首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We comparedreflex responses to static handgrip at 30% maximal voluntarycontraction (MVC) in 10 women (mean age 24.1 ± 1.7 yr) during twophases of their ovarian cycle: the menstrual phase (days 1-4) and the follicularphase (days10-12). Changes in muscle sympathetic nerve activity (MSNA; microneurography) in response tostatic exercise were greater during the menstrual compared withfollicular phase (phase effect P = 0.01). Levels of estrogen were less during the menstrual phase(75 ± 5.5 vs. 116 ± 9.6 pg/ml, days 1-4 vs.days 10-12;P = 0.002). Generated tension did not explain differences in MSNA responses (MVC: 29.3 ± 1.3 vs. 28.2 ± 1.5 kg, days 1-4 vs.days 10-12;P = 0.13). In a group of experiments with the use of 31P-NMRspectroscopy, no phase effect was observed forH+ andH2PO4 concentrations(n = 5). During an ischemicrhythmic handgrip paradigm (20% MVC), a phase effect was notobserved for MSNA or H+ orH2PO4 concentrations,suggesting that blood flow was necessary for the expression of thecycle-related effect. The present studies suggest that, during statichandgrip exercise, MSNA is increased during the menstrual compared withthe follicular phase of the ovarian cycle.

  相似文献   

2.
Increases in the concentration of interstitial potassium concentration during exercise may play a role in the modulation of the cardiovascular response to exercise. However, it is not known if changes in potassium correlate with indexes of muscle reflex engagement. Eight healthy subjects performed dynamic [rhythmic handgrip (RHG)] and static handgrip (SHG) exercise at 40% of maximal voluntary contraction. Forearm circulatory arrest was performed to assess the metaboreceptor component of the exercise pressor reflex. Mean arterial pressure (MAP) and muscle sympathetic nerve activity (MSNA) were measured during each exercise paradigm. Venous plasma potassium concentrations ([K(+)](V)) were measured and used as a surrogate marker for interstitial potassium. [K(+)](V) were measured at baseline and at 1-min intervals during dynamic handgrip. During SHG, [K(+)](V) were measured at baseline, 30 and 90 s of exercise, and twice during forearm circulatory arrest. Mean [K(+)](V) was 3.6 mmol/l at rest before both paradigms. During RHG, [K(+)](V) rose by approximately 1.0 mmol/l by min 2 and remained constant throughout the rest of handgrip. During SHG, [K(+)](V) rose significantly at 30 s and rose an additional approximately 1.0 mmol/l by peak exercise. MAP and MSNA rose during both exercise paradigms. During posthandgrip circulatory arrest (PHG-CA), MSNA and blood pressure remained above baseline. [K(+)](V) and MSNA did not correlate during either exercise paradigm. Moreover, during PHG-CA, there was clear dissociation of MSNA from [K(+)](V). These data suggest that potassium does not play a direct role in the maintenance of the exercise pressor reflex.  相似文献   

3.
Prior work in animals suggests that muscle mechanoreceptor control of sympathetic activation (MSNA) during exercise in heart failure (HF) is heightened and that muscle mechanoreceptors are sensitized by metabolic by-products. We sought to determine whether 1) muscle mechanoreceptor control of MSNA is enhanced in HF patients and 2) lactic acid sensitizes muscle mechanoreceptors during rhythmic handgrip (RHG) exercise in healthy humans and patients with HF. Dichloroacetate (DCA), which reduces the production of lactic acid, or saline control was infused in 12 patients with HF and 13 controls during RHG. MSNA was recorded (microneurography). After saline was administered and during exercise thereafter, MSNA increased earlier in HF compared with controls, consistent with baseline-heightened mechanoreceptor sensitivity. In both HF and controls, MSNA increased during the 3-min exercise protocol, consistent with further sensitization of muscle mechanoreceptors by metabolic by-product(s). During posthandgrip circulatory arrest, MSNA returned rapidly to baseline levels, excluding the muscle metaboreceptors as mediators of the sympathetic excitation during RHG. To isolate muscle mechanoreceptors from central command, we utilized passive exercise in 8 HF and 11 controls, and MSNA was recorded. MSNA increased significantly during passive exercise in HF but not in controls. In conclusion, muscle mechanoreceptors mediate the increase in MSNA during low-level RHG exercise in healthy humans, and this muscle mechanoreceptor control is augmented further in HF. Neither lactate generation nor the fall in pH during RHG plays a central role in muscle mechanoreceptor sensitization. Finally, muscle mechanoreceptors in patients with HF have heightened basal sensitivity to mechanical stimuli resulting in exaggerated early increases in MSNA.  相似文献   

4.
Ray, Chester A., and Kathryn H. Gracey. Augmentation ofexercise-induced muscle sympathetic nerve activity during muscle heating. J. Appl. Physiol. 82(6):1719-1725, 1997.The muscle metabo- and mechanoreflexes have beenshown to increase muscle sympathetic nerve activity (MSNA) duringexercise. Group III and IV muscle afferents, which are believed tomediate this response, have been shown to be thermosensitive inanimals. The purpose of the present study was to evaluate the effect ofmuscle temperature on MSNA responses during exercise. Eleven subjectsperformed ischemic isometric handgrip at 30% of maximal voluntarycontraction to fatigue, followed by 2 min of postexercise muscleischemia (PEMI), with and without local heating of the forearm. Localheating of the forearm increased forearm muscle temperature from 34.4 ± 0.2 to 38.9 ± 0.3°C(P = 0.001). Diastolic andmean arterial pressures were augmented during exercise in the heat.MSNA responses were greater during ischemic handgrip with local heatingcompared with control (no heating) after the first 30 s. MSNA responsesat fatigue were greater during local heating. MSNA increased by 16 ± 2 and 20 ± 2 bursts per 30 s for control and heating,respectively (P = 0.03). Whenexpressed as a percent change in total activity (total burstamplitude), MSNA increased 531 ± 159 and 941 ± 237% forcontrol and heating, respectively (P = 0.001). However, MSNA was not different during PEMI between trials.This finding suggests that the augmentation of MSNA during exercisewith heat was due to the stimulation of mechanically sensitive muscleafferents. These results suggest that heat sensitizes skeletal muscleafferents during muscle contraction in humans and may play a role inthe regulation of MSNA during exercise.

  相似文献   

5.
Previous work has suggested that end-stage renal disease (ESRD) patients may have an exaggerated sympathetic nervous system (SNS) response during exercise. We hypothesized that ESRD patients have an exaggerated blood pressure (BP) response during moderate static handgrip exercise (SHG 30%) and that the exaggerated BP response is mediated by SNS overactivation, characterized by augmented mechanoreceptor activation and blunted metaboreceptor control, as has been described in other chronic diseases. We measured hemodynamics and muscle sympathetic nerve activity (MSNA) in 13 ESRD and 16 controls during: 1) passive hand movement (PHM; mechanoreceptor isolation); 2) low-level rhythmic handgrip exercise (RHG 20%; central command and mechanoreceptor activation); 3) SHG 30%, followed by posthandgrip circulatory arrest (PHGCA; metaboreceptor activation); and 4) cold pressor test (CPT; nonexercise stimulus). ESRD patients had exaggerated increases in systolic BP during SHG 30%; however, the absolute and relative increase in MSNA was not augmented, excluding SNS overactivation as the cause of the exaggerated BP response. Increase in MSNA was not exaggerated during RHG 20% and PHM, demonstrating that mechanoreceptor activation is not heightened in ESRD. During PHGCA, MSNA remained elevated in controls but decreased rapidly to baseline levels in ESRD, indicative of markedly blunted metaboreceptor control of MSNA. MSNA response to CPT was virtually identical in ESRD and controls, excluding a generalized sympathetic hyporeactivity in ESRD. In conclusion, ESRD patients have an exaggerated increase in SBP during SHG 30% that is not mediated by overactivation of the SNS directed to muscle. SBP responses were also exaggerated during mechanoreceptor activation and metaboreceptor activation, but without concomitant augmentation in MSNA responses. Metaboreceptor control of MSNA was blunted in ESRD, but the overall ability to mount a SNS response was not impaired. Other mechanisms besides SNS overactivation, such as impaired vasodilatation, should be explored to explain the exaggerated exercise pressor reflex in ESRD.  相似文献   

6.
Evidence from animalsindicates that skeletal muscle afferents activate the vestibular nucleiand that both vestibular and skeletal muscle afferents have inputs tothe ventrolateral medulla. The purpose of the present study was toinvestigate the interaction between the vestibulosympathetic andskeletal muscle reflexes on muscle sympathetic nerve activity (MSNA)and arterial pressure in humans. MSNA, arterial pressure, and heartrate were measured in 17 healthy subjects in the prone position duringthree experimental trials. The three trials were 2 min of 1)head-down rotation (HDR) to engage the vestibulosympathetic reflex,2) isometric handgrip (IHG) at 30% maximal voluntarycontraction to activate skeletal muscle afferents, and 3)HDR and IHG performed simultaneously. The order of the three trials wasrandomized. HDR and IHG performed alone increased total MSNA by 46 ± 16 and 77 ± 24 units, respectively (P < 0.01). During the HDR plus IHG trial, MSNA increased 142 ± 38 units (P < 0.01). This increase was not significantlydifferent from the sum of the individual trials (130 ± 41 units).This finding was also observed with mean arterial pressure (sum = 21 ± 2 mmHg and HDR + IHG = 22 ± 2 mmHg). Thesefindings suggest that there is an additive interaction for MSNA andarterial pressure when the vestibulosympathetic and skeletal musclereflexes are engaged simultaneously in humans. Therefore, no centralmodulation exists between these two reflexes with regard to MSNA outputin humans.

  相似文献   

7.
Ray, Chester A., and Keith M. Hume. Neck afferents andmuscle sympathetic activity in humans: implications for the vestibulosympathetic reflex. J. Appl.Physiol. 84(2): 450-453, 1998.We have shownpreviously that head-down neck flexion (HDNF) in humans elicitsincreases in muscle sympathetic nerve activity (MSNA). The purpose ofthis study was to determine the effect of neck muscle afferents onMSNA. We studied this question by measuring MSNA before and after headrotation that would activate neck muscle afferents but not thevestibular system (i.e., no stimulation of the otolith organs orsemicircular canals). After a 3-min baseline period with the head inthe normal erect position, subjects rotated their head to the side(~90°) and maintained this position for 3 min. Head rotation wasperformed by the subjects in both the prone(n = 5) and sitting(n = 6) positions. Head rotation did not elicit changes in MSNA. Average MSNA, expressed asburst frequency and total activity, was 13 ± 1 and 13 ± 1 bursts/min and 146 ± 34 and 132 ± 27 units/min during baselineand head rotation, respectively. There were no significant changes incalf blood flow (2.6 ± 0.3 to 2.5 ± 0.3 ml · 100 ml1 · min1;n = 8) and calf vascular resistance(39 ± 4 to 41 ± 4 units; n = 8). Heart rate (64 ± 3 to 66 ± 3 beats/min;P = 0.058) and mean arterial pressure(90 ± 3 to 93 ± 3; P < 0.05)increased slightly during head rotation. Additional neck flexionstudies were performed with subjects lying on their side(n = 5). MSNA, heart rate, and meanarterial pressure were unchanged during this maneuver, which also doesnot engage the vestibular system. HDNF was tested in 9 of the 13 subjects. MSNA was significantly increased by 79 ± 12% (P < 0.001) during HDNF. Thesefindings indicate that neck afferents activated by horizontal neckrotation or flexion in the absence of significant force development donot elicit changes in MSNA. These findings support the concept thatHDNF increases MSNA by the activation of the vestibular system.

  相似文献   

8.
Prior work in animals and humans suggests that muscle mechanoreceptor control of sympathetic activation [muscle sympathetic nerve activity (MSNA)] during exercise in heart failure (HF) patients is heightened compared with that of healthy humans and that muscle mechanoreceptors are sensitized by metabolic by-products. We sought to determine whether cyclooxygenase products and/or endogenous adenosine, two metabolites of ischemic exercise, sensitize muscle mechanoreceptors during rhythmic handgrip (RHG) exercise in HF patients. Indomethacin, which inhibits the production of prostaglandins, and saline control were infused in 12 HF patients. In a different protocol, aminophylline, which inhibits adenosine receptors, and saline control were infused in 12 different HF patients. MSNA was recorded (microneurography). During exercise following saline, MSNA increased in the first minute of exercise, consistent with baseline heightened mechanoreceptor sensitivity. MSNA continued to increase during 3 min of RHG, indicative that muscle mechanoreceptors are sensitized by ischemia metabolites. Indomethacin, but not aminophylline, markedly attenuated the increase in MSNA during the entire 3 min of low-level rhythmic exercise, consistent with the sensitization of muscle mechanoreceptors by cyclooxygenase products. Interestingly, even the early increase in MSNA was abolished by indomethacin infusion, indicative of the very early generation of cyclooxygenase products after the onset of exercise in HF patients. In conclusion, muscle mechanoreceptors mediate the increase in MSNA during low-level RHG exercise in HF. Cyclooxygenase products, but not endogenous adenosine, play a central role in muscle mechanoreceptor sensitization. Finally, muscle mechanoreceptors in patients with HF have heightened basal sensitivity to mechanical stimuli, which also appears to be mediated by the early generation of cyclooxygenase products, resulting in exaggerated early increases in MSNA.  相似文献   

9.
The purpose ofthis study was to determine the effects of concentric (Con) andeccentric (Ecc) muscle actions on leg muscle sympathetic nerve activity(MSNA). Two protocols were utilized. In protocol1, eight subjects performed Con and Ecc arm curls for 2 min, with a resistance representing 50% of one-repetition maximum forCon curls. Heart rate (HR) and mean arterial pressure (MAP) weregreater (P < 0.05) during Con thanduring Ecc curls. Similarly, the MSNA was greater(P < 0.05) during Con than during Ecc curls. In protocol 2, eightdifferent subjects performed Con and Ecc arm curls to fatigue, followedby postexercise muscle ischemia, by using the same resistanceas in protocol 1. Endurance time wassignificantly greater for Ecc than for Con curls. The increase in HR,MAP, and MSNA was greater (P < 0.05)during Con than during Ecc curls. However, when the data werenormalized as a function of endurance time, the differences in HR, MAP,and MSNA between Con and Ecc curls were no longer present. HR, MAP, andMSNA responses during postexercise muscle ischemia were similar for Con and Ecc curls. Con curls elicited greater increase(P < 0.05) in blood lactateconcentration than did Ecc curls. In summary, Con actions contributesignificantly more to the increase in cardiovascular and MSNA responsesduring brief, submaximal exercise than do Ecc actions. However, whenperformed to a similar level of effort (i.e., fatigue), Con and Eccmuscle actions elicit similar cardiovascular and MSNA responses. Theseresults indicate that the increase in MSNA during a typical bout ofsubmaximal dynamic exercise is primarily mediated by the musclemetaboreflex, which is stimulated by metabolites produced predominantlyduring Con muscle action.  相似文献   

10.
The purpose of this study was to determinewhether the increase in insulin sensitivity of skeletal muscle glucosetransport induced by a single bout of exercise is mediated by enhancedtranslocation of the GLUT-4 glucose transporter to the cell surface.The rate of3-O-[3H]methyl-D-glucosetransport stimulated by a submaximally effective concentration ofinsulin (30 µU/ml) was approximately twofold greater in the musclesstudied 3.5 h after exercise than in those of the sedentary controls(0.89 ± 0.10 vs. 0.43 ± 0.05 µmol · ml1 · 10 min1; means ± SE forn = 6/group). GLUT-4 translocation wasassessed by using theATB-[2-3H]BMPAexofacial photolabeling technique. Prior exercise resulted in greatercell surface GLUT-4 labeling in response to submaximal insulintreatment (5.36 ± 0.45 dpm × 103/g in exercised vs. 3.00 ± 0.38 dpm × 103/g insedentary group; n = 10/group) thatclosely mirrored the increase in glucose transport activity. The signalgenerated by the insulin receptor, as reflected in the extent ofinsulin receptor substrate-1 tyrosine phosphorylation, was unchangedafter the exercise. We conclude that the increase in muscle insulinsensitivity of glucose transport after exercise is due to translocationof more GLUT-4 to the cell surface and that this effect is not due topotentiation of insulin-stimulated tyrosine phosphorylation.

  相似文献   

11.
The hypothesis that glucose ingestion inthe postexercise state enhances the synthesis of glutamine and alaninein the skeletal muscle was tested. Glucose was infused intraduodenallyfor 150 min (44.5 µmol · kg1 · min1)beginning 30 min after a 150-min period of exercise(n = 7) or an equivalent durationsedentary period (n = 10) in18-h-fasted dogs. Prior exercise caused a twofold greater increase inlimb glucose uptake during the intraduodenal glucose infusion compared with uptake in sedentary dogs. Arterial glutamine levels fell graduallywith the glucose load in both groups. Net hindlimb glutamine effluxincreased in response to intraduodenal glucose in exercised but notsedentary dogs (P < 0.05-0.01).Arterial alanine levels, depleted by 50% with exercise, rose withintraduodenal glucose in exercised but not sedentary dogs(P < 0.05-0.01). Net hindlimb alanine efflux also rose in exercised dogs in response to intraduodenal glucose (P < 0.05-0.01),whereas it was not different from baseline in sedentary controls forthe first 90 min of glucose infusion. Beyond this point,it, too, rose significantly. We conclude that oral glucosemay facilitate recovery of muscle from prolonged exercise by enhancingthe removal of nitrogen in the form of glutamine andalanine.

  相似文献   

12.
Fuel metabolism in men and women during and after long-duration exercise   总被引:5,自引:0,他引:5  
This study aimed to determine gender-baseddifferences in fuel metabolism in response to long-duration exercise.Fuel oxidation and the metabolic response to exercise were compared inmen (n = 14) and women(n = 13) during 2 h (40% of maximalO2 uptake) of cycling and 2 h ofpostexercise recovery. In addition, subjects completed a separatecontrol day on which no exercise was performed. Fuel oxidation wasmeasured using indirect calorimetry, and blood samples were drawn forthe determination of circulating substrate and hormone levels. Duringexercise, women derived proportionally more of the total energyexpended from fat oxidation (50.9 ± 1.8 and 43.7 ± 2.1% forwomen and men, respectively, P < 0.02), whereas men derived proportionally more energy from carbohydrateoxidation (53.1 ± 2.1 and 45.7 ± 1.8% for men and women,respectively, P < 0.01). Thesegender-based differences were not observed before exercise, afterexercise, or on the control day. Epinephrine(P < 0.007) and norepinephrine(P < 0.0009) levels weresignificantly greater during exercise in men than in women (peakepinephrine concentrations: 208 ± 36 and 121 ± 15 pg/ml in menand women, respectively; peak norepinephrine concentrations: 924 ± 125 and 659 ± 68 pg/ml in men and women, respectively). Ascirculating glycerol levels were not different between the two groups,this suggests that women may be more sensitive to the lipolytic action of the catecholamines. In conclusion, these data support the view thatdifferent priorities are placed on lipid and carbohydrate oxidationduring exercise in men and women and that these gender-based differences extend to the catecholamine response to exercise.

  相似文献   

13.
The purpose of this study was to determine if abnormalities of sympathetic neural and vascular control are present in mild and/or severe heart failure (HF) and to determine the underlying afferent mechanisms. Patients with severe HF, mild HF, and age-matched controls were studied. Muscle sympathetic nerve activity (MSNA) and forearm vascular resistance (FVR) in the nonexercising arm were measured during mild and moderate static handgrip. MSNA during moderate handgrip was higher at baseline and throughout exercise in severe HF vs. mild HF (peak MSNA 67 +/- 3 vs. 54 +/- 3 bursts/min, P < 0.0001) and higher in mild HF vs. controls (33 +/- 3 bursts/min, P < 0.0001), but the change in MSNA was not different between the groups. The change in FVR was not significantly different between the three groups during static exercise. During isolation of muscle metaboreceptors, MSNA and blood pressure remained elevated in normal controls and mild HF but not in severe HF. During mild handgrip, the increase in MSNA was exaggerated in severe HF vs. controls and mild HF, in whom MSNA did not increase. In summary, the increase in MSNA during static exercise in severe HF appears to be attributable to exaggerated central command or muscle mechanoreceptor control, not muscle metaboreceptor control.  相似文献   

14.
This study compared the traditionaltwo-compartment (fat mass or FM; fat free mass or FFM)hydrodensitometric method of body composition measurement, which isbased on body density, with three (FM, total body water or TBW, fatfree dry mass)- and four (FM, TBW, bone mineral mass or BMM,residual)-compartment models in highly trained men(n = 12), sedentary men(n = 12), highly trained women(n = 12), and sedentary women(n = 12). The means andvariances for the relative body fat (%BF) differences between the two-and three-compartment models [2.2 ± 1.6 (SD) % BF;n = 48] were significantlygreater (P  0.02) than those between the three- and four-compartment models (0.2 ± 0.3% BF;n = 48) for all four groups. Thethree-compartment model is more valid than the two-compartmenthydrodensitometric model because it controls for biological variabilityin TBW, but additional control for interindividual variability in BMMvia the four-compartment model achieves little extra accuracy. Thecombined group (n = 48) exhibited greater (P < 0.001) FFM densities(1.1075 ± 0.0049 g/cm3) thanthe hydrodensitometric assumption of 1.1000 g/cm3, which is based on analysesof three male cadavers aged 25, 35, and 46 yr. This was primarilybecause their FFM hydration (72.4 ± 1.1%;n = 48) was lower(P  0.001) than thehydrodensitometric assumption of 73.72%.

  相似文献   

15.
Sympathetic discharge and vascular resistance after bed rest   总被引:2,自引:0,他引:2  
Shoemaker, J. Kevin, Cynthia S. Hogeman, Urs A. Leuenberger,Michael D. Herr, Kristen Gray, David H. Silber, and Lawrence I. Sinoway. Sympathetic discharge and vascular resistance after bedrest. J. Appl. Physiol. 84(2):612-617, 1998.The effect of 6° head-down-tilt bedrest (HDBR) for 14 days on supine sympathetic discharge andcardiovascular hemodynamics at rest was assessed. Mean arterialpressure, heart rate (n = 25), musclesympathetic nerve activity (MSNA; n = 16) burst frequency, and forearm blood flow(n = 14) were measured, and forearmvascular resistance (FVR) was calculated. Stroke distance,our index of stroke volume, was derived from measurements of aorticmean blood velocity (Doppler) and R-R interval(n = 7). With these data, an index oftotal peripheral resistance was determined. Heart rate at rest wasgreater in the post (71 ± 2 beats/min)- compared with the pre-HDBRtest (66 ± 2 beats/min; P < 0.003), but mean arterial pressure was unchanged. Aortic strokedistance during post-HDBR (15.5 ± 1.1 cm/beat) was reduced frompre-HDBR levels (20.0 ± 1.5 cm/beat)(P < 0.03). Also, MSNA burstfrequency was reduced in the post (16.7 ± 2.8 beats/min)- comparedwith the pre (25.2 ± 2.6 beats/min)-HDBR condition(P < 0.01). Bed rest did not alterforearm blood flow, FVR, or total peripheral resistance. Thusreductions in MSNA with HDBR were not associated with a decrease inFVR.

  相似文献   

16.
Rebello, Celso M., Machiko Ikegami, M. Gore Ervin, Daniel H. Polk, and Alan H. Jobe. Postnatal lung function and protein permeability after fetal or maternal corticosteroids in preterm lambs.J. Appl. Physiol. 83(1): 213-218, 1997.We evaluated postnatal lung function andintravascular albumin loss to tissues of 123-days-gestation pretermsurfactant-treated and ventilated lambs 15 h after direct fetal(n = 8) or maternal(n = 9) betamethasone treatment orsaline placebo (n = 9). Thebetamethasone-treated groups had similar increases in dynamiccompliances, ventilatory efficiency indexes, and lung volumes relativeto controls (P < 0.05). The lossesof 125I-labeled albumin fromblood, a marker of intravascular integrity, and the recoveries of125I-albumin in muscle and brainwere similar for control and betamethasone-exposed lambs.Betamethasone-treated lambs had lower recoveries of125I-albumin in lung tissues andin alveolar washes than did controls (P < 0.01). Although blood pressureswere higher for the treated groups (P < 0.05), all groups had similar blood volumes, cardiac outputs, andorgan blood flows. Maternal or fetal treatment with betamethasone 15 hbefore preterm delivery equivalently improved postnatal lung function,reduced albumin recoveries in lungs, and increased blood pressures.However, prenatal betamethasone had no effects on the systemicintravascular losses of albumin or did not change blood volumes.

  相似文献   

17.
Shoemaker, J. Kevin, Prasant Pandey, Michael D. Herr, DavidH. Silber, Qing X. Yang, Michael B. Smith, Kristen Gray, and LawrenceI. Sinoway. Augmented sympathetic tone alters muscle metabolismwith exercise: lack of evidence for functional sympatholysis. J. Appl. Physiol. 82(6):1932-1938, 1997.It is unclear whether sympathetic tone opposesdilator influences in exercising skeletal muscle. We examined highlevels of sympathetic tone, evoked by lower body negative pressure(LBNP, 60 mmHg) on intramuscular pH and phosphocreatine (PCr)levels (31P-nuclear magnetic resonance spectroscopy) duringgraded rhythmic handgrip (30 contractions/min; ~17, 34, 52 and 69%maximal voluntary contraction). Exercise was performedwith LBNP and without LBNP (Control). At the end of exercise, LBNPcaused lower levels of muscle pH (6.59 ± 0.09) comparedwith Control (6.78 ± 0.05; P < 0.05). PCr recovery, an index of mitochondrial respiration, was lessduring the recovery phase of the LBNP trial. Exercise mean arterialpressure was not altered by LBNP. The protocols were repeated withmeasurements of forearm blood flow velocity and deep venous samples(active forearm) of hemoglobin (Hb) saturation, pH, and lactate. WithLBNP, mean blood velocity was reduced at rest, during exercise, andduring recovery compared with Control (P < 0.05). Also, venous Hbsaturation and pH levels during exercise and recovery were lower withLBNP and lactate was higher compared with Control(P < 0.05). We concludethat LBNP enhanced sympathetic tone and reduced oxygen transport. Athigh workloads, there was a greater reliance on nonoxidativemetabolism. In other words, sympatholysis did not occur.

  相似文献   

18.
The Ca2+ affinity andpermeation of the epithelial Ca2+ channel (ECaC1) wereinvestigated after expression in Xenopus oocytes. ECaC1displayed anomalous mole-fraction effects. Extracellular Ca2+ and Mg2+ reversibly inhibited ECaC1 wholecell Li+ currents: IC50 = 2.2 ± 0.4 µM (n = 9) and 235 ± 35 µM (n = 10), respectively. These values compare well with theCa2+ affinity of the L-type voltage-gated Ca2+(CaV1.2) channel measured under the same conditions,suggesting that high-affinity Ca2+ binding is awell-conserved feature of epithelial and voltage-gated Ca2+channels. Neutralization of D550 and E535 in the pore region had nosignificant effect on Ca2+ and Mg2+ affinities.In contrast, neutralization of D542 significantly decreasedCa2+ affinity (IC50 = 1.1 ± 0.2 mM,n = 6) and Mg2+ affinity(IC50 > 25 ± 3 mM, n = 4).Despite a 1,000-fold decrease in Ca2+ affinity in D542N,Ca2+ permeation properties and theCa2+-to-Ba2+ conductance ratio remainedcomparable to values for wild-type ECaC1. Together, our observationssuggest that D542 plays a critical role in Ca2+ affinitybut not in Ca2+ permeation in ECaC1.

  相似文献   

19.
The hypothesisof this investigation was that insulin and muscle contraction, byincreasing the rate of skeletal muscle glucose transport, would biascontrol so that glucose delivery to the sarcolemma (and t tubule) andphosphorylation of glucose intracellularly would exert more influenceover glucose uptake. Because of the substantial increases in blood flow(and hence glucose delivery) that accompany exercise, we predicted thatglucose phosphorylation would become more rate determining duringexercise. The transsarcolemmal glucose gradient (TSGG; the glucoseconcentration difference across the membrane) is inversely related tothe degree to which glucose transport determines the rate of glucoseuptake. The TSGG was determined by using isotopic methods in consciousrats during euglycemic hyperinsulinemia [Ins; 20 mU/(kg · min); n = 7], during treadmill exercise (Ex,n = 6), and in sedentary,saline-infused rats (Bas, n = 13).Rats received primed, constant intravenous infusions of trace3-O-[3H]methyl-D-glucoseand [U-14C]mannitol.Then2-deoxy-[3H]glucosewas infused for the calculation of a glucose metabolic index(Rg). At the end of experiments,rats were anesthetized, and soleus muscles were excised. Total soleusglucose concentration and the steady-state ratio of intracellular toextracellular3-O-[3H]methyl-D-glucose(which distributes on the basis of the TSGG) were used to calculateranges of possible glucose concentrations ([G]) at theinner and outer sarcolemmal surfaces([G]im and[G]om, respectively).Soleus Rg was increased in Ins andfurther increased in Ex. In Ins, total soleus glucose,[G]om, and the TSGGwere decreased compared with Bas, while[G]im remained near 0. In Ex, total soleus glucose and[G]im were increasedcompared with Bas, and there was not a decrease in[G]om as was observedin Ins. In addition, accumulation of intracellular free2-deoxy-[3H]glucoseoccurred in soleus in both Ex and Ins. Taken together, these dataindicate that, in Ex, glucose phosphorylation becomes an importantlimitation to soleus glucose uptake. In Ins, both glucose delivery andglucose phosphorylation influence the rate of soleus glucose uptakemore than under basal conditions.

  相似文献   

20.
We examined muscle sympathetic nerve activity (MSNA) in thenonexercising lower limb during repetitive static quadricepscontraction paradigm at 25% maximal voluntary contraction in eightmen. Subjects performed 20-s contractions with 5-s rest periods for upto 12 contractions. Although the workload was constant, we found that MSNA amplitude rose as a function of contraction number [0.6 ln (amplitude/min)/contraction]; this suggests chemicalsensitization of the muscle reflex response. We employedsignal-averaging techniques and then integrated the data to examine theonset latency of the MSNA response as a function of the 25-scontraction-rest period. We observed an onset latency of ~4-6 s.Moreover, although the onset latency did not appear to vary as afunction of contraction number, the rate of MSNA increase tookapproximately four contractions to reach a steady-state rate of rise;this suggests contraction-induced sensitization. The onset latencyreported here is similar to findings in recent animal studies, but itis at odds with latencies determined in prior human handgripcontraction studies. We believe our data suggest that1) mechanically sensitive afferentscontribute importantly to the MSNA response to the paradigm employedand 2) these afferents may besensitized by the chemical products of muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号