首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Chen J  Siddiqui A 《Journal of virology》2007,81(12):6757-6760
The human hepatitis B virus (HBV) X protein (HBx) plays a crucial role(s) in the viral life cycle and contributes to the onset of hepatocellular carcinoma (HCC). HBx caused the mitochondrial translocation of Raf-1 kinase either alone or in the context of whole-viral-genome transfections. Mitochondrial translocation of Raf-1 is mediated by HBx-induced oxidative stress and was dependent upon the phosphorylation of Raf-1 at the serine338/339 and Y340/341 residues by p21-activated protein kinase 1 and Src kinase, respectively. These studies provide an insight into the mechanisms by which HBV induces intracellular events relevant to liver disease pathogenesis, including HCC.  相似文献   

7.
8.
9.
10.
11.
12.
Hepatitis B virus X protein (pX) is implicated in hepatocellular carcinoma pathogenesis by an unknown mechanism. Employing the tetracycline-regulated pX-expressing 4pX-1 cell line, derived from the murine AML12 hepatocyte cell line, we demonstrate that pX induces partial polyploidy (>4N DNA). Depletion of p53 in 4pX-1 cells increases by 5-fold the polyploid cells in response to pX expression, indicating that p53 antagonizes pX-induced polyploidy. Dual-parameter flow cytometric analyses show pX-dependent bromodeoxyuridine (BrdUrd) incorporation in 4pX-1 cells containing 4N and >4N DNA, suggesting pX induces DNA re-replication. Interestingly, pX increases expression of endogenous replication initiation factors Cdc6 and Cdtl while suppressing geminin expression, a negative regulator of rereplication. In comparison to a geminin knockdown 4pX-1 cell line used as DNA re-replication control, the Cdt1/geminin ratio is greater in 4pX-1 cells expressing pX, indicating that pX promotes DNA re-replication. In support of this conclusion, pX-expressing 4pX-1 cells, similar to the geminin knockdown 4pX-1 cells, continue to incorporate BrdUrd in the G2 phase and exhibit nuclear Cdc6 and MCM5 co-localization and the absence of geminin. In addition, pX expression activates the ATR kinase, the sensor of DNA re-replication, which in turn phosphorylates RAD17 and H2AX. Interestingly, phospho-H2AX-positive and BrdUrd -positive cells progress through mitosis, demonstrating a link between pX-induced DNA re-replication and polyploidy. Our studies high-light a novel function of pX that likely contributes to hepatocellular carcinoma pathogenesis.  相似文献   

13.
Hepatitis B virus (HBV) infection is a major cause of acute and chronic liver diseases. During the HBV life cycle, HBV hijacks various host factors to assist viral replication. In this research, we find that the HBV regulatory protein X (HBx) can induce the upregulation of DExH‐box RNA helicase 9 (DHX9) expression by repressing proteasome‐dependent degradation mediated by MDM2. Furthermore, we demonstrate that DHX9 contributes to viral DNA replication in dependence on its helicase activity and nuclear localization. In addition, the promotion of viral DNA replication by DHX9 is dependent on its interaction with Nup98. Our findings reveal that HBx‐mediated DHX9 upregulation is essential for HBV DNA replication.  相似文献   

14.
Kim JH  Kang S  Kim J  Ahn BY 《Journal of virology》2003,77(13):7166-7173
Hepatitis B virus (HBV) X protein (HBx) plays an essential role in viral replication and in the development of hepatocellular carcinoma. HBx has the ability to transactivate the expression of all HBV proteins, including the viral core protein HBc. Consistent with its regulatory role, HBx is relatively unstable and is present at low levels in the cell. We report here that the level of HBx was significantly reduced by the coexpression of HBc in cultured human hepatoma cells, whereas the level of HBx mRNA was unaffected. The repression of HBx by HBc was relieved by treating cells with the proteasome inhibitor MG132, indicating that HBc acts by stimulating the proteasome-mediated degradation of HBx. Moreover, the inhibitory effect of HBc was specific to HBx and did not affect other proteins, including p53, a known target of the proteasome. Although no direct physical interaction between HBc and HBx could be demonstrated, mutational analysis indicated that the C-terminal half of HBc is responsible for its inhibitory effect. These results suggest that HBc functions as a novel regulator of the HBV life cycle and of hepatocellular carcinogenesis through control of the HBx level via an inhibitory feedback type of mechanism.  相似文献   

15.
Huh KW  Siddiqui A 《Mitochondrion》2002,1(4):349-359
Chronic infection with hepatitis B virus (HBV) is strongly associated with the development of hepatocellular carcinoma (HCC). HBx, a protein encoded by HBV is believed to contribute to the development of HCC. HBx was recently shown to associate with mitochondria. In this study, we mapped region(s) of HBx necessary for mitochondrial targeting and showed that a putative transmembrane region (aa 54-70) is required for mitochondrial association. In addition, amino acids in the putative alpha helical regions (aa 75-88 and aa 109-131) seem to aid in the mitochondrial targeting of this protein. We further show that the majority of HBx localizes to the outer mitochondrial membrane based on its sensitivity to trypsin and resistance to alkaline treatment. These studies suggest that the association of HBx with the outer mitochondrial membrane is its intrinsic property. These characterizations define transmembrane and alpha-helical regions of this viral protein as domains of mitochondrial targeting. These studies are further useful in the investigations concerning the physiological significance of the HBx's association with mitochondria and its impact on liver disease pathogenesis.  相似文献   

16.
Jagged1 is one of the ligands of Notch signaling pathway, which controls cellular proliferation and differentiation, and also plays important roles in various malignant tumors. However, the expression of Jagged1 in hepatocellular carcinoma (HCC) has not been elucidated, nor whether it is associated with hepatitis B virus X protein (HBx). In this study, we found that Jagged1 was highly expressed in 79.2% (42/53) of HCC tissues compared with adjacent nontumor liver (P <0.05), and its expression was found to be closely related with HBx (rs=0.522, P <0.001) in HCC tissues. Our in vitro study also showed that alteration of HBx expression in HCC cell lines led to a consistent change of Jagged1. Moreover, Jagged1 was found to co-localize and directly interact with HBx in HCC tissues and HBx expressed HCC cell lines. Our results reveal that Jagged1, which is regulated by HBx, may contribute to the development of HCC.  相似文献   

17.
18.
19.
Dysregulation of liver functions leads to insulin resistance causing type 2 diabetes mellitus and is often found in chronic liver diseases. However, the mechanisms of hepatic dysfunction leading to hepatic metabolic disorder are still poorly understood in chronic liver diseases. The current work investigated the role of hepatitis B virus X protein (HBx) in regulating glucose metabolism. We studied HBx-overexpressing (HBxTg) mice and HBxTg mice lacking inducible nitric oxide synthase (iNOS). Here we show that gene expressions of the key gluconeogenic enzymes were significantly increased in HepG2 cells expressing HBx (HepG2-HBx) and in non-tumor liver tissues of hepatitis B virus patients with high levels of HBx expression. In the liver of HBxTg mice, the expressions of gluconeogenic genes were also elevated, leading to hyperglycemia by increasing hepatic glucose production. However, this effect was insufficient to cause systemic insulin resistance. Importantly, the actions of HBx on hepatic glucose metabolism are thought to be mediated via iNOS signaling, as evidenced by the fact that deficiency of iNOS restored HBx-induced hyperglycemia by suppressing the gene expression of gluconeogenic enzymes. Treatment of HepG2-HBx cells with nitric oxide (NO) caused a significant increase in the expression of gluconeogenic genes, but JNK1 inhibition was completely normalized. Furthermore, hyperactivation of JNK1 in the liver of HBxTg mice was also suppressed in the absence of iNOS, indicating the critical role for JNK in the mutual regulation of HBx- and iNOS-mediated glucose metabolism. These findings establish a novel mechanism of HBx-driven hepatic metabolic disorder that is modulated by iNOS-mediated activation of JNK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号