首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion-exchange (IEX) chromatography steps are widely applied in protein purification processes because of their high capacity, selectivity, robust operation, and well-understood principles. Optimization of IEX steps typically involves resin screening and selection of the pH and counterion concentrations of the load, wash, and elution steps. Time and material constraints associated with operating laboratory columns often preclude evaluating more than 20-50 conditions during early stages of process development. To overcome this limitation, a high-throughput screening (HTS) system employing a robotic liquid handling system and 96-well filterplates was used to evaluate various operating conditions for IEX steps for monoclonal antibody (mAb) purification. A screening study for an adsorptive cation-exchange step evaluated eight different resins. Sodium chloride concentrations defining the operating boundaries of product binding and elution were established at four different pH levels for each resin. Adsorption isotherms were measured for 24 different pH and salt combinations for a single resin. An anion-exchange flowthrough step was then examined, generating data on mAb adsorption for 48 different combinations of pH and counterion concentration for three different resins. The mAb partition coefficients were calculated and used to estimate the characteristic charge of the resin-protein interaction. Host cell protein and residual Protein A impurity levels were also measured, providing information on selectivity within this operating window. The HTS system shows promise for accelerating process development of IEX steps, enabling rapid acquisition of large datasets addressing the performance of the chromatography step under many different operating conditions.  相似文献   

2.
A multi‐dimensional fractionation and characterization scheme was developed for fast acquisition of the relevant molecular properties for protein separation from crude biological feedstocks by ion‐exchange chromatography (IEX), hydrophobic interaction chromatography (HIC), and size‐exclusion chromatography. In this approach, the linear IEX isotherm parameters were estimated from multiple linear salt‐gradient IEX data, while the nonlinear IEX parameters as well as the HIC isotherm parameters were obtained by the inverse method under column overloading conditions. Collected chromatographic fractions were analyzed by gel electrophoresis for estimation of molecular mass, followed by mass spectrometry for protein identification. The usefulness of the generated molecular properties data for rational decision‐making during downstream process development was equally demonstrated. Monoclonal antibody purification from crude hybridoma cell culture supernatant was used as case study. The obtained chromatographic parameters only apply to the employed stationary phases and operating conditions, hence prior high throughput screening of different chromatographic resins and mobile phase conditions is still a prerequisite. Nevertheless, it provides a quick, knowledge‐based approach for rationally synthesizing purification cascades prior to more detailed process optimization and evaluation. Biotechnol. Bioeng. 2012; 109: 3070–3083. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
During cationic bed adsorption (EBA), with cutinase with varying length tryptophan tags (WP)(2)and (WP)(4), 33% and 10% of adsorption capacity and 80% and 32% eluted specific activity were observed in relation to wild type (wt)-cutinase in the conventional process. Therefore, as the hydrophobicity of the protein increases, it is important to integrate the EBA step with a hydrophobic interaction chromatography (HIC) process. As the length of the hydrophobic tag-(WP) increases from n = 2 to n = 4, the purification factor obtained by HIC was 1.8 and 2.2-fold higher than wt-cutinase. However, the recovery yield obtained in HIC decreases substantially as the length of hydrophobic tag increases (97%, 84% and 70% for wt-cutinase, cutinase-(WP)(2) and cutinase-(WP)(4)). The integration of two purification steps, EBA followed by HIC, resulted in the highest overall purity level for cutinase-(WP)(2), and the highest overall recovery yield for wt-cutinase. When optimizing the design of a hydrophobic tag fused to a protein secreted by Saccharomyces cerevisiae it must be considered that the cultivation parameters could impair the downstream process, and consequently the optimum tag is not necessarily the one that presents the highest purification factor in HIC.  相似文献   

4.
为了获得高纯度的破伤风毒素,用疏水层析和离子交换层析纯化破伤风毒素。破伤风毒素培养滤液经Phenyl Sepharose疏水层析除去大部分杂质,再经DEAE Sephadex离子交换层析进一步纯化。经两步层析纯化后,毒素纯度达到2000Lf/mg PN以上,回收率为52%~73%。用此方法,连续纯化五批毒素,均获得高纯度的破伤风毒素。试验证明破伤风毒素经疏水层析和离子交换层析可得到有效纯化。  相似文献   

5.
The high expression level of recombinant hepatitis B surface antigen obtained from Hansenula polymorpha yeast cell (Hans-HBsAg) made it possible to produce HBsAg vaccine in a large scale and by cost-effective process. However, the present available purification process was somewhat tedious, time-consuming and difficult to scale up. To improve the purification efficiency and simplify the purification process, an integrated chromatographic process was developed and optimized. The downstream process included ion-exchange chromatography (IEC), hydrophobic interaction chromatography (HIC) and gel filtration chromatography (GFC). A series of chromatographic adsorbents were evaluated for their performances on the purification of Hans-HBsAg, and then the suitable adsorbents for IEC and HIC were screened out, respectively. After clarification by centrifugation, the supernatant of cell disruption (SCD) was purified by standard chromatographic steps, IEC on DEAE Sepharose FF, HIC on Butyl-S-QZT and GFC on Sepharose 4FF. Furthermore, HBsAg recovery, purification factor (PF) and purity during the downstream process were evaluated with enzyme-linked immunosorption assay (ELISA), sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and high-performance size-exclusion chromatography (HPSEC). The results demonstrated that in the scale of 550ml SCD, the total HBsAg recovery and PF of the whole procedure were about 21.0+/-0.9% and 80.7+/-8.4 (n=3) respectively, with the purity of above 99%. This new downstream process was efficient, reproducible and relatively easy to be scaled up.  相似文献   

6.
A comparison between expanded bed adsorption and conventional packed bed Protein A Fast Flow to purify the anti-rHBsAg mAbs from feedstock is presented in this work. Direct capture by STREAMLINE expanded bed adsorption chromatography resulted in 92% product recovery and sevenfold more concentrated product with similar purity levels compared to that obtained by the standard packed method. The process time and buffer consumption were reduced in the expanded bed adsorption method not only with the binding-elution conditions but also with the use of NaOH during the cleaning-in-place step. The latter is the most widely accepted agent in downstream processing, being a cost effective technique that provides not only efficient cleaning but also sanitizes complete column systems and destroys pirogens.  相似文献   

7.
High capacity magnetic protein A agarose beads, LOABeads PrtA, were used in the development of a new process for affinity purification of monoclonal antibodies (mAbs) from non-clarified CHO cell broth using a pilot-scale magnetic separator. The LOABeads had a maximum binding capacity of 65 mg/mL and an adsorption capacity of 25–42 mg IgG/mL bead in suspension for an IgG concentration of 1 to 8 g/L. Pilot-scale separation was initially tested in a mAb capture step from 26 L clarified harvest. Small-scale experiments showed that similar mAb adsorptions were obtained in cell broth containing 40 × 106 cells/mL as in clarified supernatant. Two pilot-scale purification runs were then performed on non-clarified cell broth from fed-batch runs of 16 L, where a rapid mAb adsorption ≥96.6% was observed after 1 h. This process using 1 L of magnetic beads had an overall mAb yield of 86% and 16 times concentration factor. After this single protein A capture step, the mAb purity was similar to the one obtained by column chromatography, while the host cell protein content was very low, <10 ppm. Our results showed that this magnetic bead mAb purification process, using a dedicated pilot-scale separation device, was a highly efficient single step, which directly connected the culture to the downstream process without cell clarification. Purification of mAb directly from non-clarified cell broth without cell separation can provide significant savings in terms of resources, operation time, and equipment, compared to legacy procedure of cell separation followed by column chromatography step. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2775, 2019.  相似文献   

8.
A purification scheme for cell culture‐derived smallpox vaccines based on an orthogonal downstream process of pseudo‐affinity membrane adsorbers (MA) and hydrophobic interaction chromatography (HIC) was investigated. The applied pseudo‐affinity chromatography, based on reinforced sulfated cellulose and heparin‐MA, was optimized in terms of dynamic binding capacities, virus yield and process productivity. HIC was introduced as a subsequent method to further reduce the DNA content. Therefore, two screens were undertaken. First, several HIC ligands were screened for different adsorption behavior between virus particles and DNA. Second, elution from pseudo‐affinity MA and adsorption of virus particles onto the hydrophobic interaction matrix was explored by a series of buffers using different ammonium sulfate concentrations. Eventually, variations between different cultivation batches and buffer conditions were investigated.The most promising combination, a sulfated cellulose membrane adsorber with subsequent phenyl HIC resulted in overall virus particle recoveries ranging from 76% to 55% depending on the product batch and applied conditions. On average, 61% of the recovered virus particles were infective within all tested purification schemes and conditions. Final DNA content varied from 0.01% to 2.5% of the starting material and the level of contaminating protein was below 0.1%. Biotechnol. Bioeng. 2010;107: 312–320. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
The use of expanded beds of STREAMLINE ion exchange adsorbents for the direct extraction of an intracellular enzyme glucose-6-phosphate dehydrogenase (G6PDH) from unclarified yeast cell homogenates has been investigated. It has been demonstrated that such crude feedstocks can be applied to the bed without prior clarification steps. The purification of G6PDH from an unclarified yeast homogenate was chosen as a model system containing the typical features of a direct extraction technique. Optimal conditions for the purification were determined in small scale, packed bed experiments conducted with clarified homogenates. Results from these experiments were used to develop a preparative scale separation of G6PDH in a STREAMLINE 50 EBA apparatus. The use of an on-line rotameter for measuring and controlling the height of the expanded bed when operated in highly turbid feedstocks was demonstrated. STREAMLINE DEAE has been shown to be successful in achieving isolation of G6PDH from an unclarified homogenate with a purification factor of 12 and yield of 98% in a single step process. This ion exchange adsorbent is readily cleaned using simple cleaning-in-place procedures without affecting either adsorption or the bed expansion properties of the adsorbent after many cycles of operation. The ability of combining clarification, capture, and purification in a single step will greatly simplify downstream processing flowsheets and reduce the costs of protein purification. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
扩张柱床吸附层析回收纯化灌流培养生产的单克隆抗体   总被引:1,自引:0,他引:1  
用扩张柱床吸附层析技术,一步回收纯化连续灌流培养的单克隆抗体。用Streamline SP阳离子交换介质在固定床柱XK16/20上进行条件摸索,扩张床柱Streamline25和50分别用于小规模条件优化和中试规模放大。培养液中的低浓度单抗经此步处理,浓缩10倍以上,纯度提高5~7倍,回收率>90%,制备周期比固定柱床层析缩短一半以上。 根据培养液中单抗浓度的不同,一次处理量为18~50L,纯化规模由实验室水平(400mg)扩大至中试水平(2g),生产成本和工艺复杂性大为降低。应用扩张柱床吸附层析技术,建立单克隆抗体回收纯化工艺,具有经济、简便、高效实用和良好的可放大性。  相似文献   

11.
Protein A chromatography is widely employed for the capture and purification of monoclonal antibodies (mAbs). Because of the high cost of protein A resins, there is a significant economic driving force to seek new downstream processing strategies. Membrane chromatography has emerged as a promising alternative to conventional resin based column chromatography. However, to date, the application has been limited to mostly ion exchange flow through (FT) mode. Recently, significant advances in Natrix hydrogel membrane has resulted in increased dynamic binding capacities for proteins, which makes membrane chromatography much more attractive for bind/elute operations. The dominantly advective mass transport property of the hydrogel membrane has also enabled Natrix membrane to be run at faster volumetric flow rates with high dynamic binding capacities. In this work, the potential of using Natrix weak cation exchange membrane as a mAb capture step is assessed. A series of cycle studies was also performed in the pilot scale device (> 30 cycles) with good reproducibility in terms of yield and product purities, suggesting potential for improved manufacturing flexibility and productivity. In addition, anion exchange (AEX) hydrogel membranes were also evaluated with multiple mAb programs in FT mode. Significantly higher binding capacity for impurities (support mAb loads up to 10Kg/L) and 40X faster processing speed were observed compared with traditional AEX column chromatography. A proposed protein A free mAb purification process platform could meet the demand of a downstream purification process with high purity, yield, and throughput. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:974–982, 2015  相似文献   

12.
In the course of developing a cost-effective, scaleable process for the purification of a recombinant protein from Chinese hamster ovary (CHO) suspension cell culture, we investigated direct capture of this molecule using expanded bed adsorption (EBA). EBA combines clarification, purification, and concentration of the product into a single step. The unclarified bioreactor material was directly applied to a STREAMLINE 25 column containing an affinity STREAMLINE adsorbent. This work focused on simplifying the EBA operations and minimizing the overall processing time by running the EBA column unidirectionally, eluting in the expanded bed mode, and coupling the EBA column directly with ion exchange or hydrophobic interaction chromatography. Unidirectional EBA was clearly a simpler unit operation and did not require the use of specialized equipment. The increase in the elution pool volume was insignificant, especially when the EBA column was eluted directly onto the downstream column. Scale-down was simple and could be automated. Coupling of unidirectional EBA with a downstream purification step reduced processing time, equipment requirements and cost.  相似文献   

13.
With cell culture titers and productivity increasing in the last few years, pressure has been placed on downstream purification to look at alternative strategies to meet the demand of biotech products with high dose requirements. Even when the upstream process is not continuous (perfusion based), adopting a more productive and/or continuous downstream process can be of significant advantage. Due to the recent trend in exploring continuous processing options for biomolecules, several enabling technologies have been assessed at Biogen. In this paper, we evaluate the capability of one of these technologies to streamline and improve our downstream mAb purification platform. Current conventional downstream polishing steps at Biogen are operated in flow‐through mode to achieve higher loadings while maintaining good selectivity. As titers increase, this would result in larger columns and larger intermediate product pool holding tanks. A semicontinuous downstream process linking the second and third chromatography steps in tandem can reduce/eliminate intermediate holding tanks, reduce overall processing time, and combine unit operations to reduce validation burdens. A pool‐less processing technology utilizing inline adjustment functionality was evaluated to address facility fit challenges for three high titer mAbs. Two different configurations of polishing steps were examined: (i) anion exchange and hydrophobic interaction and (ii) anion exchange and mixed mode chromatography. Initial laboratory scale proof of concept studies showed comparable performance between the batch purification process and the pool‐less process configuration.  相似文献   

14.
A simulation is described that evaluates the impacts of altering bio-manufacturing processes. Modifications designed to improve production levels, times and costs were assessed, including increasing feed volumes/titres, replacing initial downstream stages with packed or expanded bed affinity steps and removing ion exchange steps. Options were evaluated for manufactured product mass, COG, batch times and development costs and timescales. Metrics were combined using multi-attribute-decision-making techniques generating a single assessment metric for each option. The utility of this approach was illustrated by application to an FDA-approved process manufacturing rattlesnake anti-venom (Protherics U.K.). Currently, ovine serum containing anti-venom IgG is purified by precipitation/centrifugation, prior to antibody proteolysis by papain. An ion exchanger removes FC, before affinity chromatography yields the final anti-venom. An expanded bed affinity column operating with an 80% higher IgG titre, 66% higher feed volume and without the ion exchanger delivered the best multi-attribute-decision-making value, potentially providing the most desirable alternative.  相似文献   

15.
Technology development initiatives targeted for monoclonal antibody purification may be motivated by manufacturing limitations and are often aimed at solving current and future process bottlenecks. A subject under debate in many biotechnology companies is whether conventional unit operations such as chromatography will eventually become limiting for the production of recombinant protein therapeutics. An evaluation of the potential limitations of process chromatography and filtration using today's commercially available resins and membranes was conducted for a conceptual process scaled to produce 10 tons of monoclonal antibody per year from a single manufacturing plant, a scale representing one of the world's largest single-plant capacities for cGMP protein production. The process employs a simple, efficient purification train using only two chromatographic and two ultrafiltration steps, modeled after a platform antibody purification train that has generated 10 kg batches in clinical production. Based on analyses of cost of goods and the production capacity of this very large scale purification process, it is unlikely that non-conventional downstream unit operations would be needed to replace conventional chromatographic and filtration separation steps, at least for recombinant antibodies.  相似文献   

16.
The biopharmaceutical industry is evolving toward process intensification that can offer increased productivity and improved economics without sacrificing process robustness. A semi‐continuous downstream process linking purification/polishing unit operations in series can reduce or eliminate intermediate holding tanks and reduce overall processing time. Accordingly, we have developed a therapeutic monoclonal antibody polishing template comprised of a connected flow‐through polishing technologies that include activated carbon, cation exchange, and anion‐exchange chromatography. In this report, we evaluated fully‐connected pool‐less polishing with three flow‐through technologies, operating as a single skid to streamline and improve an mAb purification platform. Laboratory‐scale pool‐less processing was achieved without utilizing in‐line pH adjustment and conductivity dilution based on the previously optimized single process parameter. Two connected flow‐through configurations of polishing steps were evaluated: a two‐step process using anion exchange and cation exchange and a three step process using activated carbon, anion exchange and cation exchange chromatography. Laboratory‐scale proof of concept studies showed comparable performance between the batch purification process and the pool‐less process configuration. Three step polishing highly intensified the processes and provided higher process loading and achieved bulk drug specification with higher impurity clearance (>95%) and high overall mAb yield (>95%).  相似文献   

17.
Expanded bed-ionic exchange chromatography (EB-IEC) was used for the recovery and purification of recombinant staphylococcal nuclease secreted by Lactococcus lactis. At the end of the fermentation process, the nuclease activity reached 39 U ml−1. The EB-IEC performances were firstly evaluated with clarified culture broth. The isocratic elution with 0.5 M NaCl led to approximately 80% of nuclease recovery. Proceeding with 3-fold bed expansion resulted in a reduction of the resin capacity by a factor of 32% compared to the process in a packed bed configuration. Simplification of the early purification steps was reached by loading immediately the unclarified culture broth previously diluted to reduce conductivity. Presence of Cells did not affect the chromatography performances resulting in 55-fold purification with the same yield.  相似文献   

18.
Development and implementation of a chaotropic wash step following protein loading on a hydrophobic interaction chromatographic (HIC) column is described for the purification of a recombinant protein. Various agents that reduce protein affinity in hydrophobic interaction chromatographic systems were screened for their utility in a wash step following protein loading on a Phenyl Fast Flow Sepharose HIC column. A combination of sodium thiocyanate, glycerol, and urea was selected as a suitable additive for the wash buffer that selectively eluted most of the major impurities present in the feed stream. Eluate purity, as monitored by reversed-phase chromatography and SDS-PAGE, was significantly increased by incorporation of this wash step in the purification process. Incorporation of this wash step on HIC enabled a reduction in the overall number of chromatographic steps in the downstream purification process for this recombinant protein, resulting in improved process yields and significant economic advantages.The effect of varying concentrations of each of the three wash additives on yield was studied. While the step yield decreased with an increase in concentration for urea and sodium thiocyanate, an optimum was observed with respect to glycerol concentration. The preferential interaction theory is employed to explain this effect.  相似文献   

19.
Topical treatments of chronic infections with monoclonal antibodies will require large quantities of antibodies. Because plants have been proven capable of producing multisubunit antibodies and provide for large-scale production, they are likely hosts to enable such applications. Recovery costs must also be low because of the relatively high dosages required. Hence, we have examined the purification of a human secretory antibody from corn endosperm extracts by processing alternatives of packed bed and expanded bed adsorption (EBA). Because of the limited availability of the transgenic corn host, the system was modeled by adding the antibody to extracts of nontransgenic corn endosperm. Complete clarification of a crude extract followed by packed bed adsorption provided antibody product in 75% yield with 2.3-fold purification (with antibody accounting for 24% of total protein). The small size of the packed bed, cation-exchange resin SP-Sepharose FF and the absence of a dense core (present in EBA resins) allowed for more favorable breakthrough performance compared to EBA resins evaluated. Four adsorbents specifically designed for EBA operation, with different physical properties (size and density), chemical properties (ligand), and base matrices were tested: SP-steel core resin (UpFront Chromatography), Streamline SP and Streamline DEAE (Amersham Biosciences), and CM Hyper-Z (BioSepra/Ciphergen Biosystems). Of these, the small hyperdiffuse-style resin from BioSepra had the most favorable adsorption characteristics. However, it could not be utilized with crude feeds due to severe interactions with corn endosperm solids that led to bed collapse. UpFront SP-steel core resin, because of its relatively smaller size and hence lower internal mass transfer resistance, was superior to the Streamline resins and operated successfully with application of a crude corn extract filtered to remove all solids of >44 microm. However, the EBA performance with this adsorbent provided a yield of only 61% and purification factor of 2.1 (with antibody being 22% of total protein). Process simulation showed that capital costs were roughly equal between packed and expanded bed processes, but the EBA design required four times greater operating expenditures. The use of corn endosperm as the starting tissue proved advantageous as the amount of contaminating protein was reduced approximately 80 times compared to corn germ and approximately 600 times compared to canola. Finally, three different inlet designs (mesh, glass beads, and mechanical mixing) were evaluated on the basis of their ability to produce efficient flow distribution as measured by residence time distribution analysis. All three provided adequate distribution (axial mixing was not as limiting as mass transfer to the adsorption process), while resins with different physical properties did not influence flow distribution efficiency values (i.e., Peclet number and HETP) when operated with the same inlet design.  相似文献   

20.
The purification of recombinant proteins and antibodies using large packed‐bed columns is a key component in most biotechnology purification processes. Because of its efficiency and established practice in the industry, column chromatography is a state of the art technology with a proven capability for removal of impurities, viral clearance, and process efficiency. In general, the validation and monitoring of chromatographic operations—especially of critical process parameters—is required to ensure robust product quality and compliance with health authority expectations. One key aspect of chromatography that needs to be monitored is the integrity of the packed bed, since this is often critical to achieving sufficient separation of protein species. Identification of potential column integrity issues before they occur is important for both product quality and economic efficiency. In this article, we examine how transition analysis techniques can be utilized to monitor column integrity. A case study on the application of this method during a large scale Protein A capture step in an antibody purification process shows how it can assist with improving process knowledge and increasing the efficiency of manufacturing operations. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:383–390, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号