首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of histamine to macrophage-like P388D1 cells resulted in a dose-dependent increase in intracellular calcium [Ca2+]i measured by fura-2 in single cells. The maximum level of [Ca2+]i was obtained by addition of 1 x 10(-4) M histamine. The increase was primarily due to release from the intracellular store. The addition of an H1 specific antagonist pyrilamine before histamine treatment inhibited the increase reversibly, while an H2 specific antagonist cimetidine had no inhibitory effect. Histamine also resulted in a dose-dependent increase in cGMP but not in cAMP. These data suggest the existence of histamine H1 receptors in these cells and histamine may have some biological effect on the function of macrophages via [Ca2+]i and cGMP as the second messengers.  相似文献   

2.
In the locomotor muscle of the pelagic tunicate Doliolum, both the sarcoplasmic reticulum (SR) and the transverse-tubular (T-tubular) system are absent. The mechanism of excitation-contraction (E-C) coupling was studied in single muscle fibres enzymatically dissociated from Doliolum denticulatum. Whole cell voltage clamp experiments demonstrated an inward ionic current associated with membrane depolarisation. This current was blocked by 5 mmol.l(-1)Co(2+), a calcium current blocker, and suppressed by nifedipine, a specific L-type calcium channel blocker. An increase in the external K(+) concentration to 200 mmol.l(-1) (K(+)-depolarisation) induced a rise in the intracellular Ca(2+) level detected with fluo-3, a Ca(2+)-sensitive dye. However, when 5-10 mmol.l(-1) Co(2+) or 10-15 micro mol.l(-1) nifedipine was present in the external solution, K(+)-depolarisation did not induce a rise in the intracellular Ca(2+) level. Externally applied 5-10 mmol.l(-1) caffeine or 20 micro mol.l(-1) ryanodine had no effect on the intracellular Ca(2+) level. K(+)-depolarisation induced a rise in the intracellular Ca(2+) level in the presence of caffeine or ryanodine. Replacement of external Na(+) with Li(+) increased intracellular Ca(2+) levels. Our results show that contraction of the locomotor muscle in Doliolum is solely due to the influx of Ca(2+) through L-type calcium channels, and that relaxation is due to extrusion of Ca(2+) by Na(+)/Ca(2+) exchange across the sarcolemma.  相似文献   

3.
Using the microfluorometry of an intracellularly trapped calcium indicator dye, quin2, characteristics of intracellular Ca2+ store sites sensitive to histamine, norepinephrine, or caffeine were investigated using rat vascular smooth muscle cells in primary culture at 25 degrees C. With similar time courses, both histamine- and the norepinephrine-sensitive Ca2+ store sites were readily depleted in Ca2(+)-free medium and almost completely replenished by loading the cells with 1.0 mM Ca2+ solution for 3 min, while the caffeine-sensitive Ca2+ store site was little affected. In the absence of extracellular Ca2+, transient elevations of cytosolic Ca2+ repeatedly appeared in response to repetitive applications of histamine, norepinephrine, or caffeine, with progressive reductions in peak levels. Histamine released Ca2+ from the norepinephrine-sensitive store site and norepinephrine released Ca2+ from the histamine-sensitive one. On the other hand, caffeine had little effect on the histamine- and/or the norepinephrine-sensitive Ca2+ store site in Ca2(+)-free medium, and vice versa. We propose that the location and mechanisms of release of Ca2+ of the histamine-sensitive Ca2+ store site are identical with events at the norepinephrine-sensitive site, and differ from the caffeine-sensitive one, in vascular smooth muscle cells in primary culture.  相似文献   

4.
Biliary disease is a major cause of acute pancreatitis. In this study we investigated the electrophysiological effects of bile acids on pancreatic acinar cells. In perforated patch clamp experiments we found that taurolithocholic acid 3-sulfate depolarized pancreatic acinar cells. At low bile acid concentrations this occurred without rise in the cytosolic calcium concentration. Measurements of the intracellular Na(+) concentration with the fluorescent probe Sodium Green revealed a substantial increase upon application of the bile acid. We found that bile acids induce Ca(2+)-dependent and Ca(2+)-independent components of the Na(+) concentration increase. The Ca(2+)-independent component was resolved in conditions when the cytosolic Ca(2+) level was buffered with a high concentration of the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). The Ca(2+)-dependent component of intracellular Na(+) increase was clearly seen during stimulation with the calcium-releasing agonist acetylcholine. During acetylcholine-induced Ca(2+) oscillations the recovery of cytosolic Na(+) was much slower than the recovery of Ca(2+), creating a possibility for the summation of Na(+) transients. The bile-induced Ca(2+)-independent current was found to be carried primarily by Na(+) and K(+), with only small Ca(2+) and Cl(-) contributions. Measurable activation of such a cationic current could be produced by a very low concentration of taurolithocholic acid 3-sulfate (10 microm). This bile acid induced a cationic current even when applied in sodium- and bicarbonate-free solution. Other bile acids, taurochenodeoxycholic acid, taurocholic acid, and bile itself also induced cationic currents. Bile-induced depolarization of acinar cells should have a profound effect on acinar fluid secretion and, consequently, on transport of secreted zymogens.  相似文献   

5.
A Ishihata  M Endoh 《Life sciences》1991,48(6):583-591
Confluent monolayers of human umbilical vein endothelial cells subcultured on glass coverslips were loaded with the fluorescent Ca2+ indicator, fura-2. Changes in fura-2 fluorescence were detected by means of a fluorescence spectrophotometer. Both ATP and ADP (0.3-100 microM) caused a concentration-dependent transient peak response of the intracellular free calcium concentration ([Ca2+]i), followed by a lower sustained response. AMP and adenosine did not induce detectable changes in [Ca2+]i. The sustained response to ATP was abolished by superfusion with the Ca2(+)-free solution (with 1 mM EGTA), while the transient peak response was uninfluenced. The transient peak response to ATP (30 microM) was inhibited by pre-exposure to ATP in a graded manner depending on the concentration of ATP. The response to ATP recovered after washout for 20 min with the solution containing Ca2+, but not with the Ca2(+)-free solution. The transient peak response to ATP was markedly reduced by preceding exposure to histamine, while the response to histamine was not influenced by pre-exposure to ATP. These findings indicate that depletion and refilling of the ATP-sensitive intracellular Ca2+ store may be responsible for the desensitization and recovery of the ATP-induced [Ca2+]i response. The pharmacological characteristics of the ATP-sensitive intracellular Ca2+ store seem different from those of the histamine-sensitive store.  相似文献   

6.
We recently reported that prostaglandin E2 (PGE2) stimulates phosphoinositide metabolism accompanied by an increase in intracellular free Ca2+ concentration ([Ca2+]i) in cultured bovine adrenal chromaffin cells. In the present study, temporal and spatial changes in [Ca2+]i induced by PGE2 in fura-2-loaded individual cells were investigated by digital image microscopy and were compared with those induced by nicotine and histamine. Image analysis of single cells revealed that responses to PGE2 showed asynchrony with the onset of [Ca2+]i changes. After a lag time of 10-30 s, PGE2-induced [Ca2+]i changes took a similar prolonged time course in almost all cells: a rapid rise followed by a slower decline to the basal level over 5 min. Few cells exhibited oscillations in [Ca2+]i. In contrast, nicotine and histamine induced rapid and transient [Ca2+]i changes, and these [Ca2+]i changes were characteristic of each stimulant. Whereas pretreatment of the cells with pertussis toxin (100 ng/ml, 6 h) did not block the response to any of these stimulants, treatment with 12-O-tetradecanoylphorbol 13-acetate (100 nM, 10 min) completely abolished [Ca2+]i changes elicited by PGE2 and histamine. In a Ca2(+)-free medium containing 3 mM EGTA, or in medium to which La3+ was added, the [Ca2+]i response to nicotine disappeared, but that to histamine was not affected significantly. Under the same conditions, the percentage of the cells that responded to PGE2 was reduced to 37% and the prolonged [Ca2+]i changes induced by PGE2 became transient in responding cells, suggesting that the maintained [Ca2+]i increase seen in normal medium is the result of a PGE2-stimulated entry of extracellular Ca2+. Whereas the organic Ca2(+)-channel blocker nicardipine inhibited [Ca2+]i changes by all stimulants at 10 microM, these [Ca2+]i changes were not affected by any of the organic Ca2(+)-channel blockers, i.e., verapamil, diltiazem, nifedipine, and nicardipine, at 1 microM, a concentration high enough to inhibit voltage-sensitive Ca2+ channels. These results demonstrate that PGE2 may promote Ca2+ entry with concomitant release of Ca2+ from intracellular stores and that the mechanism(s) triggered by PGE2 is apparently different from that by histamine or nicotine.  相似文献   

7.
Gastric acid secretion is activated by two distinct pathways: a neuronal pathway via the vagus nerve and release of acetylcholine and an endocrine pathway involving gastrin and histamine. Recently, we demonstrated that activation of H(+)-K(+)-ATPase activity in parietal cells in freshly isolated rat gastric glands is modulated by the calcium-sensing receptor (CaSR). Here, we investigated if the CaSR is functionally expressed in freshly isolated gastric glands from human patients undergoing surgery and if the CaSR is influencing histamine-induced activation of H(+)-K(+)-ATPase activity. In tissue samples obtained from patients, immunohistochemistry demonstrated the expression in parietal cells of both subunits of gastric H(+)-K(+)-ATPase and the CaSR. Functional experiments using the pH-sensitive dye 2',7'-bis-(2-carboxyethyl)-5-(and 6)-carboxyfluorescein and measurement of intracellular pH changes allowed us to estimate the activity of H(+)-K(+)-ATPase in single freshly isolated human gastric glands. Under control conditions, H(+)-K(+)-ATPase activity was stimulated by histamine (100 microM) and inhibited by omeprazole (100 microM). Reduction of the extracellular divalent cation concentration (0 Mg(2+), 100 microM Ca(2+)) inactivated the CaSR and reduced histamine-induced activation of H(+)-K(+)-ATPase activity. In contrast, activation of the CaSR with the trivalent cation Gd(3+) caused activation of omeprazole-sensitive H(+)-K(+)-ATPase activity even in the absence of histamine and under conditions of low extracellular divalent cations. This stimulation was not due to release of histamine from neighbouring enterochromaffin-like cells as the stimulation persisted in the presence of the H(2) receptor antagonist cimetidine (100 microM). Furthermore, intracellular calcium measurements with fura-2 and fluo-4 showed that activation of the CaSR by Gd(3+) led to a sustained increase in intracellular Ca(2+) even under conditions of low extracellular divalent cations. These experiments demonstrate the presence of a functional CaSR in the human stomach and show that this receptor may modulate the activity of acid-secreting H(+)-K(+)-ATPase in parietal cells. Furthermore, our results show the viability of freshly isolated human gastric glands and may allow the use of this preparation for experiments investigating the physiological regulation and properties of human gastric glands in vitro.  相似文献   

8.
HCO-3 modulation of histamine release and its relationship with the Ca2+ signal were studied in serosal rat mast cells. Histamine release was induced by Ca2+ mobilizing stimuli, namely compound 48/80, thapsigargin, Ca2+ chelators, ionophore A23187, and PMA and ionophore A23187 in a HCO-3-buffered medium or a HCO-3-free medium. The presence of HCO-3 reduced histamine release by 48/80, Ca2+ chelators, A23187, and PMA/A23187, but increased histamine release induced by thapsigargin. Histamine release by PMA was significantly higher in a HCO-3-free medium than in a HCO-3-free medium, as it was the PMA potentiation of histamine release by A23187. [Ca2+]i changes induced by these drugs were measured in fura-2-loaded mast cells. In thapsigargin and EGTA or BAPTA preincubated mast cells [Ca2+]i increase was higher in a HCO-3-buffered medium than in a HCO-3-free medium in the presence of Ca2+. On the contrary, in compound 48/80 and PMA/A23187 activated mast cells the [Ca2+]i increase is the same both in the presence and in the absence of HCO-3. The effect of HCO-3 on histamine release in serosal rat mast cells depends on the stimulus, but it is not related to the presence of Cl-. In thapsigargin-stimulated mast cells the effect of HCO-3 on histamine release may be related to the Ca2+ signal, but in compound 48/80, EGTA, and PMA/A23187-activated mast cells there is no relationship between intracellular Ca2+ and the inhibitory effect of HCO-3 on histamine release. Additionally, the PKC pathway is implicated in the inhibitory effect of HCO-3 on histamine release, the higher the chelation of calcium rendering the higher the enhancement of the response after adding calcium in the absence of HCO-3.  相似文献   

9.
Histamine stimulated Ca2+ uptake in synaptosomes was completely inhibited by the slow Ca2+ channel antagonists verapamil, cinnarizine and flunarizine, and slightly inhibited by nifedipine and diltiazem. Ca2+ uptake in synaptosomes depolarized or predepolarized with varying K+ concentrations was increased by histamine, in both conditions, until 30mM K+. At higher K+ concentrations histamine was not able to alter K+ effects in either conditions. 30mM K+ stimulated uptake of Ca2+ in the absence or presence of histamine was not inhibited by verapamil and diltiazem. However nifedipine slightly inhibited K+ and K+ +histamine effects. 3-Isobutyl-1-methyl-xanthine and dibutyryl cyclicAMP potentiated (10%) the uptake of Ca2+ in synaptosomes induced by histamine. Dibutyryl cyclicAMP alone however decreased the basal Ca2+ uptake in a concentration-dependent manner. Verapamil, but not diltiazem, antagonized the effects elicited by 3-isobutyl-1-methyl-xanthine and dibutyryl cyclicAMP in the presence of histamine. The data suggest that the increase in synaptosomal Ca2+ uptake induced by histamine is mediated by the activation of the voltage sensitive calcium channels, and possibly a cyclicAMP-dependent protein kinase phosphorylation can modulate the opening of Ca2+ channels.  相似文献   

10.
Rat hearts were depleted of Ca2+ (less than 10(-9) M) for 10 min, followed by 15 min of Ca2+-repletion. The calcium paradox injury occurs during Ca2+-repletion, after a period of calcium depletion. The calcium paradox injury was assessed by percent recovery (hemodynamics, [Ca2+]i, and energy levels) during Ca2+-repletion. A decrease in Na+ concentration during Ca2(+)-depletion did not allow for recovery during Ca2(+)-repletion, however 2.5% and 5% ethanol during Ca2(+)-depletion allowed for an approximate 50% recovery during Ca2(+)-repletion. A combination of ethanol (2.5% or 5%) with a low extracellular Na+ concentration (88 mM) allowed for complete recovery. Ethanol prevented a depletion of diastolic [Ca2+]i during Ca2(+)-depletion, and allowed for a return of normal diastolic [Ca2+]i during Ca2(+)-repletion. Ethanol modulates the activity of the Na+/Ca2+ exchanger and protects against the Ca2(+)-paradox injury.  相似文献   

11.
Anti-IgE, con A or antigen caused an increase in the intracellular calcium concentration, [Ca2+]i, of mast cells. The increase occurred in two stages: a rapid initial rise caused by Ca-mobilization from intracellular Ca-stores and a second sustained rise caused by an influx of extracellular calcium (White, J.R., Pluznik, D.V., Ishizaka, K. & Ishizaka, T. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 8193-8197). The rapid initial rise was followed by a release of histamine, which seemed to coincide with the second rise. A23187 and compound 48/80 induced a rapid initial rise in [Ca2+]i, followed by a gradual decrease in [Ca2+]i, GMCHA-OPhBut, a specific pH 7 tryptase inhibitor (Muramatu, M., Ito, T., Takei, M. & Endo, K. (1988) Biol. Chem. Hoppe-Seyler 369, 617-625), strongly inhibited both the initial and second rises of [Ca2+]i, as well as histamine release by these secretagogues, and its effects on the initial rise were closely correlated with those on histamine release. Addition of GMCHA-OPhBut immediately after the initial rise strongly inhibited the second rise, thereby decreasing the final [Ca2+]i. These results strongly suggested a possible involvement of pH 7 tryptase, not only in Ca-mobilization leading to the initial rise in [Ca2+]i, but also in the second rise. Trapping of extracellular calcium by 3mM EGTA decreased both the initial rise in [Ca2+]i and histamine secretion induced by anti-IgE or con A; the magnitude of this effect depended on the time between induction and EGTA addition. Histamine release was closely correlated with the initial rise in [Ca2+]i. Similar results were obtained with A23187, but even 5 min after the addition of EGTA an initial rise of [Ca2+]i could still be induced, and histamine (30% of total histamine) was still released. However, A23187 did not induce a rise in [Ca2+]i in mast cells which had been exhaustively washed with Tyrode/Hepes solution containing 3mM EGTA, followed by suspension in the same solution. Even at 20 min after depletion of the extracellular calcium, compound 48/80 still caused an initial rise in [Ca2+]i to above half the maximal value, and histamine secretion was even less affected. The above results indicated that the initial rise in [Ca2+]i, due to Ca-mobilization, correlates with the histamine release promoted by the secretagogues described. On the other hand, isoproterenol strongly induced histamine secretion with no change of [Ca2+]i, while EGTA treatment prior to isoproterenol stimulation had no effect on histamine release, indicating a different secretion mechanism.  相似文献   

12.
Dong JW  Zhu HF  Zhou ZN 《生理学报》2003,55(3):245-250
本文旨在研究Na+/H+交换以及Na+/Ca2 +交换对模拟缺血 /复灌引起的大鼠心肌细胞内游离钙水平变化的调节作用。分别利用模拟缺血液和正常台氏液对大鼠心肌细胞进行缺血 /复灌处理 ,在缺血期间分别应用Na+/H+交换抑制剂阿米洛利 (amiloride)、Na+/Ca2 +交换抑制剂NiCl2 以及无钙液 ,观察它们对细胞内游离Ca2 +浓度变化的影响。利用Zeiss LSM 5 10激光共聚焦显微镜检测、采集细胞内游离Ca2 +的指示剂Fluo 3 AM的荧光信号 ,计算出相对于正常(缺血前 )的相对荧光强度 ,以表示胞内游离Ca2 +浓度的变化。结果显示 ,模拟缺血引起大鼠心肌细胞内游离Ca2 +持续上升 ,缺血前的相对荧光强度值为 10 0 % ,模拟缺血 5min后为 140 3± 13 0 % (P <0 0 5 ) ,复灌 15min后为 142 8±15 5 % (P <0 0 5 )。经 10 0 μmol/Lamiloride、5mmol/LNiCl2 和无钙液分别预处理 ,模拟缺血 5min后的相对荧光强度分别为 10 1 4± 16 3 % (P <0 0 5 )、110 4± 11 1% (P <0 0 5 )和 10 7 1± 10 8(P <0 0 5 ) ;复灌 15min后则分别为 97 8±14 3 % (P <0 0 5 )、10 6 2± 14 5 % (P <0 0 5 )和 10 6 6± 15 7(P <0 0 5 )。另外 ,与对照组细胞相比 ,再灌注期间NiCl2和无钙液处理的细胞钙振荡的产生幅度明显减弱 ,amilorid  相似文献   

13.
The vacuole is the major storing compartment of the plant cell. There are two different H(+)-translocating pumps generating transmembrane pH gradients and several types of calcium, anion and potassium channels. The fast-activating vacuolar (FV) current dominates at the physiological level of cytoplasmic Ca2+. An increase in the cytoplasmic Ca2+ concentration causes a decrease in the activity of FV channels and a shift of the membrane potential to more negative values. In this case voltage-dependent Ca2+ channels capable of mediating the vacuolar Ca2+ release can be activated. Moreover, an increase in the cytoplasmic Ca2+ concentration activated vacuolar K+ channels described in the vacuolar membrane of stomatal guard cells. A role of slow-activating channels in the Ca(2+)-induced Ca2+ release is rather improbable.  相似文献   

14.
The modulatory effects of calcium ions on highly active Na+, K(+)-ATPase from calf brain and pig kidney tissues have been studied. The inhibitory action of Ca2+free on this enzyme depends on the level of ATP (but not AcP). The reduction of pH from 7.4 to 6.0 noticeably increases, but the elevation of pH to 8.0, in its turn, decreases the inhibition of ATP-hydrolyzing activity by calcium. With the increase of K+ concentration (in contrast to Na+) the sensibilization of Na+, K(+)-ATPase to Ca ions is observed. In the presence of potassium ions Mg2+free effectively modifies the inhibitory action of Ca2+free on this enzyme. Ca2+free (0.16-0.4 mM) decreases the sensitivity of Na+, K(+)-ATPase to action of the specific inhibitor ouabain in the presence of ATP. In the presence of AcP (phosphatase reaction) such a change of enzyme sensitivity to ouabain isn't observed. The influence of membranous effects of Ca2+ on the interaction of Na+, K(+)-ATPase with the essential ligands and cardiosteroids is discussed.  相似文献   

15.
Airway smooth muscle (ASM) contracts partly due to an increase in cytosolic Ca(2+). In this work, we found that the contraction caused by histamine depends on external Na(+), possibly involving nonselective cationic channels (NSCC) and the Na(+)/Ca(2+) exchanger (NCX). We performed various protocols using isometric force measurement of guinea pig tracheal rings stimulated by histamine. We observed that force reached 53 +/- 1% of control during external Na(+) substitution by N-methyl-D-glucamine(+), whereas substitution by Li(+) led to no significant change (91 +/- 1%). Preincubation with KB-R7943 decreased the maximal force developed (52.3 +/- 5.6%), whereas preincubation with nifedipine did not (89.7 +/- 1.8%). Also, application of the nonspecific NCX blocker KB-R7943 and nifedipine on histamine-precontracted tracheal rings reduced force to 1 +/- 3%, significantly different from nifedipine alone (49 +/- 6%). Moreover, nonspecific NSCC inhibitors SKF-96365 and 2-aminoethyldiphenyl borate reduced force to 1 +/- 1% and 19 +/- 7%, respectively. Intracellular Ca(2+) measurements in isolated ASM cells showed that KB-R7943 and SKF-96365 reduced the peak and sustained response to histamine (0.20 +/- 0.1 and 0.19 +/- 0.09 for KB-R, 0.43 +/- 0.16 and 0.47 +/- 0.18 for SKF, expressed as mean of differences). Moreover, Na(+)-free solution only inhibited the sustained response (0.54 +/- 0.25). These data support an important role for NSCC and NCX during histamine stimulation. We speculate that histamine induces Na(+) influx through NSCC that promotes the Ca(2+) entry mode of NCX and Ca(V)1.2 channel activation, thereby causing contraction.  相似文献   

16.
The effects of histamine and other inflammatory mediators on the electrophysiology and intracellular free calcium ([Ca(2+)](i)) of human oviductal epithelial cells, grown as a polarized layer in primary culture, were studied. Transepithelial potential difference (PD) and short-circuit current (I(scc)) were recorded using a modified Ussing chamber. Resistance (R) was calculated from the measurements of PD and I(scc). Basally applied histamine produced transient increases in PD and I(scc) with a small decrease in R. The histamine effect was reduced by triprolidine (H(1) receptor antagonist) but was unaffected by H(2) (ranitidine) or H(3) (thioperamide) receptor antagonists. Blockers of Na(+), K(+), or Na(+)/K(+)/2Cl(-) channels did not affect histamine action. Blockers of Cl(-)/HCO(3)(-) channels or Ca(2+) channels reduced the histamine effect. Platelet activating factor (PAF), applied apically, increased PD and I(scc). Histamine produced a transient increase in fluorescence of Fura 2-AM dye, indicating an increase in [Ca(2+)](i). Triprolidine pretreatment inhibited histamine-stimulated [Ca(2+)](i) increase. Cimetidine, (H(2) receptor antagonist), ranitidine, or thioperamide reduced the histamine effect. Histamine increased contractions of both circular and longitudinal smooth muscles in oviduct segments, an effect that was antagonized by triprolidine or thioperamide but not by ranitidine. Histamine's action on Ca(2+) and Cl(-) movements may adversely affect oviductal fluid production and decrease fertility. PAF's effects on Cl(-) movements may be important for normal embryo transport.  相似文献   

17.
Stimulations of chromaffin cells with histamine and ionomycin produced rises in cellular free Ca2+ level. The removal of Na+ ions from the medium prolongated the rises without changing the magnitude. The stimulations also facilitated 45Ca2+ efflux from cells by over 3-fold. The facilitation was, however, largely abolished by the Na+ removal, indicating the Na(+)-dependent efflux is a major system to expel Ca2+ from the stimulated cells. The Na+ removal also enhanced secretions evoked by these stimuli. The results suggest the Na(+)-dependent Ca2+ efflux by lowering the elevated cellular Ca2+ plays a role in terminating the stimulus-induced secretion.  相似文献   

18.
The role of extracellular calcium in the action of the secretagogues, carbachol, histamine and forskolin, on parietal cell HCl secretion was investigated using glands isolated from rabbit gastric mucosa. Omission of calcium from the cellular incubation medium and chelation of a major portion of contaminating calcium with EGTA resulted in a disappearance of the initial transient response to carbachol (as measured by uptake of the weak base, amino[14C]pyrine), but the sustained response to carbachol persisted. Neither histamine nor forskolin-stimulated increase in amino[14C]pyrine uptake were affected by omission of extracellular calcium. Furthermore, the potentiating interactions between histamine and carbachol and between forskolin and carbachol appeared to occur independent of extracellular calcium. Attempts to assess the contribution of intracellular calcium to secretory activity using the Ca2+ antagonists, verapamil, nifedipine, nicardipine and lanthanum, and the putative intracellular Ca2+ antogonist, TMB-8 (3,4,5-trimethyloxybenzoic acid 8-(diethyl-amino)-octyl ester) were unsuccessful. Nifedipine had no effect on secretagogue stimulated amino[14C]pyrine accumulation even at concentration well above the pA2 reported for excitable tissues. Verapamil, nicardipine, lanthanum and TMB-8 all appeared to have nonspecific inhibitory effects on amino [14C]pyrine uptake. From these results we conclude that: (1) parietal cell HCl secretion can occur independent of extracellular Ca2+; (2) influx of extracellular Ca2+ enhances the response to carbachol but has little influence on the secretory response initiated by cAMP-dependent secretagogues; and (3) parietal cell Ca2+ channels have a different molecular configuration than Ca2+ channels in excitable cells.  相似文献   

19.
ATP-dependent Ca2+ accumulation was measured in pig aortic microsomal fractions containing plasmalemma and endoplasmic reticulum. In vesicles sonicated with histamine, to allow access to internally located receptor sites, guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG), added to activate externally located guanine-nucleotide-transducing proteins, caused a concentration-dependent decrease in steady-state Ca2+ accumulation that was reversed by guanosine 5'-[beta-thio]diphosphate. In the presence of p[NH]ppG, sonication with histamine produced a concentration-dependent inhibition of Ca2+ accumulation that could be antagonized by the H1 antagonist mepyramine, but not by the H2 antagonist cimetidine. The inhibition of steady-state Ca2+ accumulation could have resulted from an inhibition of ATP-dependent Ca2+ uptake or a stimulation of Ca2+ release. We observed, however, that p[NH]ppG plus histamine stimulated, rather than inhibited, Ca2(+)-ATPase activity. We concluded that p[NH]ppG and histamine acted together to increase Ca2+ permeability. In support of this, p[NH]ppG accelerated efflux of Ca2+ from passively loaded vesicles sonicated with, but not without, histamine. The effect of p[NH]ppG was unlikely to be due to Ins(1,4,5)P3 (and hence release from endoplasmic-reticulum vesicles), since addition of Ins(1,4,5)P3 to vesicles sonicated with histamine did not alter steady-state Ca2+ accumulation. Our results therefore suggest that histamine and p[NH]ppG increased the permeability of the plasmalemma vesicles and may thus model the process of receptor-mediated Ca2+ entry into intact cells.  相似文献   

20.
Rat basophil leukemic (2H3) cells ( Siraganian , R.P., McGivney , A., Barsumian , E. L., Crews, F. T., Hirata , F., and Axelrod , J. (1982) Fed. Proc. 41, 30-34) loaded with fluorescent Ca2+ indicator quin 2 ( Tsien , R. Y. (1980) Biochemistry 19, 2396-2404) showed a rapid increase in free cytosol calcium concentration [( Ca]i) when histamine release was induced. Intracellular quin 2 concentrations up to 7 mM did not affect release of histamine in response to antigen (aggregated ovalbumin) or concanavalin A with cells primed with antigen-specific monoclonal IgE, or in response to Ca2+ ionophores. The [Ca]i increased from approximately 105 nM to a maximum of approximately 1200 nM within 2 to 3 min after antigenic stimulation and then declined slowly over 30 min toward the level in unstimulated cells. Histamine release was most rapid as [Ca]i reached the maximum value and then decreased continuously with [Ca]i over the subsequent 30 min. Neither the Ca signal nor histamine release was observed when the Ca2+ concentration in the medium [( Ca]o) was less than 50 microM, but both responses were restored on readdition of Ca2+ to 1 mM. The maximal Ca signal was obtained when [Ca]o was approximately greater than 1 mM and was half-maximal at [Ca]o congruent to 0.4 mM. In marked contrast [Ca]i in unstimulated cells varied very little with [Ca]o from 0.1 to 1 mM. Maintenance of the Ca signal required the continuous presence of stimulating ligand, external Ca2+, and the maintenance of cellular ATP; metabolic inhibitors blocked or reversed the Ca signal. La+ ions also caused a rapid and reversible block of the Ca signal and histamine release. The data are interpreted in a model in which the Ca signal is generated by a La3+-sensitive signal influx pathway that is functionally independent of the normal Ca2+ influx pathway in unstimulated cells, and that allows a 10-fold or greater increase in rate of Ca2+ entry. The Ca signal is maintained dynamically by the balance between the increased Ca2+ influx and active Ca2+ efflux across the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号