首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytoplasmic pH (pHi) was evaluated duringNa+-glucose cotransport in Caco-2 intestinal epithelialcell monolayers. The pHi increased by 0.069 ± 0.002 within 150 s after initiation of Na+-glucosecotransport. This increase occurred in parallel with glucose uptake andrequired expression of the intestinal Na+-glucosecotransporter SGLT1. S-3226, a preferential inhibitor ofNa+/H+ exchanger (NHE) isoform 3 (NHE3),prevented cytoplasmic alkalinization after initiation ofNa+-glucose cotransport with an ED50 of 0.35 µM, consistent with inhibition of NHE3, but not NHE1 or NHE2. Incontrast, HOE-694, a poor NHE3 inhibitor, failed to significantlyinhibit pHi increases at <500 µM.Na+-glucose cotransport was also associated with activationof p38 mitogen-activated protein (MAP) kinase, and the p38 MAP kinase inhibitors PD-169316 and SB-202190 prevented pHi increasesby 100 ± 0.1 and 86 ± 0.1%, respectively. Conversely,activation of p38 MAP kinase with anisomycin induced NHE3-dependentcytoplasmic alkalinization in the absence of Na+-glucosecotransport. These data show that NHE3-dependent cytoplasmic alkalinization occurs after initiation of SGLT1-mediatedNa+-glucose cotransport and that the mechanism of this NHE3activation requires p38 MAP kinase activity. This coordinatedregulation of glucose (SGLT1) and Na+ (NHE3) absorptiveprocesses may represent a functional activation of absorptiveenterocytes by luminal nutrients.

  相似文献   

2.
Cyclooxygenase (COX)-2-derived prostaglandin (PG)E2 controls many aspects of colon cancer development, modulating from apoptosis resistance and cell proliferation to angiogenesis, invasion, and metastasis. Here, we investigated the role of different phospholipases (PL)A2 in supplying arachidonic acid (AA) for COX-2-dependent PGE2 generation and signaling pathways involved in activation of colon cancer cells by a physiologically relevant stimulus. To emulate the hypertonic environment found physiologically in colon, the human colon cancer cell line Caco-2 was maintained in hypertonic complete DMEM medium. Human colon cancer cell line Caco-2 exposed to a hypertonic environment responded with marked AA release, COX-2 induction and PGE2 generation. Selective secretory (s)PLA2 and calcium-independent (i)PLA2 inhibitors did not modify PGE2 generation, while either COX-2 or cytosolic (c)PLA2 inhibitors completely inhibited PGE2 generation. cPLA2-α was responsible for AA supply for PGE2 generation, but had no role in COX-2 induction. Mitogen-activated protein (MAP) kinases, ERK 1/2, p38, and JNK, participated in the signaling events that lead to PGE2 generation by modulating AA release, but only ERK 1/2 was involved in COX-2 upregulation. Our results indicate that hypertonic stress activates PGE2 generation by Caco-2 cells through a mechanism dependent on MAP kinase-regulated AA mobilization, increased cPLA2-α activity, and COX-2 induction.  相似文献   

3.
The mitogen-activated protein kinases (MAP kinases), extracellular signal-regulated kinase (ERK) and p38, can both contribute to the activation of cytosolic phospholipase A2 (cPLA2). We have investigated the hypothesis that ERK and p38 together or independent of one another play roles in the regulation of cPLA2 in macrophages responding to the oral bacterium Prevotella intermedia or zymosan. Stimulation with bacteria or zymosan beads caused arachidonate release and enhanced in vitro cPLA2 activity of cell lysate by 1.5- and 1.7-fold, respectively, as well as activation of ERK and p38. The specific inhibitor of MAP kinase kinase, PD 98059, and the inhibitor of p38, SB 203580, both partially inhibited cPLA2 activation and arachidonate release induced by bacteria and zymosan. Together, the two inhibitors had additive effects and completely blocked cPLA2 activation and arachidonate release. The present results demonstrate that ERK and p38 both have important roles in the regulation of cPLA2 and together account for its activation in P. intermedia and zymosan-stimulated mouse macrophages.  相似文献   

4.
Regulation of homocysteine-induced MMP-9 by ERK1/2 pathway   总被引:6,自引:0,他引:6  
Homocysteine (Hcy) induces matrix metalloproteinase (MMP)-9 in microvascular endothelial cells (MVECs). We hypothesized that the ERK1/2 signaling pathway is involved in Hcy-mediated MMP-9 expression. In cultured MVECs, Hcy induced activation of ERK, which was blocked by PD-98059 and U0126 (MEK inhibitors). Pretreatment with BAPTA-AM, staurosporine (PKC inhibitor), or Gö6976 (specific inhibitor for Ca2+-dependent PKC) abrogated ERK phosphorylation, suggesting the role of Ca2+ and Ca2+-dependent PKC in Hcy-induced ERK activation. ERK phosphorylation was suppressed by pertussis toxin (PTX), suggesting the involvement of G protein-coupled receptors (GPCRs) in initiating signal transduction by Hcy and leading to ERK activation. Pretreatment of MVECs with genistein, BAPTA-AM, or thapsigargin abrogated Hcy-induced ERK activation, suggesting the involvement of the PTK pathway in Hcy-induced ERK activation, which was mediated by intracellular Ca2+ pool depletion. ERK activation was attenuated by preincubation with N-acetylcysteine (NAC) and SOD, suggesting the role of oxidation in Hcy-induced ERK activation. Pretreatment with an ERK1/2 blocker (PD-98059), staurosporine, folate, or NAC modulated Hcy-induced MMP-9 activation as measured using zymography. Our results provide evidence that Hcy triggers the PTX-sensitive ERK1/2 signaling pathway, which is involved in the regulation of MMP-9 in MVECs. calcium signaling; protein kinase C; Src; G protein-coupled receptor; nonreceptor tyrosine kinase; protein Gi; protein Gq; protein tyrosine kinase 2; microvascular endothelial cell; cardiovascular remodeling  相似文献   

5.
Cardiacsarcolemmal (SL) cis-unsaturated fatty acid sensitivephospholipase D (cis-UFA PLD) is modulated by SLCa2+-independent phospholipase A2(iPLA2) activity via intramembrane release ofcis-UFA. As PLD-derived phosphatidic acid influences intracellular Ca2+ concentration and contractileperformance of the cardiomyocyte, changes in iPLA2 activitymay contribute to abnormal function of the failing heart. We examinedPLA2 immunoprotein expression and activity in the SL andcytosol from noninfarcted left ventricular (LV) tissue of rats in anovert stage of congestive heart failure (CHF). Hemodynamic assessmentof CHF animals showed an increase of the LV end-diastolic pressure withloss of contractile function. In normal hearts, immunoblot analysisrevealed the presence of cytosolic PLA2 (cPLA2)and secretory PLA2 (sPLA2) in the cytosol, withcPLA2 and iPLA2 in the SL. IntracellularPLA2 activity was predominantly Ca2+independent, with minimal sPLA2 activity. CHF increasedcPLA2 immunoprotein and PLA2 activity in thecytosol and decreased SL iPLA2 and cPLA2immunoprotein and SL PLA2 activity. sPLA2activity and abundance decreased in the cytosol and increased in SL in CHF. The results show that intrinsic to the pathophysiology of post-myocardial infarction CHF are abnormalities of SL PLA2isoenzymes, suggesting that PLA2-mediated bioprocesses arealtered in CHF.

  相似文献   

6.
Bradykinin (BK)-induced release of arachidonic acid (AA) fromMadin-Darby canine kidney (MDCK) D1 cells was investigated. Phorbol12-myristate 13-acetate (PMA) caused a synergistic increase in BK- andA-23187-induced release of AA but alone had no effect on this release.Inhibition of protein kinase C (PKC) with bisindolmaleimide I (BIS)abolished the synergistic effects of PMA but did not affect AA releasecaused by BK or A-23187 alone. Downregulation of PKC with 100 nM PMAresulted in a reduction of AA release induced by BK or A-23187addition, which corresponded to a decrease in cytoplasmic phospholipaseA2(cPLA2) activity as measured incell extracts. Although Western blotting revealed no differences in cPLA2 expression as a result ofPMA treatment, phosphorylation of the enzyme, as assessed byphosphoserine content, was significantly reduced in PKC-depleted cells.These results imply that, with PKC downregulation, subsequent BKstimulation results in aCa2+-dependent translocation of aless phosphorylated, less active form ofcPLA2. Any stimulation of PKC byBK addition did not appear as a significant event in onset reponsesleading to AA release. On the other hand, inhibition of themitogen-activated protein kinase (MAPK) cascade with the MAPK kinaseinhibitor, PD-98059, significantly decreased BK-induced release of AA,a finding that, with our other results, points to the existence of aPKC-independent route for stimulation of MAPK and the propagation ofonset responses.

  相似文献   

7.
Eicosanoid production is reduced when the nitric oxide (NO·) pathway is inhibited or when the inducible NO synthase gene is deleted, indicating that the NO· and arachidonic acid pathways are linked. We hypothesized that peroxynitrite, formed by the reaction of NO· and superoxide anion, may cause signaling events leading to arachidonic acid release and subsequent eicosanoid generation. Western blot analysis of rat arterial smooth muscle cells demonstrated that peroxynitrite (100–500 µM) and 3-morpholinosydnonimine (SIN-1; 200 µM) stimulate phosphorylation of extracellular signal-regulated kinase (ERK), p38, and cytosolic phospholipase A2 (cPLA2). We found that peroxynitrite-induced arachidonic acid release was completely abrogated by the mitogen-activated protein/ERK kinase (MEK) inhibitor U0126 and by calcium chelators. With the p38 inhibitor SB-20219, we demonstrated that peroxynitrite-induced p38 phosphorylation led to minor arachidonic acid release, whereas U0126 completely blocked p38 phosphorylation. Addition of arachidonic acid caused p38 phosphorylation, suggesting that arachidonic acid or its metabolites are responsible for p38 activation. KN-93, a specific inhibitor of Ca2+/calmodulin-dependent kinase II (CaMKII), revealed no role for this kinase in peroxynitrite-induced arachidonic acid release in our cell system. Together, these results show that in response to peroxynitrite the cell initiates the MEK/ERK cascade leading to cPLA2 activation and arachidonic acid release. Thus studies investigating the role of the NO· pathway on eicosanoid production must consider the contribution of signaling pathways initiated by reactive nitrogen species. These findings may provide evidence for a new role of peroxynitrite as an important reactive nitrogen species in vascular disease. reactive nitrogen species; prostaglandin H2 synthase; extracellular signal-regulated kinase; p38; cytosolic phospholipase A2  相似文献   

8.
Ceramide and the metabolites including ceramide-1-phosphate (C1P) and sphingosine are reported to regulate the release of arachidonic acid (AA) and/or phospholipase A2 (PLA2) activity in many cell types including lymphocytes. Recent studies established that C1P, a product of ceramide kinase, interacts directly with Ca2+ binding regions in the C2 domain of α type cytosolic PLA2 (cPLA2α), leading to translocation of the enzyme from the cytosol to the perinuclear region in cells. However, a precise mechanism for C1P-induced activation of cPLA2α has not been well elucidated; such as the phosphorylation signal caused by the extracellular signal-regulated kinases (ERK1/2) pathway, a downstream of the protein kinase C activation with 4β-phorbol myristate acetate (PMA), is required or not. In the present study, we showed that the increase in intracellular ceramide levels (exogenously added cell permeable ceramides and an inhibition of ceramidase by (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol and the increase in C1P formation by transfection with the vector for human ceramide kinase significantly enhanced the Ca2+ ionophore (A23187) -induced release of AA via cPLA2α's activation in CHO cells. Ceramides did not show additional effects on the release from the cells treated with the inhibitor of ceramidase. Ceramides and C2-C1P neither had effect on the intracellular mobilization of Ca2+ nor the phosphorylation of cPLA2α in cells. A23187/PMA-induced release of AA was enhanced by ceramides and C2-C1P and by expression of ceramide kinase. Our findings suggest that C1P is a stimulatory factor on cPLA2α that is independent of the Ca2+ signal and the PKC-ERK-mediated phosphorylation signal.  相似文献   

9.
Resting or basal intracellular pH (pHi) measured in cultured human syncytiotrophoblast cells was 7.26 ± 0.04 (without HCO3) or 7.24 ± 0.03 (with HCO3). Ion substitution and inhibitor experiments were performed to determine whether common H+-transporting species were operating to maintain basal pHi. Removal of extracellular Na+ or Cl or addition of amiloride or dihydro-4,4'-diisothiocyanatostilbene-2,2'-disulfonate (H2DIDS) had no effect. Acidification with the K+/H+ exchanger nigericin reduced pHi to 6.25 ± 0.15 (without HCO3) or 6.53 ± 0.10 (with HCO3). In the presence of extracellular Na+, recovery to basal pHi was prompt and occurred at similar rates in the absence and presence of HCO3. Ion substitution and inhibition experiments were also used to identify the species mediating the return to basal pHi after acidification. Recovery was inhibited by removal of Na+ or addition of amiloride, whereas removal of Cl and addition of H2DIDS were ineffective. Addition of the Na+/H+ exchanger monensin to cells that had returned to basal pHi elicited a further increase in pHi to 7.48 ± 0.07. Analysis of recovery data showed that there was a progressive decrease in pH per minute as pHi approached the basal level, despite the continued presence of a driving force for H+ extrusion. These data show that in cultured syncytial cells, in the absence of perturbation, basal pHi is preserved despite the absence of active, mediated pH maintenance. They also demonstrate that an Na+/H+ antiporter acts to defend the cells against acidification and that it is the sole transporter necessary for recovery from an intracellular acid load. sodium/hydrogen antiporter; pH regulation; fluorescence; 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein  相似文献   

10.
Myocardial dysfunction leading to dilated cardiomyopathy has been documented with surprisingly high frequency in human immunodeficiency virus (HIV)-infected individuals. p38 MAP kinase has been implicated as a mediator of myocardial dysfunction. We previously reported p38 MAP kinase activation by the HIV coat protein gp120 in neonatal rat cardiac myocytes. We now report the direct inotropic effects of HIV gp120 on adult rat ventricular myocytes (ARVM). ARVM were continuously superfused with gp120, and percent fractional shortening (FS) was determined by automated border detection and simultaneous intracellular ionized free Ca2+ concentration ([Ca2+]i) measured by fura 2-AM fluorescence: gp120 alone increased FS and increased [Ca2+]i within 5 min and then depressed FS without a decrease in [Ca2+]i by 20–60 min, which persisted for at least 2 h. Exposure of ARVM to gp120 also resulted in the phosphorylation of the upstream regulator of p38 MAP kinase MKK3/6, p38 MAP kinase itself, and its downstream effector, ATF-2, over a similar time course. ERK (p44/42) and JNK stress signaling pathways were not similarly activated. The effects of the p38 MAP kinase inhibitor were concentration dependent. SB-203580 (10 µM) blocked both p38 MAP kinase phosphorylation and the delayed negative inotropic effect of gp120. SB-203580 (5 µM) selectively blocked phosphorylation of ATF-2 without blocking the phosphorylation of MKK3/6 or p38 MAP kinase itself. SB-203580 (5 µM) administered before, with, or after gp120 blocked the negative inotropic effect of gp120 in ARVM. p38 MAP kinase activation may be a common stress-response mechanism contributing to myocardial dysfunction in HIV and other nonischemic as well as ischemic cardiomyopathies. cardiomyopathy; cell signaling  相似文献   

11.
Upregulation and activation of phospholipases A2 (PLA2) and cyclooxygenases (COX) leading to prostaglandin E2(PGE2) production have been implicated in a number of neurodegenerative diseases. In this study, we investigated PGE2 production in primary rat astrocytes in response to agents that activate PLA2 including pro-inflammatory cytokines (IL-1β, TNFα and IFNγ), the P2 nucleotide receptor agonist ATP, and oxidants (H2O2 and menadione). Exposure of astrocytes to cytokines resulted in a time-dependent increase in PGE2 production that was marked by increased expression of secretory sPLA2 and COX-2, but not COX-1 and cytosolic cPLA2. Although astrocytes responded to ATP or phorbol ester (PMA) with increased cPLA2 phosphorylation and arachidonic acid release, ATP or PMA only caused a small increase in levels of PGE2. However, when astrocytes were first treated with cytokines, further exposure to ATP or PMA, but not H2O2 or menadione, markedly increased PGE2 production. These results suggest that ATP release during neuronal excitation or injury can enhance the inflammatory effects of cytokines on PGE2 production and may contribute to chronic inflammation seen in Alzheimer's disease.  相似文献   

12.
Exposure of renal proximal tubule cells to oxalate may play an important role in cell proliferation, but the signaling pathways involved in this effect have not been elucidated. Thus the present study was performed to examine the effect of oxalate on 3H-labeled thymidine incorporation and its related signal pathway in primary cultured rabbit renal proximal tubule cells (PTCs). The effects of oxalate on [3H]thymidine incorporation, lactate dehydrogenase (LDH) release, Trypan blue exclusion, H2O2 release, activation of mitogen-activated protein kinases (MAPKs), and 3H-labeled arachidonic acid (AA) release were examined in primary cultured renal PTCs. Oxalate inhibited [3H]thymidine incorporation in a time- and dose-dependent manner. However, its analogs did not affect [3H]thymidine incorporation. Oxalate (1 mM) significantly increased H2O2 release, which was blocked by N-acetyl-L-cysteine (NAC) and catalase (antioxidants). Oxalate significantly increased p38 MAPK and stress-activated protein kinase (SAPK)/c-Jun NH2-terminal kinase (JNK) activity, not p44/42 MAPK. Oxalate stimulated [3H]AA release and translocation of cytosolic phospholipase A2 (cPLA2) from the cytosolic fraction to the membrane fraction. Indeed, oxalate significantly increased prostaglandin E2 (PGE2) production compared with control. Oxalate-induced inhibition of [3H]thymidine incorporation and increase of [3H]AA release were prevented by antioxidants (NAC), a p38 MAPK inhibitor (SB-203580), a SAPK/JNK inhibitor (SP-600125), or PLA2 inhibitors [mepacrine and arachidonyl trifluoromethyl ketone (AACOCF3)], but not by a p44/42 MAPK inhibitor (PD-98059). These findings suggest that oxalate inhibits renal PTC proliferation via oxidative stress, p38 MAPK/JNK, and cPLA2 signaling pathways. kidney; mitogen-activated protein kinase; phospholipase A2  相似文献   

13.
Phosphorylation of caldesmon by ERK MAP kinases in smooth muscle   总被引:3,自引:0,他引:3  
Phosphorylation of h-caldesmon has beenproposed to regulate airway smooth muscle contraction. Bothextracellular signal-regulated kinase (ERK) and p38 mitogen-activatedprotein (MAP) kinases phosphorylate h-caldesmon in vitro. To determinewhether both enzymes phosphorylate caldesmon in vivo,phosphorylation-site-selective antibodies were used to assayphosphorylation of MAP kinase consensus sites. Stimulation of culturedtracheal smooth muscle cells with ACh or platelet-derived growth factorincreased caldesmon phosphorylation at Ser789 by about twofold.Inhibiting ERK MAP kinase activation with 50 µM PD-98059 blockedagonist-induced caldesmon phosphorylation completely. Inhibiting p38MAP kinases with 25 µM SB-203580 had no effect on ACh-inducedcaldesmon phosphorylation. Carbachol stimulation increased caldesmonphosphorylation at Ser789 in intact tracheal smooth muscle, which wasblocked by the M2 antagonist AF-DX 116 (1 µM). AF-DX 116 inhibited carbachol-induced isometric contraction by 15 ± 1.4%, thusdissociating caldesmon phosphorylation from contraction. Activation ofM2 receptors leads to activation of ERK MAP kinases andphosphorylation of caldesmon with little or no functional effect onisometric force. P38 MAP kinases are also activated by muscarinicagonists, but they do not phosphorylate caldesmon in vivo.

  相似文献   

14.
-Opioid receptor (-OR)stimulation with U50,488H, a selective -OR agonist, or activation ofprotein kinase C (PKC) with 4-phorbol 12-myristate 13-acetate (PMA), anactivator of PKC, decreased the electrically induced intracellularCa2+ ([Ca2+]i) transient andincreased the intracellular pH (pHi) in single ventricularmyocytes of rats subjected to 10% oxygen for 4 wk. The effects ofU50,488H were abolished by nor-binaltorphimine, a selective -ORantagonist, and calphostin C, a specific inhibitor of PKC, while theeffects of PMA were abolished by calphostin C andethylisopropylamiloride (EIPA), a potent Na+/H+exchange blocker. In both right hypertrophied and leftnonhypertrophied ventricles of chronically hypoxic rats, the effects ofU50,488H or PMA on [Ca2+]i transient andpHi were significantly attenuated and completely abolished,respectively. Results are first evidence that the[Ca2+]i and pHi responses to-OR stimulation are attenuated in the chronically hypoxic rat heart,which may be due to reduced responses to PKC activation. Responses toall treatments were the same for right and left ventricles, indicatingthat the functional impairment is independent of hypertrophy. -ORmRNA expression was the same in right and left ventricles of bothnormoxic and hypoxic rats, indicating no regional specificity.

  相似文献   

15.
Bursts in reactive oxygen species productionare important mediators of contractile dysfunction duringischemia-reperfusion injury. Cellular mechanisms that mediatereactive oxygen species-induced changes in cardiac myocyte functionhave not been fully characterized. In the present study,H2O2 (50 µM) decreased contractility of adultrat ventricular myocytes. H2O2 caused aconcentration- and time-dependent activation of extracellularsignal-regulated kinases 1 and 2 (ERK1/2), p38, and c-JunNH2-terminal kinase (JNK) mitogen-activated protein (MAP)kinases in adult rat ventricular myocytes. H2O2 (50 µM) caused transient activation of ERK1/2 and p38 MAP kinase thatwas detected as early as 5 min, was maximal at 20 min (9.6 ± 1.2- and 9.0 ± 1.6-fold, respectively, vs. control), and returned tobaseline at 60 min. JNK activation occurred more slowly (1.6 ± 0.2-fold vs. control at 60 min) but was sustained at 3.5 h. Theprotein kinase C inhibitor chelerythrine completely blocked JNKactivation and reduced ERK1/2 and p38 activation. The tyrosine kinaseinhibitors genistein and PP-2 blocked JNK, but not ERK1/2 and p38,activation. H2O2-inducedNa+/H+ exchanger phosphorylation was blocked bythe MAP kinase kinase inhibitor U-0126 (5 µM). These resultsdemonstrate that H2O2-induced activation of MAPkinases may contribute to cardiac myocyte dysfunction duringischemia-reperfusion.

  相似文献   

16.
Putative chemoreceptors in the solitary complex (SC) are sensitive to hypercapnia and oxidative stress. We tested the hypothesis that oxidative stress stimulates SC neurons by a mechanism independent of intracellular pH (pHi). pHi was measured by using ratiometric fluorescence imaging microscopy, utilizing either the pH-sensitive fluorescent dye BCECF or, during whole cell recordings, pyranine in SC neurons in brain stem slices from rat pups. Oxidative stress decreased pHi in 270 of 436 (62%) SC neurons tested. Chloramine-T (CT), N-chlorosuccinimide (NCS), dihydroxyfumaric acid, and H2O2 decreased pHi by 0.19 ± 0.007, 0.20 ± 0.015, 0.15 ± 0.013, and 0.08 ± 0.002 pH unit, respectively. Hypercapnia decreased pHi by 0.26 ± 0.006 pH unit (n = 95). The combination of hypercapnia and CT or NCS had an additive effect on pHi, causing a 0.42 ± 0.03 (n = 21) pH unit acidification. CT slowed pHi recovery mediated by Na+/H+ exchange (NHE) from NH4Cl-induced acidification by 53% (n = 20) in -buffered medium and by 58% (n = 10) in HEPES-buffered medium. CT increased firing rate in 14 of 16 SC neurons, and there was no difference in the firing rate response to CT with or without a corresponding change in pHi. These results indicate that oxidative stress 1) decreases pHi in some SC neurons, 2) together with hypercapnia has an additive effect on pHi, 3) partially inhibits NHE, and 4) directly affects excitability of CO2/H+-chemosensitive SC neurons independently of pHi changes. These findings suggest that oxidative stress acidifies SC neurons in part by inhibiting NHE, and this acidification may contribute ultimately to respiratory control dysfunction. hyperoxic hyperventilation; O2 toxicity; pH regulation; brain stem; reactive oxygen species  相似文献   

17.
Cholinergic-muscarinic receptor agonists are used to alleviate mouth dryness, although the cellular signals mediating the actions of these agents on salivary glands have not been identified. We examined the activation of ERK1/2 by two muscarinic agonists, pilocarpine and carbachol, in a human salivary cell line (HSY). Immunoblot analysis revealed that both agonists induced transient activation of ERK1/2. Whereas pilocarpine induced phosphorylation of the epidermal growth factor (EGF) receptor, carbachol did not. Moreover, ERK activation by pilocarpine, but not carbachol, was abolished by the EGF receptor inhibitor AG-1478. Downregulation of PKC by prolonged treatment of cells with the phorbol ester PMA diminished carbachol-induced ERK phosphorylation but had no effect on pilocarpine responsiveness. Depletion of intracellular Ca2+ ([Ca2+]i) by EGTA did not affect ERK activation by either agent. In contrast to carbachol, pilocarpine did not elicit [Ca2+]i mobilization in HSY cells. Treatment of cells with the muscarinic receptor subtype 3 (M3) antagonist N-(3-chloropropyl)-4-piperidnyl diphenylacetate decreased ERK responsiveness to both agents, whereas the subtype 1 (M1) antagonist pirenzepine reduced only the carbachol response. Stimulation of ERKs by pilocarpine was also decreased by M3, but not M1, receptor small interfering RNA. The Src inhibitor PP2 blocked pilocarpine-induced ERK activation and EGF receptor phosphorylation, without affecting ERK activation by carbachol. Our results demonstrate that the actions of pilocarpine and carbachol in salivary cells are mediated through two distinct signaling mechanisms—pilocarpine acting via M3 receptors and Src-dependent transactivation of EGF receptors, and carbachol via M1/M3 receptors and PKC—converging on the ERK pathway. muscarinic receptor; epidermal growth factor receptor; protein kinase C  相似文献   

18.
Human sperm are endowed with putative voltage-dependent calcium channels (VDCC) that produce measurable increases in intracellular calcium concentration ([Ca2+]i) in response to membrane depolarization with potassium. These channels are blocked by nickel, inactivate in 1–2 min in calcium-deprived medium, and are remarkably stimulated by NH4Cl, suggesting a role for intracellular pH (pHi). In a previous work, we showed that calcium permeability through these channels increases approximately onefold during in vitro "capacitation," a calcium-dependent process that sperm require to fertilize eggs. In this work, we have determined the pHi dependence of sperm VDCC. Simultaneous depolarization and pHi alkalinization with NH4Cl induced an [Ca2+]i increase that depended on the amount of NH4Cl added. VDCC stimulation as a function of pHi showed a sigmoid curve in the 6.6–7.2 pHi range, with a half-maximum stimulation at pH 7.00. At higher pHi (7.3), a further stimulation occurred. Calcium release from internal stores did not contribute to the stimulating effect of pHi because the [Ca2+]i increase induced by progesterone, which opens a calcium permeability pathway that does not involve gating of VDCC, was unaffected by ammonium. The ratio of pHi-stimulated-to-nonstimulated calcium influx was nearly constant at different test depolarization values. Likewise, depolarization-induced calcium influx in pHi-stimulated and nonstimulated cells was equally blocked by nickel. In our capacitating conditions pHi increased 0.11 pH units, suggesting that the calcium influx stimulation observed during sperm capacitation might be partially caused by pHi alkalinization. Additionally, a calcium permeability pathway triggered exclusively by pHi alkalinization was detected. mammalian sperm; capacitation; intracellular calcium  相似文献   

19.
To test thehypothesis that intracellular Ca2+activation of large-conductanceCa2+-activatedK+ (BK) channels involves thecytosolic form of phospholipase A2 (cPLA2), we first inhibited theexpression of cPLA2 by treating GH3 cells with antisenseoligonucleotides directed at the two possible translation start siteson cPLA2. Western blot analysis and a biochemical assay of cPLA2activity showed marked inhibition of the expression ofcPLA2 in antisense-treated cells.We then examined the effects of intracellularCa2+ concentration([Ca2+]i)on single BK channels from these cells. Open channel probability (Po) for thecells exposed to cPLA2 antisenseoligonucleotides in 0.1 µM intracellularCa2+ was significantly lower thanin untreated or sense oligonucleotide-treated cells, but the voltagesensitivity did not change (measured as the slope of thePo-voltagerelationship). In fact, a 1,000-fold increase in[Ca2+]ifrom 0.1 to 100 µM did not significantly increasePoin these cells, whereas BK channels from cells in the other treatmentgroups showed a normalPo-[Ca2+]iresponse. Finally, we examined the effect of exogenous arachidonic acidon thePoof BK channels from antisense-treated cells. Although arachidonic aciddid significantly increasePo,it did so without restoring the[Ca2+]isensitivity observed in untreated cells. We conclude that although [Ca2+]idoes impart some basal activity to BK channels inGH3 cells, the steepPo-[Ca2+]irelationship that is characteristic of these channels involves cPLA2.

  相似文献   

20.
H(2)O(2)-mediated permeability: role of MAPK and occludin   总被引:4,自引:0,他引:4  
H2O2-mediated elevation inendothelial solute permeability is associated with pathological eventssuch as ischemia-reperfusion and inflammation. To understand howH2O2 mediates increased permeability, weinvestigated the effects of H2O2 administrationon vascular endothelial barrier properties and tight junctionorganization and function. We report that H2O2exposure caused an increase in endothelial solute permeability in atime-dependent manner through extracellularly regulated kinase 1 and 2 (ERK1/ERK2) signal pathways. H2O2 exposurecaused the tight junctional protein occludin to be rearranged fromendothelial cell-cell junctions. Occludin rearrangement involvedredistribution of occludin on the cell surface and dissociation ofoccludin from ZO-1. Occludin also was heavily phosphorylated onserine residues upon H2O2 administration. H2O2 mediates changes in ERK1/ERK2phosphorylation, increases endothelial solute permeability, and altersoccludin localization and phosphorylation were all blocked by PD-98059,a specific mitogen-activated protein (MAP) or ERK kinase 1 inhibitor. These data strongly suggest thatH2O2-mediated increased endothelial solutepermeability involves the loss of endothelial tight junction integritythrough increased ERK1/ERK2 activation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号