首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of soil acidification (pH values from 6.5 to 3.8), and subsequent leaching, on levels of extractable nutrients in a soil were studied in a laboratory experiment. Below pH 5.5, acidification resulted in large increases in the amounts of exchangeable Al in the soil. Simultaneously, exchangeable cations were displayed from exchange sites and Ca, Mg, K and Na in soil solution increased markedly. With increasing soil acidification, increasing amounts of cations were leached; the magnitude of leaching loss was in the same order as the cations were present in the soil: Ca2+>Mg2+>K+>Na+. Soil acidification appeared to inhibit nitrification since in the unleached soils, levels of NO 3 clearly declined below pH 5.5 and at the same time levels of NH 4 + increased greatly. Significant amounts of NH 4 + and larger amounts of NO 3 , were removed from the soil during leaching. Concentrations of NaHCO3-extractable phosphate remained unchanged between pH 4.3 and 6.0 but were raised at higher and lower pH values. No leaching losses of phosphate were detected. For the unleached soils, levels of EDTA-extractable Mn and Zn increased as the soil was acidified whilst levels of extractable Fe were first decreased and then increased greatly and those for Cu were decreased slightly between pH 6.5 and 6.0 and then unaffected by further acidification. Significant leaching losses of Mn and Zn were observed at pH values below 5.5 but losses of Fe were very small and those of Cu were not detectable.  相似文献   

2.
Neilsen  W.A.  Lynch  T. 《Plant and Soil》1998,202(2):295-307
Around the world large tracts of forest, previously available for production, have been reserved for nature conservation. This means that wood supply must be met from a reduced land base, including land of low productivity. In addition there are likely to be increasing demands on the use of managed forests for sequestering C as one means of reducing the build up of atmospheric CO2. One way for the forest industry to meet the demands of increased production would be through the use of fertilizers. Substantially increased growth from fertilizer N application has been measured in many cases while, in the northern hemisphere, atmospheric N deposition has been associated with increased growth in some forests.The possibility of using fertilizer N to increase growth, and the effect on the forest and soil, was studied in a research trial area in north-east Tasmania, Australia. Nitrogen was applied for 12 years to a 16 year old P. radiata stand in a low rainfall zone. Growth and foliar nutrient concentrations were measured to age 34 years, to determine change after attainment of steady state growth at age 25 years, and following cessation of fertilizing at age 29 years. Biomass sampling was carried out at ages 25 years, 29 years, and 34 years.Growth at the steady peak rate achieved in the fertilizer plots, of 31 m3 ha-1 periodic annual increment, was accompanied by changes in the N nutrient pools. Surface applied N built up in the surface litter layer while this layer was increasing, from 15 t ha-1 to nearly 50 t ha-1, and fertilizer was being applied between ages 25 and 29 years. Decline of total N in the soil, between ages 25 and 29 years, indicated continued uptake from that source even though fertilizer was being applied. Subsequent increases in soil N, through leaching from the litter layer, followed cessation of fertilizing.Following cessation of annual applications of N fertilizer, growth rates declined by less than 15% and remained substantially (>150%) above the control growth rates for 4 years. Over a 3 year period foliar N concentrations declined steadily, to the same as control plots, although mass of needles was not reduced 5 years after cessation of fertilizer applications and remained significantly above that of the control plots.Without fertilizers, N for new foliage must be supplied from internal recycling and from mineralization of litter and soil organic matter. There were net losses of N from the foliage and the wood, estimated at around 12 kg N ha-1 yr-1, for the fertilized trees for the 5 years following cessation of fertilizing. This indicated retention and recycling within the tree of a considerable proportion of the 104 kg N ha-1 in the foliage, at age 29 years. As rates of mineralization of soil N were likely to be low, this retention of N within the tree was important in maintaining growth rates.In the forest ecosystems investigated, with low initial content of soil organic matter and N, fertilizer N produced improved tree health and substantially increased growth, thus providing the opportunity to manage this forest for increased wood production or C sequestration. Although there was a substantial build up of N and C in the litter on the fertilized treatment, incorporation of N and C into the mineral soil was slow. Over 12 years 1.34 t N ha-1 had been applied, comparable to 40 years of atmospheric deposition at 30 kg N ha-1. There were no signs of detrimental effects from this application.  相似文献   

3.
Data for the historical years 1970 and 1995 and the FAO-Agriculture Towards 2030 projection are used to calculate N inputs (N fertilizer, animal manure, biological N fixation and atmospheric deposition) and the N export from the field in harvested crops and grass and grass consumption by grazing animals. In most industrialized countries we see a gradual increase of the overall N recovery of the intensive agricultural production systems over the whole 1970-2030 period. In contrast, low N input systems in many developing countries sustained low crop yields for many years but at the cost of soil fertility by depleting soil nutrient pools. In most developing countries the N recovery will increase in the coming decades by increasing efficiencies of N use in both crop and livestock production systems. The surface balance surplus of N is lost from the agricultural system via different pathways, including NH3 volatilization, denitrification,N2O and NO emissions, and nitrate leaching from the root zone. Global NH3-N emissions from fertilizer and animal manure application and stored manure increased from 18 to 34 Tg.yr-1 between 1970 and 1995, and will further increase to 44 Tg.yr-1 in 2030. Similar developments are seen for N2O-N (2.0 Tg.yr-1 in 1970, 2.7 Tg.yr-1 in 1995 and 3.5 Tg.yr-1 in 2030) and NO-N emissions (1.1 Tg.yr-1 in 1970, 1.5 Tg-yr-1 in 1995 and 2.0 Tg.yr-1 in 2030).  相似文献   

4.
Increased use of N fertilizer and more intensive cropping due to the rising food demand in the tropics requires design and evaluation of sustainable cropping systems with minimum soil acidification. The objectives of this study were to quantify acidification of an Oxic Kandiustalf with different types of N fertilizer in two cropping systems under no-tillage and its effect on crop performance. Chemical soil properties in continuous maize (Zea mays L.) and maize-cowpea (Vigna unguiculata (L.) Walp) rotation were determined with three N sources (urea (UA), ammonium sulfate (AS) and calcium ammonium nitrate (CAN)) in Nigeria, West Africa, during five years. Chemical soil properties were related to grain yield and diagnostic plant nutrient concentrations. For the three N sources, the rate of decline in soil pH in maize-cowpea rotation was 57±7.5% of that in continuous maize, where double the amount of N fertilizer was applied. The rate of soil acidification during the five years was greater for AS than for UA or CAN in continuous maize, and not different for UA and CAN in both cropping systems. With AS, soil pH decreased from 5.8 to 4.5 during five years of continuous maize cropping. Exchangeable acidity increased with N fertilization, but did not reach levels limiting maize or cowpea growth. Return of residues to the soil surface may have reduced soluble and exchangeable Al levels by providing a source of organic ligands. Soil solution Mn concentrations increased with N fertilization to levels likely detrimental for crop growth. Symptoms of Mn toxicity were observed on cowpea leaves where AS was applied to the preceding maize crop, but not on maize plants. Soil acidification caused significant reductions in exchangeable Ca and effective CEC. Main season maize yield with N fertilization was lower with AS than with UA or CAN, but not different between UA and CAN during the six years of cropping. The lower maize grain yield with AS than with the other N sources was attributed to lower pH and a greater extractable Mn concentration with AS. When kaolinitic Alfisols are used for continuous maize cropping, even under no-tillage with crop residues returned as mulch, the soil may become acidifed to pH values of 5.0 and below after a few years. The no-till cereal-legume rotation with judicial use of urea or CAN as N sources for the cereal crop is a more suitable system for these poorly buffered, kaolinitic soils than continuous maize cropping. The use of AS as N source should be avoided. H Marschner Section editor  相似文献   

5.
Blake  L.  Goulding  K.W.T. 《Plant and Soil》2002,240(2):235-251
The effects of acidification on the soil chemistry and plant availability of the metals Pb, Cd, Zn, Cu, Mn and Ni in new and archived soil and plant samples taken from the >100-year-old experiments on natural woodland regeneration (Geescroft and Broadbalk Wildernesses) and a hay meadow (Park Grass) at Rothamsted Experimental Station are examined. We measured a significant input of metals from atmospheric deposition, enhanced under woodland by 33% (Ni) to 259% (Zn); Pb deposition was greatly influenced by vehicle emissions and the introduction of Pb in petrol. The build up of metals by long-term deposition was influenced by acidification, mobilization and leaching, but leaching, generally, only occurred in soils at pH<4. Mn and Cd were most sensitive to soil acidity with effective mobilization occurring at pH 6.0–5.5 (0.01 M CaCl2), followed by Zn, Ni and Cu at pH 5.5–5.0. Pb was not mobilized until pH<4.5. Acidification to pH 4 mobilized 60–90% of total soil Cd but this was adsorbed onto ion exchange surfaces and/or complexed with soil organic matter. This buffering effect of ion exchange surfaces and organic matter in soils down to pH 4 was generally reflected by all the metals investigated. For grassland the maximum accumulation of metals in herbage generally corresponded to a soil pH of 4.0. For woodland the concentration of Pb, Mn and Cd in oak saplings (Quercus robur) was 3-, 4- and 6-fold larger at pH 4 than at pH 7. Mature Oak trees contained 10 times more Mn, 4 times more Ni and 3 times more Cd in their leaves at pH 4 than at pH 7. At pH values <4.0 on grassland the metal content in herbage declined. Only for Mn and Zn did this reflect a decline in the plant available soil content attributed to long-term acid weathering and leaching. The chief cause was a long-term decline in plant species richness and the increased dominance of two acid-tolerant, metal-excluder species  相似文献   

6.
模拟氮沉降下南方针叶林红壤的养分淋溶和酸化   总被引:8,自引:0,他引:8  
以中国科学院红壤生态实验站林草生态试验区针叶林红壤为研究对象,在恒温(20 ℃)条件下,通过大土柱(直径10 cm、高60 cm),8个月间隙性淋溶试验模拟研究了不同氮输入量(0、7.8、26和52 mg N/月/柱)对针叶林红壤NO3-、NH4+、H+和土壤盐基离子(Ca2+、Mg2+、K+、Na+)淋溶以及土壤酸化的影响.结果表明,土壤交换态盐基总量、Ca2+和Mg2+淋溶量随氮输入量的增加而增加,土壤交换态Na+和K+则无明显影响.4种N输入处理的土壤交换态盐基总量净淋溶(淋溶出的盐基与淋洗液累计输入的盐基之差)分别占土壤交换性盐基总量的13.9%、18.6%、31.8% 和57.9%,土壤交换态Ca2+净淋溶分别占土壤交换性Ca2+总量的19.6%、25.8%、45.3%和84.8%,土壤交换态Mg2+净淋溶分别占土壤交换性Mg2+总量的4.4%、6.1%、10.9%和17.1%.随氮输入量增加,表层土壤pH值逐渐下降,4种N输入处理的表层土壤pH(KCl)分别为3.85、3.84、3.80和3.75;随氮输入量增加,淋溶液中无机氮、NO3-和H+逐渐增加.氮沉降可促进针叶林红壤的有机氮矿化,加速养分淋失和土壤酸化.  相似文献   

7.
On-farm field experiments were carried out at two sites having 38- and 10-year-old orchard cropping systems under sub-tropical climatic regions to evaluate changes in organic carbon accumulation and chemical and microbiological properties of the soils. Under a system of different intercropped fruit trees, the cultivation of coconut (Cocos nucifera L.) intercropped with guava (Psidium guajava L.) enhanced the soil microbial activity approximately 2-fold after 38 yrs over 10 yrs of the same intercropped system. Soil organic carbon increased from 3.4 to 7.8 and 2.4 to 6.2 g kg-1 after 38 and 10 yrs, respectively, following the establishment of orchards. The increase was attributed to greater recycling of bio-litters. Levels of dehydrogenase, phosphatase and soil microbial biomass under field conditions generally depended more on the nature of the cropping system than on soil types. Similarly, average carbon inputs of bio-litter to the soil in monocrop (0.98 Mg ha-1 yr-1) was less than intercropped fruit trees (2.07 Mg ha-1 yr-1). The average level of soil microbial biomass carbon was 1158 kg ha-1 (0-0.15 m depth) and the organic carbon turnover rate was 8.5 yr-1 after 38 yrs of intercropped fruit trees, which resulted in a lower ratio (1.81) of carbon inputs to soil microbial biomass carbon.  相似文献   

8.
Yanai  Junta  Robinson  David  Young  Iain M.  Kyuma  Kazutake  Kosaki  Takashi 《Plant and Soil》1998,202(2):263-270
Adding nitrogen (N) fertilizers to soil affects not only the concentration in the soil solution of the added ions, but also those of other ions already present in the soil. This secondary effect is caused by ion exchange and electrochemical equilibrium processes. We studied how different N fertilizers affected the chemical composition of the soil solution over time, and how this related to nutrient uptake by wheat. Soil was fertilized either with (NH4)2SO4 or Ca(NO3)2, or no N was added. Each of these N treatments was either planted or not with spring wheat (Triticum aestivum L.). Soil solutions were collected repeatedly with looped hollow fiber samplers from the root zone in situ, six times during a 50-day pot experiment. Plants were harvested five times, and their nutrient contents determined. In the soil solution, NO3- was significantly less concentrated if (NH4)2SO4, rather than Ca(NO3)2 was applied, until after net nitrification had ended on day 20. In contrast, Ca2+, Mg2+ and K+ were significantly more concentrated in the former treatment. This was probably caused by the greater concentration of anions that resulted from nitrification. P was always very dilute and unaffected by the form of N fertilizer. The form of N fertilizer had no significant effect on plant growth and nutrient uptake. The likely contribution of mass flow of the soil solution in supplying Ca, Mg and N to the plants was greatest when (NH4)2SO4 was supplied. The supply of K and P was unaffected by N fertilizer. The potential for N leaching loss was lower with (NH4)2SO4 than with Ca(NO3)2, especially up to day 20. However, the potential for cations leaching loss was greater in the (NH4)2SO4 treatment. This suggests that there is only a limited advantage in fertilizing with (NH4)2SO4 to reduce the total loss of nutrients from soil.  相似文献   

9.
Soil pH is decreasing in many soils in the semiarid Great Plains of the United States under dry land no-till (NT) cropping systems. This study was conducted to determine the rate of acidification and the causes of the acidification of a soil cropped to a winter wheat (Triticum aestivum L.)-grain sorghum [Sorghum bicolor (L.) Moench]/corn (Zea mays L.)-fallow rotation (W-S/C-F) under NT. The study was conducted from 1989 to 2003 on soil with a long-term history of either continuous NT management [NT(LT)] (1962–2003) or conventional tillage (CT) (1962–1988) then converted to NT [NT(C)] (1989–2003). Nitrogen was applied as ammonium nitrate (AN) at a rate of 23 kg N ha−1 in 1989 and as urea ammonium nitrate (UAN) at an average annual rate of 50 kg N ha−1 from 1990 to 2003 for both NT treatments. Soil samples were collected at depth increments of 0–5, 5–10, 10–15, and 15–30 cm in the spring of 1989 and 2003. Acidification rates for the NT(LT) and NT(C) treatments were 1.13 and 1.48 kmol H+ ha−1 yr−1 in the 0–30 cm depth, respectively. The amount of CaCO3 needed to neutralize the acidification is 57 and 74 kg ha−1 yr−1 for the NT(LT) and NT(C) treatments, respectively. A proton budget estimated by the Helyar and Porter [1989, Soil Acidity and Plant Growth, Academic Press] method indicated that NO3 leaching from the 30 cm depth was a primary cause of long-term acidification in this soil. Nitrate leaching accounted for 59 and 66% of the H+ from the acid causing factors for NT(LT) and NT(C) treatments, respectively. The addition of crop residues to the soil neutralized 62 and 47% of the acidity produced from the leaching of NO3, and 37 and 31% of the acid resulting from NO3 leaching and the other acid-causing constituents for the NT(LT) and NT(C) treatments, respectively. These results document that surface soils in dry land W-S/C-F rotations under NT are acidifying under current management practices. Improved management to increase nitrogen uptake efficiency from applied fertilizer would help reduce the rate of acidification. The addition of lime materials to prevent negative impacts on grain yields may be necessary in the future under current management practices. A contribution of the university of Nebraska Agricultural Research Division, Lincoln, NE 68583. Journal series No. 15120  相似文献   

10.
The Bio in Aluminum and Silicon Geochemistry   总被引:3,自引:3,他引:0  
The translocation and transformation of Al and Si are of paramount importance in the processes of primary-mineral weathering, saprolite formation and soil formation. Geochemical mass balance studies of these processes have often not considered the important role of the biota in cycling of these omnipresent soil elements. In the Calhoun Experimental Forest, SC, we found a mean annual biological uptake of Al and Si of 2.28 and 15.8 kg ha-1 yr-1, respectively, with a mean annual accumulation in aboveground biomass of 0.48 and 2.32 kg ha-1 yr-1, respectively. In the case of Al, net soil leaching from 6 m depth is zero, thus biomass accumulation of Al accounts for the only removal from the soil system. There is an additional internal system mobilization of Al of 6.6 kg ha-1 yr-1, in response to biotic inputs of dissolved organic carbon. In the case of Si, net soil leaching to groundwater is 17.26 kg ha-1 yr-1. The accumulation of Si in aboveground biomass, 2.32 kg ha-1 yr-1, and in forest floor organic matter, 11.95 kg ha-1 yr-1, augments the annual weathering release estimate of Si by an additional 82%. The inclusion of biological cycling of both essential and non-essential mineral elements is important for properly evaluating the biogeochemistry of the earth's crust.  相似文献   

11.
Soil fertility and leaching losses of nutrients were compared between a Fimic Anthrosol and a Xanthic Ferralsol from Central Amazônia. The Anthrosol was a relict soil from pre-Columbian settlements with high organic C containing large proportions of black carbon. It was further tested whether charcoal additions among other organic and inorganic applications could produce similarly fertile soils as these archaeological Anthrosols. In the first experiment, cowpea (Vigna unguiculata (L.) Walp.) was planted in pots, while in the second experiment lysimeters were used to quantify water and nutrient leaching from soil cropped to rice (Oryza sativa L.). The Anthrosol showed significantly higher P, Ca, Mn, and Zn availability than the Ferralsol increasing biomass production of both cowpea and rice by 38–45% without fertilization (P<0.05). The soil N contents were also higher in the Anthrosol but the wide C-to-N ratios due to high soil C contents led to immobilization of N. Despite the generally high nutrient availability, nutrient leaching was minimal in the Anthrosol, providing an explanation for their sustainable fertility. However, when inorganic nutrients were applied to the Anthrosol, nutrient leaching exceeded the one found in the fertilized Ferralsol. Charcoal additions significantly increased plant growth and nutrition. While N availability in the Ferralsol decreased similar to the Anthrosol, uptake of P, K, Ca, Zn, and Cu by the plants increased with higher charcoal additions. Leaching of applied fertilizer N was significantly reduced by charcoal, and Ca and Mg leaching was delayed. In both the Ferralsol with added charcoal and the Anthrosol, nutrient availability was elevated with the exception of N while nutrient leaching was comparatively low.  相似文献   

12.
不同形态N素对水曲柳幼苗生长的影响   总被引:18,自引:3,他引:18  
在温室内用砂培的方法研究了NO^-3-N、NH^+4-N及其不同配比对水曲柳(Fraxinus mandshurica)幼苗生长的影响。结果表明,水曲柳幼苗在营养液NO^-3-N:NH^+4-N为75:25时生长最好,营养液中NH^+4-N比例继续增加则生长下降。过量的NH^+4-N可抑制水曲柳幼苗根系生长,降低幼苗的地下/地上比。营养液中NH^+4-N比例增加,水曲柳幼苗的净光合速率下降,体内P  相似文献   

13.
Forage barley dry matter yield and quality, as well as soil pH, Al, and Mn were monitored in response to P, K, and lime application on a newly cleared Typic Cryorthod (Orthid Podzol). The overall yearly yield level was affected by precipitation. Without liming soil acidification occurred after three years of production. The liming rate of 2.2 Mg.ha−1 was found optimal for maintaining initial pH levels (5.66) and increasing forage barley yields. It was also found optimum for K and P utilization for these first years of production. Soil pH dropped an average of 0.33 units over the three years on unlimed P plots and 0.46 units over 4 years on K plots. Phosphorus and K fertilization increased N utilization and resulted in decreased soil acidification. Phosphorus availability was greater in the first year of cropping than in subsequent years, this was likely due to the effects of higher available moisture, liming release of native P, and effects of initial fertilization. There was a 148% increase in total dry matter yield and an 85% increase in protein yield of forage barley with P application. Liming increased total forage barley yields an average of 69% and total protein yields 48%. Reduced barley yields in unlimed plots were due to low soil pH. After two years of cultivation, unlimed plots contained exchangeable Al and soluble Mn levels reported toxic for other soils. The higher liming rates of 4.4 and 6.6 Mg.ha−1 reduced soluble Mn to near critically low levels. soil Al and Mn were highly correlated to pH. Soil exchangeable Al, Mn, and soluble Mn along with tissue Al were inversely correlated to percentage yield. The average yield respone to three levels of applied K, increased from zero initially to 67% by the fourth year. Total dry-matter production increased 32% and total protein yield increased an average of 32% and total protein yield increased an average of 15% with K fertilization over four years. About 60% of the yield response occurred between the 0 and 22kg K.ha−1 rates. Initial soil exchangeable K levels were not maintained even at the highest 66kg K.ha−1 treatment. Soil exchangeable Al and soluble Mn were elevated with dropping pH. Soil K reserves and resupply of exchangeable K in these soils over the long term will be an important factor in crop production.  相似文献   

14.
De Visser  P. H. B. 《Plant and Soil》1995,168(1):353-363
The effects on growth and nutrient status of an increased availability of all major nutrients was studied in a 40 year old Douglas fir stand. The nutrient amounts were applied by daily sprinkling and were in fixed, optimal proportions to the estimated annual uptake of N. Irrigation was included to avoid drought stress. The nutrient applications were also done in combination with a lower NH4 load, realized under a roof that was placed above the ground. According to nutritional standards nitrogen supply was optimal and was related to the moderately high atmospheric N inputs. Nutrition of P, K and in some years Ca seemed critical.In all four studied growing seasons water additions resulted in a growth increase, of 30 to 40%. Irrigation decreased needle fall. Nutrient applications increased the needle concentrations of P and K considerably, but this did not result in a growth enhancement. Fertilization also increased K and P in shedded needles. Only minor leaching losses were calculated. The recovery in trees of fertilizer K and P was maximally 15%. Input-output budgets suggested that P was strongly retained in the soil. The decrease in NH4 load had slightly decreased N availability and soil acidification, and seemed to enhance tree growth. The use of tree growth as a parameter to evaluate the effects of an improved nutritional balance is discussed.  相似文献   

15.
施用坡缕石对黄绵土中尿素氮的挥发和淋溶损失的影响   总被引:2,自引:0,他引:2  
通过室内模拟试验,采用吸收法和土柱淋溶法研究了施用坡缕石对黄绵土中尿素氮的挥发和淋溶的影响.结果表明:施用坡缕石+尿素处理能降低尿素氨挥发高峰期的挥发速率,比单施尿素处理的氨挥发损失减少了13.6%~15.0%.坡缕石施用量为0.3和0.6 g·kg-1时,降低了NH4+-N和NO3--N的淋溶速率,无机氮淋溶损失比单施尿素处理分别减少13.7%和13.6%;而坡缕石施用量为0.9 g·kg-1时,加快了NH4+-N和NO3--N的淋溶速率,无机氮淋溶损失比单施尿素处理增加了6.1%.施用低量(0.3 g·kg-1)坡缕石+尿素处理土壤的NH4+-N含量比单施尿素处理提高了0.20 mg·kg-1,而施用高量(0.9 g·kg-1)坡缕石+尿素处理土壤的NH4+-N含量比单施尿素处理降低了0.42 mg·kg-1;施用坡缕石+尿素处理土壤的NO3--N含量比单施尿素处理增加1.24~2.52 mg·kg-1.表明施用坡缕石能减少土壤中尿素氨的挥发损失,在一定用量范围内能降低NH4+-N和NO3--N的淋失,提高土壤NH4+-N和NO3--N含量.  相似文献   

16.
水肥处理对黄瓜土壤养分、酶及微生物多样性的影响   总被引:6,自引:0,他引:6  
以津优1号黄瓜为试材,设3个土壤相对含水量水平(50%~60%、70%~80%、90%~100%)和2个肥料追施量(600 kg N·hm-2和420 kg P2O5·hm-2,420 kg N·hm-2和294 kg P2O5·hm-2)处理,研究了不同水肥供应对日光温室黄瓜土壤养分、酶活性及微生物多样性的影响.结果表明:土壤中NH4+-N含量随施肥量的增加而提高,随土壤相对含水量的增加而降低;水肥供给的增加有利于提高土壤中速效磷含量和蔗糖酶活性;肥料增加使土壤中蛋白酶活性降低,而水分降低使土壤中脲酶活性提高.土壤中微生物多样性与土壤中养分含量无显著相关性,与土壤脲酶活性呈显著正相关,与蔗糖酶活性呈显著负相关.土壤相对含水量70%~80%、氮肥追施量600 kg N·hm-2和420 kg P2O5·hm-2处理的土壤养分含量、蔗糖酶、磷酸酶和脲酶活性较高,且土壤中微生物多样性和均匀度显著高于其他处理,土壤生产潜力最优.  相似文献   

17.
Eva Ritter 《Plant and Soil》2007,295(1-2):239-251
Afforestation has become an important tool for soil protection and land reclamation in Iceland. Nevertheless, the harsh climate and degraded soils are growth-limiting for trees, and little is know about changes in soil nutrients in maturing forests planted on the volcanic soils. In the present chronosequence study, changes in C, N and total P in soil (0–10 and 10–20 cm depth) and C and N in foliar tissue were investigated in stands of native Downy birch (Betula pubescens Enrh.) and the in Iceland introduced Siberian larch (Larix sibirica Ledeb.). The forest stands were between 14 and 97 years old and were established on heath land that had been treeless for centuries. Soils were Andosols derived from basaltic material and rhyolitic volcanic ash. A significant effect of tree species was only found for the N content in foliar tissue. Foliar N concentrations were significantly higher and foliar C/N ratios significantly lower in larch needles than in birch leaves. There was no effect of stand age. Changes in soil C and the soil nutrient status with time after afforestation were little significant. Soil C concentrations in 0–10 cm depth in forest stands older than 30 years were significantly higher than in heath land and forest stands younger than 30 years. This was attributed to a slow accumulation of organic matter. Soil N concentrations and soil Ptot were not affected by stand age. Nutrient pools in the two soil layers were calculated for an average weight of soil material (400 Mg soil ha−1 in 0–10 cm depth and 600 Mg soil ha−1 in 10–20 cm depth, respectively). Soil nutrient pools did not change significantly with time. Soil C pools were in average 23.6 Mg ha−1 in the upper soil layer and 16.9 Mg ha−1 in the lower soil layer. The highest annual increase in soil C under forest compared to heath land was 0.23 Mg C ha−1 year−1 in 0–10 cm depth calculated for the 53-year-old larch stand. Soil N pools were in average 1.0 Mg N ha−1 in both soil layers and did not decrease with time despite a low N deposition and the uptake and accumulation of N in biomass of the growing trees. Soil Ptot pools were in average 220 and 320 kg P ha−1 in the upper and lower soil layer, respectively. It was assumed that mycorrhizal fungi present in the stands had an influence on the availability of N and P to the trees. Responsible Editor: Hans Lambers.  相似文献   

18.
The concentrations of Fe, Zn and Co were determined in up to five successive needle age classes in 54 individual Norway spruce trees from eight different sites (soil pH 3.1–7.7). Fe concentrations (12–25 μg in needles from the current year) were lower than most published values, due to the removal of surface contamination prior to analysis. Fe showed a significant positive correlation with Al. Successive needle age classes either had constant values or showed an increase for Fe concentrations; individual trees on a given site were rather uniform in their behaviour. Zn concentrations were 19–40 μg/g. On acid sites, they showed a positive correlation with total soil concentrations. The majority of trees showed decreasing Zn concentrations in successive needle age classes, but constant or increasing concentrations were also found; site homogeneity was less than with Fe. Co concentrations differed between trees on a neutral soil (12 ng/g) and on acid soils (41–174 ng/g). They showed a significant positive correlation with Mn needle concentrations. The changes of Co with needle age in most, but not all, trees were similar to those of Zn. The different changes of Fe, Zn and Co with needle age may be due to a different retranslocation. A modest retranslocation of Fe as opposed to a high retranslocation of Zn and Co (in most trees) is consistent with the observed behaviour. Received: 10 May 1999 / Accepted: 8 September 1999  相似文献   

19.
Authors index   总被引:1,自引:0,他引:1  
Lehmann  Johannes  Weigl  Doris  Peter  Inka  Droppelmann  Klaus  Gebauer  Gerhard  Goldbach  Heiner  Zech  Wolfgang 《Plant and Soil》1999,210(2):249-262
In a runoff irrigation system in Northern Kenya, we studied the nutrient interactions of sole cropped and alley cropped Sorghum bicolor (L.) Moench and Acacia saligna (Labill.) H.L. Wendl. The trees were pruned once before the cropping season and the biomass was used as fodder for animals. The nutrient contents in leaf tissue, soil and soil solution were monitored and the uptake of applied tracers (15N, Sr) was followed. The grain yield of alley cropped sorghum was similar to or slightly higher than in monoculture and did not decrease near the tree-crop interface. Foliar N and Ca contents of the crop were higher in the agroforestry combination than in monoculture, corresponding to higher soil N and Ca contents. Soil solution and soil mineral N dynamics indicate an increase of N under the tree row and unused soil N at the topsoil in the alley of the sole cropped trees as well as below 60 cm depth in the crop monoculture. The N use efficiency of the tree+crop combination was higher than the sole cropped trees or crops. Competition was observed for Zn and Mn of both tree and crop whereas for Ca only the tree contents decreased. P, K, Mg and Fe dynamics were not affected by alley cropping at our site. The lower uptake of applied Sr by trees in alley cropping compared to those of the monoculture stand suggested a lower competitiveness of the acacia than sorghum, which did not show lower Sr contents when intercropped. The study showed the usefulness of combining soil and plant analyses together with tracer techniques identifying nutrient competition, nutrient transfer processes and the complementary use of soil nutrients, as the main features of the tree-crop combination. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Zhao J  Dong Y  Xie X B  Li X  Zhang X X  Shen X 《农业工程》2011,31(4):212-216
Soil pH is an important factor affecting the availability of soil nutrients that impact plant growth. Given the susceptibility of soil pH to excessive fertilization and the widespread use of manures, it is essential to examine the influence of soil pH on the distribution and availability of soil nutrients. We sampled and analyzed brown soils from pear orchards in thirteen towns in Wendeng county. Samples were obtained from areas along or between rows of trees at specified distances and depths. The results showed that the soil pH fluctuated from 4.06 to 6.59 in October 2008 and from 4.24 to 7.57 in April 2009. The quantity of soil samples with pH below 5.50 increased by 34.6%. Analysis of the soil pH for samples obtained along the rows of trees showed that the pH decreased as the depth increased (except for the range 5.5 to 6.0); soil pH in the samples obtained between the rows of trees demonstrated different trends. The average organic matter (O.M.) content as well as the N (NH4+) and available P, K, Cu, Zn, Fe, and Mn contents in the samples collected in October 2008 were higher than those observed in April 2009. Conversely, the values for other available nutrients were lower than those in the samples collected in April 2009. The available nutrients and organic matter (O.M.) content in different pH ranges varied. The soil pH was significantly or very significantly correlated with N (NH4+ and NO3-), available K, Cu, Fe, and exchangeable Ca for the October 2008 samples, while a significant or very significant correlation existed between N (NH4+), available P, Zn, exchangeable Ca, and exchangeable Mg for the April 2009 samples. The correlations between soil pH and the amounts of available nutrients and organic matter (O.M.) along the rows of trees in September 2009 were nearly consistent with those between the rows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号