预适应对大鼠肢体缺血/再灌注(I/R)后肺损伤的影响并探讨其机制。方法:将雄性Wistar大鼠随机分为4组(n=8):对照组(C),肢体缺血/再灌注组(LI/R),缺血预适应组(IPC)和L-NAME组。各组大鼠均于肢体缺血4h再灌注4h处死,分别测定其动脉血氧分压(PaO2)和二氧化碳分压(PaCO2),血浆及肺组织丙二醛(MDA)、一氧化氮(NO)、内皮素(ET)含量,计算血浆NO/ET比值;以及肺湿干比(W/D)、肺系数(LI),肺组织髓过氧化物酶(MPO)含量。结果:大鼠LI/R后4h,PaO2明显降低;W/D、LI、血浆及肺组织的MDA、NO、ET和肺组织MPO活性均明显增加,而血浆NO/ET比值明显减小。与LI/R组比较,IPC组各项损伤指标明显减轻,NO水平升高,血浆NO/ET比值明显增大。与对照组和IPC组比较,L-NAME处理组,各项损伤指标数值明显增加,NO水平降低;血浆NO/ET比值明显减小,差异均具有显著性。各组大鼠PaCO2的变化无显著性。结论:缺血预适应对肢体缺血/再灌注后肺损伤具有保护作用,其机制可能与内源性NO合成增加有关。 相似文献
20.
Jiang S Bendjelloul F Ballerini P D'Alimonte I Nargi E Jiang C Huang X Rathbone MP 《Purinergic signalling》2007,3(4):411-421
Spinal cord injury results in progressive waves of secondary injuries, cascades of noxious pathological mechanisms that substantially
exacerbate the primary injury and the resultant permanent functional deficits. Secondary injuries are associated with inflammation,
excessive cytokine release, and cell apoptosis. The purine nucleoside guanosine has significant trophic effects and is neuroprotective,
antiapoptotic in vitro, and stimulates nerve regeneration. Therefore, we determined whether systemic administration of guanosine
could protect rats from some of the secondary effects of spinal cord injury, thereby reducing neurological deficits. Systemic
administration of guanosine (8 mg/kg per day, i.p.) for 14 consecutive days, starting 4 h after moderate spinal cord injury
in rats, significantly improved not only motor and sensory functions, but also recovery of bladder function. These improvements
were associated with reduction in the inflammatory response to injury, reduction of apoptotic cell death, increased sparing
of axons, and preservation of myelin. Our data indicate that the therapeutic action of guanosine probably results from reducing
inflammation resulting in the protection of axons, oligodendrocytes, and neurons and from inhibiting apoptotic cell death.
These data raise the intriguing possibility that guanosine may also be able to reduce secondary pathological events and thus
improve functional outcome after traumatic spinal cord injury in humans. 相似文献