首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 643 transgenic mouse line carries an autosomal dominant insertional mutation that results in hemifacial microsomia (HFM), including microtia and/or abnormal biting. In this paper, we characterize the transgene integration site in transgenic mice and preintegration site of wildtype mice. The locus, designated Hfm (hemifacial microsomia-associated locus), was mapped to chromosome 10, B1-3, by chromosome in situ hybridization. We cloned the transgene insertion site from the transgenic DNA library. By using the 5′ and 3′ flanking sequences, the preintegration region was isolated. The analysis of these regions showed that a deletion of at least 23 kb DNA occurred in association with the transgene integration. Evolutionarily conserved regions were detected within and beside the deleted region. The result of mating between hemizygotes suggests that the phenotype of the homozygote is lethality in the prenatal period. These results suggest that the Hfm locus is necessary for prenatal development and that this strain is a useful animal model for investigating the genetic predisposition to HFM in humans.  相似文献   

2.
Chair of Committee for Mouse Chromosome 18  相似文献   

3.
4.
We have produced three lines of transgenic mice that contain additional copies of the mouse phosphoglycerate kinase 1 (Pgk1) gene. Two of these lines, 94-A and 94-K, which are descendants of a common founder, did not produce liveborn progeny carrying two copies of these transgenes (i.e., A/A, K/K, or A/K). Genotyping of midgestation embryos showed that A/K embryos are dead by Embryonic Day 10. Comparison of the level of transgene expression in the three transgenic lines ruled out PGK1 toxicity as the cause of death of A/A, A/K, and K/K embryos. The death of A/A, K/K, and A/K transgenic mice was therefore attributed to an insertional mutation disrupting a gene or genes essential for normal embryogenesis. Analysis of the structure of the 94-A and 94-K transgenes indicated that they differ in the number of tandem repeats and in the positions of the transgene-cellular DNA junctions. To determine if the two transgenes represent a single integration followed by a rearrangement or two independent integration events, we cloned the endogenous sequences surrounding the 94-A and 94-K transgene insertion sites. Restriction analysis of the isolated genomic clones indicated that the endogenous sequences abutting the 3′ ends of the 94-A and 94-K transgenes are separated by less than 20 kb, providing strong support for the single integration model. Further analysis indicated that the 94-A transgene is associated with a deletion of at least 18 kb and is located in the vicinity of a widely transcribed endogenous gene. Chromosomal mapping of the endogenous sequences flanking the 94-A and 94-K transgene insertions using mouse-hamster somatic cell hybrids and a (C57BL/6J × SPRET/Ei)F1 × SPRET/Ei backcross panel allowed us to assign the 94-A(K) transgene insertion to the subcentral region of mouse chromosome 8.  相似文献   

5.
Chromosome studies on 105 patients with syndactyly included two trisomy-21 mongols, a chromatin-positive boy with 47, XXY, a chromatin-negative short girl with 45,X0 and a boy with a familial D/D translocation. Chromosome patterns were normal in the other cases which included three patients with acrocephalosyndactyly and one patient with oro-facial-digital syndrome.The incidence of chromosome abnormalies was greater than expected since syndactyly of the fingers is uncommon in the chromosome disorders.This incidence may be related to the increased maternal age (mean: 29.4 years) of the syndactyly group compared to maternal age (mean: 26.64 years) of the control group although, paradoxically, four mothers of the five patients with chromosome abnormalities were young.  相似文献   

6.
The transgene-induced mutation 9257 and the spontaneous mutation twirler cause craniofacial and inner ear malformations and are located on mouse chromosome 18 near the ataxia locusax.To map the human homolog of 9257, a probe from the transgene insertion site was used to screen a human genomic library. Analysis of a cross-hybridizing human clone identified a 3-kb conserved sequence block that does not appear to contain protein coding sequence. Analysis of somatic cell hybrid panels assigned the human locus to 18q11. The polymorphic microsatellite markers D18S1001 and D18S1002 were isolated from the human locus and mapped by linkage analysis using the CEPH pedigrees. The 9257 locus maps close to the centromeres of human chromosome 18q and mouse chromosome 18 at the proximal end of a conserved linkage group. To evaluate the role of this locus in human craniofacial disorders, linkage to D18S1002 was tested in 11 families with autosomal dominant nonsyndromic cleft lip and palate and 3 families with autosomal dominant cleft palate only. Obligatory recombinants were observed in 8 of the families, and negative lod scores from the other families indicated that these disorders are not linked to the chromosome 18 loci.  相似文献   

7.
8.
9.
We have identified and characterized the phenotype of a new insertional mutation in one line of transgenic mice. Mice carrying this mutation, which we have designated TgN(Imusd)370Rpw, display undulations of the vertebrae giving rise to a novel kinky-tail phenotype. Molecular characterization of the insertion site indicates that the transgene integration has occurred without any substantial alterations in the structure of the host sequences. Using probes that flank the insertion site, we have mapped the mutation to chromosome 5 near the semidominant mutation, thick tail (Tht). Thick tail does not complement the TgN(Imusd)370Rpw mutation; compound mutants containing one copy of each mutation display a more severe phenotype than either mutation individually.  相似文献   

10.
11.
12.
13.
In a chromosome study on leucocyte cultures made in 13 patients treated with chlorpromazine, 15 treated with perphenazine, and nine treated with lysergide, a significantly higher frequency of gaps, breaks, and hypodiploid cells in the patients treated with perphenazine and lysergide occurred compared with the 41 controls studied. It is concluded that if some drugs can induce major chromosome abnormalities, and less toxic alternatives are available, the latter should be used in preference.  相似文献   

14.
15.
Indirect evidence suggests that some major histocompatibility complex (MHC) proteins are glycosyltransferases. No sequence or mapping information is available for transferases, although ganglioside variations in mice are linked to the H-2 complex on chromosome 17, and one galactosyltransferase activity on mouse sperm varies with T/t complex genotypes, also on chromosome 17. In the present experiments, diploid and trisomy 17 mouse embryos were assayed for four different galactosyltransferase activities. The same preparations were assayed for isocitrate dehydrogenase (Id-1, chromosome 1) and glyoxalase-1 (Glo-1, chromosome 17). Galactosyltransferase specific activities in trisomy 17 embryos are almost 1.5 times higher than in diploid embryos. The correlation between galactosyltransferase activities and chromosome 17 dosage indicates that the structural or regulatory gene for these enzymes are located on chromosome 17.  相似文献   

16.
17.
T. Torok  G. Tick  M. Alvarado    I. Kiss 《Genetics》1993,135(1):71-80
A single P-element insertional mutagenesis experiment was carried out for the second chromosome of Drosophila melanogaster using the P-lacW transposon. Out of 15,475 insertions on the second chromosome, 2,308 lethal and 403 semilethal mutants (altogether 2,711) were recovered. After eliminating clusters, 72% of the mutants represent independent insertions. Some of the mutants with larval, prepupal or pupal lethal phases have a prolonged larval period and show gradual overgrowth of the imaginal discs, brain and/or the hematopoietic organs (lymph glands). In this paper, 16 overgrowth mutants are described. As revealed by in situ hybridization, none of the mutations corresponds to any of the previously known overgrowth mutations on the second chromosome.  相似文献   

18.
19.
Pyruvate dehydrogenase (PDH) complex (PDC) deficiency is an inborn error of pyruvate metabolism causing a variety of neurologic manifestations. Systematic analyses of development of affected brain structures and the cellular processes responsible for their impairment have not been performed due to the lack of an animal model for PDC deficiency. METHODS: In the present study we investigated a murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene encoding the α subunit of PDH to study its role on brain development and behavioral studies. RESULTS: Male embryos died prenatally but heterozygous females were born. PDC activity was reduced in the brain and other tissues in female progeny compared to age-matched control females. Immunohistochemical analysis of several brain regions showed that approximately 40% of cells were PDH. The oxidation of glucose to CO2 and incorporation of glucose-carbon into fatty acids were reduced in brain slices from 15 day-old PDC-deficient females. Histological analyses showed alterations in several structures in white and gray matters in 35 day-old PDC-deficient females. Reduction in total cell number and reduced dendritic arbors in Purkinje neurons were observed in PDC-deficient females. Furthermore, cell proliferation, migration and differentiation into neurons by newly generated cells were reduced in the affected females during pre- and postnatal periods. PDC-deficient mice had normal locomotor activity in a novel environment but displayed decreased startle responses to loud noises and there was evidence of abnormal pre-pulse inhibition of the startle reflex. CONCLUSIONS: The results show that a reduction in glucose metabolism resulting in deficit in energy production and fatty acid biosynthesis impairs cellular differentiation and brain development in PDC-deficient mice.  相似文献   

20.
Conventional method to identify and classify individual chromosomes depends on the unique banding pattern of each chromosome in a specific species being analyzed 1, 2. This classical banding technique, however, is not reliable in identifying complex chromosomal aberrations such as those associated with cancer. To overcome the limitations of the banding technique, Spectral Karyotyping (SKY) is introduced to provide much reliable information on chromosome abnormalities.SKY is a multicolor fluorescence in-situ hybridization (FISH) technique to detect metaphase chromosomes with spectral microscope 3, 4. SKY has been proven to be a valuable tool for the cytogenetic analysis of a broad range of chromosome abnormalities associated with a large number of genetic diseases and malignancies 5, 6. SKY involves the use of multicolor fluorescently-labelled DNA probes prepared from the degenerate oligonucleotide primers by PCR. Thus, every chromosome has a unique spectral color after in-situ hybridization with probes, which are differentially labelled with a mixture of fluorescent dyes (Rhodamine, Texas Red, Cy5, FITC and Cy5.5). The probes used for SKY consist of up to 55 chromosome specific probes 7-10.The procedure for SKY involves several steps (Figure 1). SKY requires the availability of cells with high mitotic index from normal or diseased tissue or blood. The chromosomes of a single cell from either a freshly isolated primary cell or a cell line are spread on a glass slide. This chromosome spread is labeled with a different combination of fluorescent dyes specific for each chromosome. For probe detection and image acquisition,the spectral imaging system consists of sagnac interferometer and a CCD camera. This allows measurement of the visible light spectrum emitted from the sample and to acquire a spectral image from individual chromosomes. HiSKY, the software used to analyze the results of the captured images, provides an easy identification of chromosome anomalies. The end result is a metaphase and a karyotype classification image, in which each pair of chromosomes has a distinct color (Figure 2). This allows easy identification of chromosome identities and translocations. For more details, please visit Applied Spectral Imaging website (http://www.spectral-imaging.com/).SKY was recently used for an identification of chromosome segregation defects and chromosome abnormalities in humans and mice with Autosomal Dominant Polycystic Kidney Disease (ADPKD), a genetic disease characterized by dysfunction in primary cilia 11-13. Using this technique, we demonstrated the presence of abnormal chromosome segregation and chromosomal defects in ADPKD patients and mouse models 14. Further analyses using SKY not only allowed us to identify chromosomal number and identity, but also to accurately detect very complex chromosomal aberrations such as chromosome deletions and translocations (Figure 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号