首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and biological evaluation of novel pyrazole and imidazole carboxamides as CB1 antagonists are described. As a part of eastern amide SAR, various chemically diverse motifs were introduced on rimonabant template. The central pyrazole core was also replaced with its conformationally constrained motif and imidazole moieties. In general, a range of modifications were well tolerated. Several molecules with low- and sub-nanomolar potencies were identified as potent CB1 receptor antagonists. The in vivo proof of principle for weight loss is demonstrated with a lead compound in DIO mice model.  相似文献   

2.
CB1 receptor antagonists that are peripherally restricted were targeted. Compounds with permanent charge as well as compounds that have increased polar surface area were made and tested against CB1 for binding and activity. Sulfonamide and sulfamide with high polar surface area and good activity at CB1 were rationally designed and pharmacologically tested. Further optimization of these compounds and testing could lead to the development of a new class of therapeutics to treat disorders where the CB1 receptor system has been implicated.  相似文献   

3.
Cannabinoid receptor-1 (CB(1)) is widely expressed in the central nervous system and plays a vital role in regulating food intake and energy expenditure. CB(1) antagonists such as Rimonabant have been used in clinic to inhibit food intake, and therefore reduce body weight in obese animals and humans. To investigate the binding modes of CB(1) antagonists to the receptor, both receptor- and ligand-based methods were implemented in this study. At first, a pharmacophore model was generated based on 31 diverse CB(1) antagonists collected from literature. A test set validation and a simulated virtual screening evaluation were then performed to verify the reliability and discriminating ability of the pharmacophore. Meanwhile, the homology model of CB(1) receptor was constructed based on the crystal structure of human β (2) adrenergic receptor (β (2)-AR). Several classical antagonists were then docked into the optimized homology model with induced fit docking method. A hydrogen bond between the antagonists and Lys192 on the third transmembrane helix of the receptor was formed in the docking study, which has proven to be critical for receptor-ligand interaction by biological experiments. The structure obtained from induced fit docking was then confirmed to be a reliable model for molecular docking from the result of the simulated virtual screening. The consistency between the pharmacophore and the homology structure further proved the previous observation. The built receptor structure and antagonists' pharmacophore should be useful for the understanding of inhibitory mechanism and development of novel CB(1) antagonists.  相似文献   

4.
Inverse agonism and neutral antagonism at cannabinoid CB1 receptors   总被引:14,自引:0,他引:14  
Pertwee RG 《Life sciences》2005,76(12):1307-1324
There are at least two types of cannabinoid receptor, CB1 and CB2, both G protein coupled. CB1 receptors are expressed predominantly at nerve terminals and mediate inhibition of transmitter release whereas CB2 receptors are found mainly on immune cells, one of their roles being to modulate cytokine release. Endogenous cannabinoid receptor agonists also exist and these "endocannabinoids" together with their receptors constitute the "endocannabinoid system". These discoveries were followed by the development of a number of CB1- and CB2-selective antagonists that in some CB1 or CB2 receptor-containing systems also produce "inverse cannabimimetic effects", effects opposite in direction from those produced by cannabinoid receptor agonists. This review focuses on the CB1-selective antagonists, SR141716A, AM251, AM281 and LY320135, and discusses possible mechanisms by which these ligands produce their inverse effects: (1) competitive surmountable antagonism at CB1 receptors of endogenously released endocannabinoids, (2) inverse agonism resulting from negative, possibly allosteric, modulation of the constitutive activity of CB1 receptors in which CB1 receptors are shifted from a constitutively active "on" state to one or more constitutively inactive "off" states and (3) CB1 receptor-independent mechanisms, for example antagonism of endogenously released adenosine at A1 receptors. Recently developed neutral competitive CB1 receptor antagonists, which are expected to produce inverse effects through antagonism of endogenously released endocannabinoids but not by modulating CB1 receptor constitutive activity, are also discussed. So too are possible clinical consequences of the production of inverse cannabimimetic effects, there being convincing evidence that released endocannabinoids can have "autoprotective" roles.  相似文献   

5.
Obesity remains a significant public health issue leading to Type II diabetes and cardiovascular disease. CB1 antagonists have been shown to suppress appetite and reduce body weight in animal models as well as in humans. Evaluation of pre-clinical CB1 antagonists to establish relationships between in vitro affinity and in vivo efficacy parameters are enhanced by ex vivo receptor occupancy data. Synthesis and biological evaluation of a novel and highly selective radiolabeled CB1 antagonist is described. The radioligand was used to conduct ex vivo receptor occupancy studies.  相似文献   

6.
Novel 3,4-diarylpyrazolines 1 as potent CB1 receptor antagonists with lipophilicity lower than that of SLV319 are described. The key change is the replacement of the arylsulfonyl group in the original series by a dialkylaminosulfonyl moiety. The absolute configuration (4S) of eutomer 24 was established by X-ray diffraction analysis and 24 showed a close molecular fit with rimonabant in a CB1 receptor-based model. Compound 17 exhibited the highest CB1 receptor affinity (Ki = 24 nM) in this series, as well as very potent CB1 antagonistic activity (pA2 = 8.8) and a high CB1/CB2 subtype selectivity (approximately 147-fold).  相似文献   

7.
After the CB1 receptor antagonist SR141716 (rimonabant) was previously reported to modulate food intake, CB1 antagonism has been considered as a new therapeutic target for the treatment of obesity. Several series of urea, carbamate, amide, sulfonamide and oxalamide derivatives based on 1-benzhydrylpiperazine scaffold were synthesized and tested for CB1 receptor binding affinity. The SAR studies to optimize the CB1 binding affinity led to the potent urea derivatives. After the additional SAR studies to optimize the substituents of diphenyl rings, the combination of 2-chlorophenyl and 4-chlorophenyl turned out to be the most potent scaffold. The CB2 binding affinity assay as well as functional assay was also conducted on these compounds. Herein we wish to introduce several novel CB1 antagonists with IC(50) values less than 100 nM for the CB1 receptor binding.  相似文献   

8.
Exploring the role of cannabinoid CB(2) receptors in the brain, we present evidence of CB(2) receptor molecular and functional interaction with cannabinoid CB(1) receptors. Using biophysical and biochemical approaches, we discovered that CB(2) receptors can form heteromers with CB(1) receptors in transfected neuronal cells and in rat brain pineal gland, nucleus accumbens, and globus pallidus. Within CB(1)-CB(2) receptor heteromers expressed in a neuronal cell model, agonist co-activation of CB(1) and CB(2) receptors resulted in a negative cross-talk in Akt phosphorylation and neurite outgrowth. Moreover, one specific characteristic of CB(1)-CB(2) receptor heteromers consists of both the ability of CB(1) receptor antagonists to block the effect of CB(2) receptor agonists and, conversely, the ability of CB(2) receptor antagonists to block the effect of CB(1) receptor agonists, showing a bidirectional cross-antagonism phenomenon. Taken together, these data illuminate the mechanism by which CB(2) receptors can negatively modulate CB(1) receptor function.  相似文献   

9.
Agonist-induced internalization was observed for both inducible and constitutively expressed forms of the cannabinoid CB(1) receptor. These were also internalized by the peptide orexin A, which has no direct affinity for the cannabinoid CB(1) receptor, but only when the orexin OX(1) receptor was co-expressed along with the cannabinoid CB(1) receptor. This effect of orexin A was concentration-dependent and blocked by OX(1) receptor antagonists. Moreover, the ability of orexin A to internalize the CB(1) receptor was also blocked by CB(1) receptor antagonists. Remarkably, orexin A was substantially more potent in producing internalization of the CB(1) receptor than in causing internalization of the bulk OX(1) receptor population, and this was true in cells in which the CB(1) receptor was maintained at a constant level, whereas levels of OX(1) could be varied and vice versa. Both co-immunoprecipitation and cell surface, homogenous time-resolved fluorescence resonance energy transfer based on covalent labeling of N-terminal "SNAP" and "CLIP" tags present in the extracellular N-terminal domain of the receptors confirmed the capacity of these two receptors to heteromultimerize. These studies confirm the capacity of the CB(1) and OX(1) receptors to interact directly and demonstrate that this complex has unique regulatory characteristics. The higher potency of the agonist orexin A to regulate the CB(1)-OX(1) heteromer compared with the OX(1)-OX(1) homomer present in the same cells and the effects of CB(1) receptor antagonists on the function of orexin A suggest an interplay between these two systems that may modulate appetite, feeding, and wakefulness.  相似文献   

10.
Hemopressin, a bioactive nonapeptide derived from the α1 chain of hemoglobin, was recently shown to possess selective antagonist activity at the cannabinoid CB(1) receptor [Heimann, A. S., et al. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 20588-20593]. CB(1) receptor antagonists have been extensively studied for their possible therapeutic use in the treatment of obesity, drug abuse, and heroin addiction. In particular, many compounds acting as CB(1) receptor antagonists have been synthesized and subjected to experiments as possible anti-obesity drugs, but their therapeutic application is still complicated by important side effects. Using circular dichroism and nuclear magnetic resonance spectroscopy, this work reports the conformational analysis of hemopressin and its truncated, biologically active fragment hemopressin(1-6). The binding modes of both hemopressin and hemopressin(1-6) are investigated by molecular docking calculations. Our conformational data indicate that regular turn structures in the central portion of hemopressin and hemopressin(1-6) are critical for an effective interaction with the receptor. The results of molecular docking calculations, indicating similarities and differences in comparison to the most accepted CB(1) pharmacophore model, suggest the possibility of new chemical scaffolds for the design of new CB(1) antagonist lead compounds.  相似文献   

11.
A chemically diverse library of secondary and tertiary 4-cyanomethyl-1,5-diphenyl-1H-pyrazole-3-carboxamides was synthesized to enable mapping of the SAR, in the eastern amide region, with regard to CB1 antagonist activity, This study was initiated as a prelude to the design and synthesis of possible CB1 antagonists that do not readily pass the blood–brain-barrier. In general a range of modifications were found to be tolerated in this part of the molecule, although polar and especially charged groups did to a degree reduce the CB1 antagonistic activity. Several compounds with single-digit or even sub-nanomolar potency, suitable for further elaboration of the nitrile moiety, were identified.  相似文献   

12.
The discovery and structure-activity relationship of a novel series of indole-2-carboxamide antagonists of the cannabinoid CB(1) receptor is disclosed. Compound 26i was found to be a high potency, selective cannabinoid CB(1) antagonist.  相似文献   

13.
Anandamide [arachidonylethanolamide (AEA)] appears to be an endogenous agonist of brain cannabinoid receptors (CB(1)), yet some of the neurobehavioral effects of this compound in mice are unaffected by a selective CB(1) antagonist. We studied the levels, pharmacological actions, and degradation of AEA in transgenic mice lacking the CB(1) gene. We quantified AEA and the other endocannabinoid, 2-arachidonoyl glycerol, in six brain regions and the spinal cord by isotope-dilution liquid chromatography-mass spectrometry. The distribution of endocannabinoids and their inactivating enzyme, fatty acid amide hydrolase, were found to overlap with CB(1) distribution only in part. In CB(1) knockout homozygotes (CB(1)-/-), the hippocampus and, to a lesser extent, the striatum exhibited lower AEA levels as compared with wild-type (CB(1)+/+) controls. These data suggest a ligand/receptor relationship between AEA and CB(1) in these two brain regions, where tonic activation of the receptor may tightly regulate the biosynthesis of its endogenous ligand. 2-Arachidonoyl glycerol levels and fatty acid amide hydrolase activity were unchanged in CB(1)-/- with respect to CB(1)+/+ mice in all regions. AEA and Delta(9)-tetrahydrocannabinol (THC) were tested in CB(1)-/- mice for their capability of inducing analgesia and catalepsy and decreasing spontaneous activity. The effects of AEA, unlike THC, were not decreased in CB(1)-/- mice. AEA, but not THC, stimulated GTPgammaS binding in brain membranes from CB(1)-/- mice, and this stimulation was insensitive to CB(1) and CB(2) antagonists. We suggest that non-CB(1), non-CB(2) G protein-coupled receptors might mediate in mice some of the neuro-behavioral actions of AEA.  相似文献   

14.
3-Azidophenyl- and 3-isothiocyanatophenyl-and 2-(5'-azidopentyl)- and 2-(5'-isothiocyanatopentyl)pyrazoles were synthesized to determine whether these compounds could behave as covalently binding ligands for the CB1 cannabinoid receptor in rat brain membranes. Heterologous displacement of [3H]CP55940 indicated that the apparent affinity of these compounds for the CB1 receptor was similar to that of the parent compound, SR141716A, with the exception of the 3-isothiocyanato derivatives, which showed a 10-fold loss of affinity. The 3-azidophenyl and 3-isothiocyanatophenyl compounds behaved as antagonists against the cannabinoid agonist desacetyllevonantradol in activation of G proteins [guanosine 5'-O-(y-[35S]thio)triphosphate ([35S]GTPgammaS) binding] and regulation of adenylyl cyclase. The 2-(5'-azidopentyl)- and 2-(5'-isothiocyanatopentyl)pyrazoles were poor antagonists for [35S]GTPgammaS binding, and both compounds failed to antagonize the cannabinoid regulation of adenylyl cyclase. After incubation with the isothiocyanato analogues or UV irradiation of the azido analogues, the 3-substituted aryl pyrazoles formed covalent bonds with the CB1 receptor as evidenced by the loss of specific binding of [3H]CP55940. In the case of the isothiocyanato analogues, the log concentration-response curve for cannabinoid-stimulated [35S]GTPgammaS binding was shifted to the right, indicating that loss of receptors compromised signal transduction capability. These irreversibly binding antagonists might be useful tools for the investigation of tolerance and receptor down-regulation in both in vitro and in vivo studies.  相似文献   

15.
Type 1 cannabinoid receptor (CB1) antagonists might be useful for treating obesity, liver disease, metabolic syndrome, and dyslipidemias. Unfortunately, inhibition of CB1 in the central nervous system (CNS) produces adverse effects, including depression, anxiety and suicidal ideation in some patients, which led to withdrawal of the pyrazole inverse agonist rimonabant (SR141716A) from European markets. Efforts are underway to produce peripherally selective CB1 antagonists to circumvent CNS-associated adverse effects. In this study, novel analogs of rimonabant (1) were explored in which the 1-aminopiperidine group was switched to a 4-aminopiperidine, attached at the 4-amino position (5). The piperidine nitrogen was functionalized with carbamates, amides, and sulfonamides, providing compounds that are potent inverse agonists of hCB1 with good selectivity for hCB1 over hCB2. Select compounds were further studied using in vitro models of brain penetration, oral absorption and metabolic stability. Several compounds were identified with predicted minimal brain penetration and good metabolic stability. In vivo pharmacokinetic testing revealed that inverse agonist 8c is orally bioavailable and has vastly reduced brain penetration compared to rimonabant.  相似文献   

16.
Hepatic fibrosis, the common response associated with chronic liver diseases, ultimately leads to cirrhosis, a major public health problem worldwide. We recently showed that activation of hepatic cannabinoid CB2 receptors limits progression of experimental liver fibrosis. We also found that during the course of chronic hepatitis C, daily cannabis use is an independent predictor of fibrosis progression. Overall, these results suggest that endocannabinoids may drive both CB2-mediated antifibrogenic effects and CB2-independent profibrogenic effects. Here we investigated whether activation of cannabinoid CB1 receptors (encoded by Cnr1) promotes progression of fibrosis. CB1 receptors were highly induced in human cirrhotic samples and in liver fibrogenic cells. Treatment with the CB1 receptor antagonist SR141716A decreased the wound-healing response to acute liver injury and inhibited progression of fibrosis in three models of chronic liver injury. We saw similar changes in Cnr1-/- mice as compared to wild-type mice. Genetic or pharmacological inactivation of CB1 receptors decreased fibrogenesis by lowering hepatic transforming growth factor (TGF)-beta1 and reducing accumulation of fibrogenic cells in the liver after apoptosis and growth inhibition of hepatic myofibroblasts. In conclusion, our study shows that CB1 receptor antagonists hold promise for the treatment of liver fibrosis.  相似文献   

17.
Endocannabinoids and CB1 receptors have been implicated in endotoxin (LPS)-induced hypotension: LPS stimulates the synthesis of anandamide in macrophages, and the CB1 antagonist SR-141716 inhibits the hypotension induced by treatment of rats with LPS or LPS-treated macrophages. Recent evidence indicates the existence of cannabinoid receptors distinct from CB1 or CB2 that are inhibited by SR-141716 but not by other CB1 antagonists such as AM251. In pentobarbital-anesthetized rats, intravenous injection of 10 mg/kg LPS elicited hypotension associated with profound decreases in cardiac contractility, moderate tachycardia, and an increase in lower body vascular resistance. Pretreatment with 3 mg/kg SR-141716 prevented the hypotension and decrease in cardiac contractility, slightly attenuated the increase in peripheral resistance, and had no effect on the tachycardia caused by LPS, whereas pretreatment with 3 mg/kg AM251 did not affect any of these responses. SR-141716 also elicited an acute reversal of the hypotension and decreased contractility when administered after the response to LPS had fully developed. The LPS-induced hypotension and its inhibition by SR-141716 were similar in pentobarbital-anesthetized wild-type, CB1(-/-), and CB1(-/-)/CB2(-/-) mice. We conclude that SR-141716 inhibits the acute hemodynamic effects of LPS by interacting with a cardiac receptor distinct from CB1 or CB2 that mediates negative inotropy and may be activated by anandamide or a related endocannabinoid released during endotoxemia.  相似文献   

18.
Synthesis and pharmacological evaluation of a new series of cannabinoid receptor antagonists of indazole ether derivatives have been performed. Pharmacological evaluation includes radioligand binding assays with [3H]-CP55940 for CB1 and CB2 receptors and functional activity for cannabinoid receptors on isolated tissue. In addition, functional activity of the two synthetic cannabinoids antagonists 18 (PGN36) and 17 (PGN38) were carried out in the osteoblastic cell line MC3T3-E1 that is able to express CB2R upon osteogenic conditions. Both antagonists abolished the increase in collagen type I gene expression by the well-known inducer of bone activity, the HU308 agonist. The results of pharmacological tests have revealed that four of these derivatives behave as CB2R cannabinoid antagonists. In particular, the compounds 17 (PGN38) and 18 (PGN36) highlight as promising candidates as pharmacological tools.  相似文献   

19.
The effects of cannabinoid receptor agonists and antagonists on smooth muscle resting membrane potentials and on membrane potentials following electrical neuronal stimulation in a myenteric neuron/smooth muscle preparation of wild-type and cannabinoid receptor type 1 (CB1)-deficient mice were investigated in vitro. Double staining for CB1 and nitric oxide synthase (neuronal) was performed to identify the myenteric CB1-expressing neurons. Focal electrical stimulation of the myenteric plexus induced a fast (f) excitatory junction potential (EJP) followed by a fast and a slow (s) inhibitory junction potential (IJP). Treatment of wild-type mice with the endogenous CB1 receptor agonist anandamide reduced EJP while not affecting fIJP and sIJP. EJP was significantly higher in CB1-deficient mice than in wild-type littermate controls, and anandamide induced no effects in CB1-deficient mice. N-arachidonoyl ethanolamide (anandamide), R-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3,-de]- 1,4-benzoxazin-6-yl]-1-naphtalenylmethanone, a synthetic CB1 receptor agonist, nearly abolished EJP and significantly reduced the fIJP in wild-type mice. N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-caroxamide (SR141716A), a CB1-specific receptor antagonist, was able to reverse the agonist effects induced in wild-type mice. SR141716A, when given alone, significantly increased EJP in wild-type mice without affecting IJP in wild-type and EJP in CB1-deficient mice. Interestingly, SR141716A reduced fIJP in CB1-deficient mice. In the mouse colon, nitrergic myenteric neurons do not express CB1, implying that CB1 is expressed in cholinergic neurons, which is in line with the functional data. Finally, excitatory and inhibitory neurotransmission in the mouse colon is modulated by activation of CB1 receptors. The significant increase in EJP in CB1-deficient mice strongly suggests a physiological involvement of CB1 in excitatory cholinergic neurotransmission.  相似文献   

20.
Cannabinoids modulate nitric oxide (NO) levels in cells of the central nervous system. Here we studied the effect of cannabinoid CB(1) and CB(2) receptor agonists on the release of NO and cell toxicity induced by the human immuno-deficiency virus-1 Tat protein (HIV-1 Tat) in rat glioma C6 cells. The CB(1) and CB(2) agonist WIN 55,212-2 inhibited the expression of inducible NO synthase (iNOS) and NO release caused by treatment of C6 cells with HIV-1 Tat and interferon-gamma (IFN-gamma). The effect of WIN 55,212-2 was uniquely due to CB(1) receptors, as shown by experiments carried out with selective CB(1) and CB(2) receptor agonists and antagonists. CB(1) receptor stimulation also inhibited HIV-1 Tat + IFN-gamma-induced and NO-mediated cell toxicity. Moreover, cell treatment with HIV-1 Tat + IFN-gamma induced a significant inhibition of CB(1), but not CB(2), receptor expression. This effect was mimicked by the NO donor GSNO, suggesting that the inhibition of CB(1) expression was due to HIV-1 Tat + IFN-gamma-induced NO overexpression. HIV-1 Tat + IFN-gamma treatment also induced a significant inhibition of the uptake of the endocannabinoid anandamide by C6 cells with no effect on anandamide hydrolysis. These findings show that the endocannabinoid system, through the modulation of the l-arginine/NO pathway, reduces HIV-1 Tat-induced cytotoxicity, and is itself regulated by HIV-1 Tat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号