首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Cell adhesion molecule, CD2, from the immunoglobulin superfamily, is comprised of antibodies and Ig-like domains and plays a fundamental role, not only in the immune system, but also in the interactions between cells, specifically in cell-cell adhesion. This study examines the N-terminal domain 1 of CD2 (CD2-1) at different pHs, and in 2,2,2-trifluoroethanol (TFE), using nears- and far-UV circular dichroism (CD), fluorescence, and 1H nuclear magnetic resonance to elucidate factors contributing to the Ig beta-structure. Contrary to the complete unfolding induced by guanidinehydrochloride, CD2-1 retains its native tertiary structure at pHs from 1.0 to 10.0. Like the effects of high temperatures that have previously been observed, TFE reduces the integrity of the tertiary structure, while reorganizing the secondary structure from a native all-beta-sheet to a significantly alpha-helical conformation. The induced helicity of CD2-1 correlates with the helicity inherent in its primary sequence. Our results suggest that electrostatic interactions are less important for the formation of the native secondary and tertiary structure of CD2-1, although they are crucial for CD2's adhesion function. Interference with the protein's hydrophobic interactions and hydrogen-bonding networks, however, causes significant changes in its conformation. Residues of CD2-1, with high conformational flexibility, may contribute for the formation of a metastable dimer by domain-swapping.  相似文献   

2.
Ferenc Zsila 《Chirality》2015,27(9):605-612
Despite the diverse biological activities of the glycosaminoglycan (GAG) antagonist surfen, the molecular details of its interaction with biomacromolecules remain poorly understood. Therefore, heparin and DNA binding properties of surfen were studied by circular dichroism (CD) and UV absorption spectroscopy methods. High‐affinity (Ka ~ 107 M‐1) association of surfen to the chiral heparin chain gives rise to a characteristic biphasic CD pattern due to the conformational twist of the aminoquinoline moieties around the central urea bridge. At higher drug loading, intermolecular stacking of surfen molecules alters the induced CD profile and also provokes strong UV hypochromism. In contrast to the right‐handed heparin template, binding of surfen to the left‐helicity chondroitin sulfate chains produces inverted CD pattern. Large UV hypochromism as well as polyphasic induced ellipticity bands indicate that surfen intercalates between the base pairs of calf‐thymus DNA. Extensive CD spectroscopic changes observed at higher drug binding ratios refer to cooperative binding interactions between the intercalated drug molecules. The inherent conformational flexibility of surfen demonstrated here for the first time is important in its binding to distinct macromolecular targets and should be considered for rational drug design of novel GAG antagonists. Chirality 27:605–612, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
The stability of a 15-residue peptide has been investigated using CD spectroscopy and molecular simulation techniques. The sequence of the peptide was designed to include key features that are known to stabilize alpha-helices, including ion pairs, helix dipole capping, peptide bond capping, and aromatic interactions. The degree of helicity has been determined experimentally by CD in three solvents (aqueous buffer, methanol, and trifluoroethanol) and at two temperatures. Simulations of the peptide in the aqueous system have been performed over 500 ps at the same two temperatures using a fully explicit solvent model. Consistent with the CD data, the degree of helicity is decreased at the higher temperature. Our analysis of the simulation results has focused on competition between different side-chain/side-chain and side-chain/main-chain interactions, which can, in principle, stabilize the helix. The unfolding in aqueous solution occurs at the amino terminus because the side-chain interactions are insufficient to stabilize both the helix dipole and the peptide hydrogen bonds. Loss of capping of the peptide backbone leads to water insertion within the first peptide hydrogen bond and hence unfolding. In contrast, the carboxy terminus of the alpha-helix is stable in both simulations because the C-terminal lysine residue stabilizes the helix dipole, but at the expense of an ion pair.  相似文献   

4.
The complexes of the three BrCN-cleaved fragments of sperm whale apomyoglobin with hemin were studied by circular dichroism (CD). In native myoglobin, the heme is located in the middle fragment; the isolated peptide (residues 56–131), however, produces little extrinsic Cotton effects by the addition of hemin, although about four molecules of hemin are bound to this peptide. In marked contrast, the COOH-terminal peptide (residues 132–153), which binds three hemin molecules, shows strong Cotton effects in the Soret bands and drastically changes its conformation from unordered to highly helical. The Arg-modified or Lys-deaminated peptide no longer undergoes conformational changes by the addition of hemin, suggesting that the two propionic acid groups of one hemin molecule interact with the Arg residue and one of the Lys residues, which stabilizes the induced helical conformation. The NH2-terminal peptide (residues 1–55) binds one hemin molecules, and the helicity of this fragment is slightly enhanced by the addition of hemin. Both the CD and difference absorption spectra indicate that the mode of interaction between the peptides and hemin are different for the three apomyoglobin fragments.  相似文献   

5.
Circular dichroic spectra of metmyoglobin and apomyoglobin were measured in neutral and acidic solution. Addition of sodium dodecyl sulfate (NaDodSO4) slightly reduces the helicity (based on the circular dichroic magnitude) of both proteins probably because of the loss of long-range interactions among helical segments. Lowering the pH of the protein-surfactant solution to 3 slightly enhances the helical conformation of myoglobin due to the protonation of acidic side groups and thereby the reduction of coulombic repulsion among negative charges. For BrCN-digested fragments the COOH-terminal peptide (22 residues) loses its helicity which can be restored by addition of NaDodSO4. The middle fragment (76 residues) retains a considerable amount of helicity in water alone, which further increases in the presence of NaDodSO4. The NH2-terminal fragment (55 residues) also has some helical conformation in water, which is enhanced by the addition of NaDodSO4. The circular dichroic spectrum of an equimolar mixture of the three peptides in NaDodSO4 solution is the same as that calculated from the spectra of isolated peptides under similar conditions.  相似文献   

6.
Structural characterization of intrinsically disordered proteins (IDPs) is mandatory for deciphering their potential unique physical and biological properties. A large number of circular dichroism (CD) studies have demonstrated that a structural change takes place in IDPs with increasing temperature, which most likely reflects formation of transient α-helices or loss of polyproline II (PPII) content. Using three IDPs, ACTR, NHE1, and Spd1, we show that the temperature-induced structural change is common among IDPs and is accompanied by a contraction of the conformational ensemble. This phenomenon was explored at residue resolution by multidimensional NMR spectroscopy. Intrinsic chemical shift referencing allowed us to identify regions of transiently formed helices and their temperature-dependent changes in helicity. All helical regions were found to lose rather than gain helical structures with increasing temperature, and accordingly these were not responsible for the change in the CD spectra. In contrast, the nonhelical regions exhibited a general temperature-dependent structural change that was independent of long-range interactions. The temperature-dependent CD spectroscopic signature of IDPs that has been amply documented can be rationalized to represent redistribution of the statistical coil involving a general loss of PPII conformations.  相似文献   

7.
The correlation between the helicity (absolute conformation) of the O-heterocyclic ring of chiral 2,3-dihydrobenzo[b]furan (1) and chromane (2) derivatives and their (1)L(b) band CD was investigated. The same helicity rule was found for both unsubstituted chromophores: P/M helicity of the heterocyclic ring leads to a negative/positive CD within the (1)L(b) band. While the substitution of the fused benzene ring by achiral substituents does not change this helicity rule for the chromane chromophore, it leads to its inversion for the 2,3-dihydrobenzo[b]furan chromophores. On the basis of these observations, the published absolute configurations of natural flavonol and pterocarpan derivatives were confirmed and the configurational assignments of several natural neolignans revised.  相似文献   

8.
C S Wu  J T Yang 《Biopolymers》1988,27(3):423-430
The conformation of a 13-residue C-peptide analogue of ribonuclease A——in surfactant solutions was studied by CD. The CD spectrum of the peptide in excess NaDodSO4 solution was typical for a helical conformation; the spectrum appeared to be virtually independent of pH (2.5–6) and temperature (3–25°C). Analysis of the CD data indicated a helicity of about 65–70% with no α-sheet and β-turn; this corresponded to 8 or 9 residues in the helical form or slightly more than two turns of α-helix. This compares with an average of about one turn of α-helix for the C-peptide analogue in water at pH 4.7 and 7°C. The conformation of the peptide in cationic surfactant, dodecyl ammonium chloride, and nonionic surfactant, dodecyl heptaoxyethylene ether, solution resembled that in water. We concluded that the C-peptide analogue can develop a maximum helicity close to the corresponding segment in ribonuclease A in hydrophobic environment provided by the clustering of NaDodSO4 molecules to the cationic side groups of the peptide, except that the end effects may destabilize two or three residues each at both ends of the helix. Thus, in the interior of a protein molecule this hydrophobic effect may overshadow the charged-group effect than can be explained by the helix dipole model for the helical segments on the exterior of the protein molecule.  相似文献   

9.
It was recently found that some short peptides (including C- and S-peptide fragments of RNase A) can have considerable helicity in solution, 1–12 which was considered to be surprising. Does the observed helicity require a new explanation, or is it consistent with previous understanding? In this work we show that this helicity is consistent with the physical theory of secondary structure12–19 based on an extension of the conventional Zimm-Bragg model.20 Without any special modifications, this theory explains reasonably well almost all the experimentally observed dependencies of helicity on pH, temperature, and amino acid replacements. We conclude that the observed “general level” of helicity of C- and S-peptides (5–30% at room temperature and 10–50% near 0°C) is “normal” for short peptides consisting mainly of helix-forming and helix-indifferent residues. The helicity is modified by a multitude of weak specific side chain interactions, many of which are taken into account by the present theory;13–19 some discrepancies between the theory and experiment can be explained by weak side-chain-side chain interactions that were neglected. A reasonable coincidence of the theory with experiment suggests that it had been used to investigate the role of local interactions in the formation of α-helical “embryos” in unfolded protein chains.  相似文献   

10.
Photoactivation of rhodopsin in lipid bilayers results within milliseconds in a metarhodopsin I (MI)-metarhodopsin II (MII) equilibrium that is very sensitive to the lipid composition. It has been well established that lipid bilayers that are under negative curvature elastic stress from incorporation of lipids like phosphatidylethanolamines (PE) favor formation of MII, the rhodopsin photointermediate that is capable of activating G protein. Furthermore, formation of the MII state is favored by negatively charged lipids like phosphatidylserine and by lipids with longer hydrocarbon chains that yield bilayers with larger membrane hydrophobic thickness. Cholesterol and rhodopsin-rhodopsin interactions from crowding of rhodopsin molecules in lipid bilayers shift the MI-MII equilibrium towards MI. A variety of mechanisms seems to be responsible for the large, lipid-induced shifts between MI and MII: adjustment of the thickness of lipid bilayers to rhodopsin and adjustment of rhodopsin helicity to the thickness of bilayers, curvature elastic deformations in the lipid matrix surrounding the protein, direct interactions of PE headgroups and polyunsaturated hydrocarbon chains with rhodopsin, and direct or lipid-mediated interactions between rhodopsin molecules. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

11.
NK cell triggering by the human costimulatory molecules CD80 and CD86.   总被引:2,自引:0,他引:2  
NK cell-mediated effector functions are regulated by a delicate balance between positive and negative signals. Receptors transmitting negative signals upon engagement with target cell MHC class I molecules have been characterized in detail in recent years. In contrast, less information is available about receptor-ligand interactions involved in the transmission of positive or "triggering" signals to NK cells. Recently, it has been described that murine NK cells are triggered by the costimulatory molecules CD80, CD86, and CD40. Using NK cell lines derived from PBMC as effectors, we demonstrate that the human CD80 and CD86 gene products can function as triggering molecules for NK cell-mediated cytotoxicity. Expression of human CD80 or CD86 molecules in murine B16.F1 melanoma cells rendered these significantly more susceptible to lysis by human NK cell lines. Blocking of the transfected gene products with specific mAb reduced lysis levels to that of nontransfected control cell lines. Triggering of human NK cells by CD80 and CD86 appeared to be independent of CD28 and CTLA-4, at least as determined by the reagents used in the present study, because the expression of these molecules could not be detected on the NK cell lines by either flow cytometry or in redirected lysis assays. Thus, human NK cells may use receptors other than CD28 and CTLA-4 in their interactions with CD80 and CD86 molecules. Alternatively, interactions may involve variants of CD28 (and possibly CTLA-4) that are not recognized by certain anti-CD28 mAb.  相似文献   

12.
The helicity of the tryptathionine moiety of the phallotoxins has been recognized by comparison with cyclic tryptathionine tripeptides. In order to investigate the influence of the configuration of the component amino acids on the conformation of the cyclic peptides, six analogue thioether tripeptides containing L- and D-alanine and L- and D-cysteine, respectively, have been synthesized. The CD spectra of the peptides are very similar to each other, showing mirror images of the CD of phalloidin and, therefore, negative helicity. The spectra of the D-cysteine containing compounds differ from the L-cysteine containing compounds by their weakly positive ellipticity values around 270 nm. The cyclization reaction of Boc-Hpi-D-Ala-D-Cys(STrt)OCH3, along with the cyclic tripeptide, afforded a cyclic hexapeptide by dimerization. The CD spectrum of the dimer is very similar to that of phalloidin, thus pointing to a positive helicity of its two tryptathionine moieties. The dimeric thioether peptide forms a rather strong complex with Cu2+ ions.  相似文献   

13.
We have investigated peptides corresponding to the complete transmembrane region of both proto-oncogenic (Val(664)) and mutant (Glu(664)) forms of the receptor Neu in detergent micelles by NMR and CD spectroscopy. Both forms of the peptide appear to adopt similar levels of helicity and dimeric interactions based on the analysis of CD spectra and nuclear Overhauser effect connectivity profiles. There are considerable differences in the chemical shifts of amide and, to a lesser extent, CHalpha resonances between the two forms of the peptides, and these differences are most pronounced in residues upstream of the mutation site and close to the N terminus of the transmembrane domain. Similarly, there are substantial differences in the amide hydrogen-deuterium exchange rates for residues close to and upstream of the mutation site; amide protons in this region of the protooncogenic peptide are much more resistant to exchange than those in the mutant form. In both molecules, residues downstream of the mutation site exhibit slow exchange. We therefore demonstrate that, although transmembrane Neu peptides exhibit similar levels of secondary structure when dispersed in detergent, there are detectable differences in their adopted micellar states that may provide insight into the dimer-promoting ability of the polar transforming mutation.  相似文献   

14.
Opa protein-expressing pathogenic neisseriae interact with CD66a-transfected COS (African green monkey kidney) and CHO (Chinese hamster ovary) cells. CD66a (BGP) is a member of carcinoembryonic antigen (CEA, CD66) family. The interactions occur at the N-terminal domain of CD66a, a region that is highly conserved between members of the CEA subgroup of the CD66 family. In this study, we have investigated the roles of CD66 expressed on human epithelial cells and polymorphonuclear phagocytes (PMNs) in adhesion mediated via Opa proteins. Using human colonic (HT29) and lung (A549) epithelial cell lines known to express CD66 molecules, we show that these receptors are used by meningococci. A monoclonal antibody, YTH71.3, against the N-terminal domain of CD66, but not 3B10 directed against domains, A1/B1, inhibited meningococcal adhesion to host cells. When acapsulate bacteria expressing Opa proteins were used, large numbers of bacteria adhered to HT29 and A549 cells. In addition, both CD66a-transfected CHO cells and human epithelial cells were invaded by Opa-expressing meningococci, suggesting that epithelial cell invasion may occur via Opa–CD66 interactions. In previous studies we have shown that serogroup A strain C751 expresses three Opa proteins, all of which mediate non-opsonic interactions with neutrophils. We have examined the mechanisms of these interactions using antibodies and soluble chimeric receptors. The results indicate that the nature of their interactions with purified CD66a molecules and with CD66 on neutrophils is alike and that these interactions occur at the N-terminal domain of CD66. Thus, the Opa family of neisserial ligands may interact with several members of the CD66 family via their largely conserved N-terminal domains.  相似文献   

15.
白细胞与内皮细胞的粘附   总被引:1,自引:0,他引:1  
白细胞与内皮细胞相互作用由粘附分子介导.整合素、免疫球蛋白及选择素家族的粘附分子在这两种细胞的粘附中起关键作用.粘附的起始阶段由选择素介导,随后由CD11/CD18复合物与ICAM-1形成更为紧密的结合.多种细胞因子及炎症反应可诱导粘附.抗粘附分子单抗、药物等可抑制粘附.  相似文献   

16.
Cognate interactions between immune effector cells and antigen-presenting cells (APCs) govern immune responses. Specific signals occur between the T-cell receptor peptide and APCs and nonspecific signals between pairs of costimulatory molecules. Costimulation signals are required for full T-cell activation and are assumed to regulate T-cell responses as well as other aspects of the immune system. As new discoveries are made, it is becoming clear how important these costimulation interactions are for immune responses. Costimulation requirements for T-cell regulation have been extensively studied as a way to control many autoimmune diseases and downregulate inflammatory reactions. The CD28:B7 and the CD40:CD40L families of molecules are considered to be critical costimulatory molecules and have been studied extensively. Blocking the interaction between these molecules results in a state of immune unresponsiveness termed 'anergy'. Several different strategies for blockade of these interactions are explored including monoclonal antibodies (mAbs), Fab fragments, chimeric, and/or fusion proteins. We developed novel, immune-specific approaches that interfere with these interactions. Using experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis mediated by central nervous system (CNS)-specific T-cells, we developed a multi-targeted approach that utilizes peptides for blockade of costimulatory molecules. We designed blocking peptide mimics that retain the functional binding area of the parent protein while reducing the overall size and are thus capable of blocking signal transduction. In this paper, we review the role of costimulatory molecules in autoimmune diseases, two of the most well-studied costimulatory pathways (CD28/CTLA-4:B7 and CD40:CD40L), and the advantages of peptidomimetic approaches. We present data showing the ability of peptide mimics of costimulatory molecules to suppress autoimmune disease and propose a mechanism for disease suppression.  相似文献   

17.
The cell surface molecules CD4 and CD8 greatly enhance the sensitivity of T-cell antigen recognition, acting as "co-receptors" by binding to the same major histocompatibility complex (MHC) molecules as the T-cell receptor (TCR). Here we use surface plasmon resonance to study the binding of CD8alphaalpha to class I MHC molecules. CD8alphaalpha bound the classical MHC molecules HLA-A*0201, -A*1101, -B*3501, and -C*0702 with dissociation constants (K(d)) of 90-220 microm, a range of affinities distinctly lower than that of TCR/peptide-MHC interaction. We suggest such affinities apply to most CD8alphaalpha/classical class I MHC interactions and may be optimal for T-cell recognition. In contrast, CD8alphaalpha bound both HLA-A*6801 and B*4801 with a significantly lower affinity (>/=1 mm), consistent with the finding that interactions with these alleles are unable to mediate cell-cell adhesion. Interestingly, CD8alphaalpha bound normally to the nonclassical MHC molecule HLA-G (K(d) approximately 150 microm), but only weakly to the natural killer cell receptor ligand HLA-E (K(d) >/= 1 mm). Site-directed mutagenesis experiments revealed that variation in CD8alphaalpha binding affinity can be explained by amino acid differences within the alpha3 domain. Taken together with crystallographic studies, these results indicate that subtle conformational changes in the solvent exposed alpha3 domain loop (residues 223-229) can account for the differential ability of both classical and nonclassical class I MHC molecules to bind CD8.  相似文献   

18.
Lazarova T  Brewin KA  Stoeber K  Robinson CR 《Biochemistry》2004,43(40):12945-12954
Human adenosine A(2)a receptor is a member of the G-protein-coupled receptor (GPCR) superfamily of seven-helix transmembrane (TM) proteins. To test general models for membrane-protein folding and to identify specific features of folding and assembly for this representative member of an important and poorly understood class of proteins, we synthesized peptides corresponding to its seven TM domains. We assessed the ability of the peptides to insert into micelles and vesicles and measured secondary structure for each peptide in aqueous and membrane-mimetic environments. CD spectra indicate that each of the seven TM peptides form thermally stable, independent alpha-helical structures in both micelles and vesicles. The helical content of the peptides depends on the nature of the membrane-mimetic environment. Four of the peptides (TM3, TM4, TM5, and TM7) exhibit very high-helical structure, near the predicted maximum for their TM segments. The TM1 peptide also adopts relatively high alpha-helical structures. In contrast, two of peptides, TM2 and TM6, display low alpha helicity. Similarly, the ability of the peptides to insert into membrane-mimetic environments, assayed by intrinsic tryptophan fluorescence and fluorescence quenching, varied markedly. Most peptides exhibit higher alpha helicity in anionic sodium dodecyl sulfate than in neutral dodecyl-beta-D-maltoside micelles, and TM2 was disordered in zwiterionic DMPC but was alpha-helical in negatively charged DMPC/DMPG vesicles. These findings strongly suggest that electrostatic interactions between lipids and peptides control the insertion of the peptides and may be involved in membrane-protein-folding events. The measured helical content of these TM domains does not correlate with the predicted helicity based on amino acid sequence, pointing out that, while hydrophobic interactions can be a major determinant for folding of TM peptides, other factors, such as electrostatic interactions or helix-helix interactions, may play significant roles for specific TM domains. Our results represent a comprehensive analysis of helical propensities for a human GPCR and support models for membrane-protein folding in which interactions between TM domains are required for proper insertion and folding of some TM helix domains. The tendency of some peptides to self-associate, especially in aqueous environments, underscores the need to prevent improper interactions during folding and refolding of membrane proteins in vivo and in vitro.  相似文献   

19.
Electrostatic interactions play a crucial role in modulating and stabilizing molecular interactions in membranes and membrane-mimetic systems such as micelles. We have monitored the change in the conformation and dynamics of the cationic hemolytic peptide melittin bound to micelles of various charge types, utilizing fluorescence and circular dichroism (CD) spectroscopy. The sole tryptophan of melittin displays a red-edge excitation shift (REES) of 3-6 nm when bound to anionic, nonionic, and zwitterionic micelles. This suggests that melittin is localized in a restricted environment, probably in the interfacial region of the micelles, and this region offers considerable restriction to the reorientational motion of the solvent dipoles around the excited state tryptophan in melittin. Further, the rotational mobility of melittin is considerably reduced in these micelles and is found to be dependent on the surface charge of micelles. Interestingly, our results show that melittin does not partition into cetyltrimethylammonium bromide (CTAB) micelles owing to electrostatic repulsion between melittin and CTAB micelles, both of which carry a positive charge. In addition, the fluorescence lifetime of melittin is modulated in micelles of different charge types. The lowest mean fluorescence lifetime is observed in the case of melittin bound to anionic sodium dodecyl sulfate (SDS) micelles. CD spectroscopy shows that micelles induce significant helicity to melittin, with maximum helicity being induced in the case of melittin bound to SDS micelles. Fluorescence quenching measurements using the neutral aqueous quencher acrylamide show differential accessibility of melittin in various types of micelles. Taken together, our results show that micellar surface charge can modulate the conformation and dynamics of melittin. These results could be relevant to understanding the role of the surface charge of membranes in the interaction of membrane-active, amphiphilic peptides with membranes.  相似文献   

20.
《Chirality》2017,29(3-4):120-129
Novel poly(biphenylylacetylene) derivatives bearing two acetyloxy groups at the 2‐ and 2′‐positions and an alkoxycarbonyl group at the 4′‐position of the biphenyl pendants (poly‐ Ac 's) were synthesized by the polymerization of the corresponding biphenylylacetylenes using a rhodium catalyst. The obtained stereoregular (cis transoidal ) poly‐ Ac 's folded into a predominantly one‐handed helical conformation accompanied by a preferred‐handed axially twisted conformation of the biphenyl pendants through noncovalent interactions with a chiral alcohol and both the induced main‐chain helicity and the pendant axial chirality were maintained, that is, memorized, after complete removal of the chiral alcohol. The stability of the helicity memory of the poly‐ Ac 's in a solution was lower than that of the analogous poly(biphenylylacetylene)s bearing two methoxymethoxy groups at the 2‐ and 2′‐positions of the biphenyl pendants (poly‐ MOM 's). In the solid state, however, the helicity memory of the poly‐ Ac 's was much more stable and showed a better chiral recognition ability toward several racemates than that of the previously reported poly‐ MOM when used as a chiral stationary phase for high‐performance liquid chromatography. In particular, the poly‐ Ac ‐based CSP with a helicity memory efficiently separated racemic benzoin derivatives into enantiomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号