首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inorganic pyrophosphate (PPi) is an enzyme involved in sugar metabolism in potato tubers. In our previous study, we isolated an inorganic pyrophosphatase (PPase) gene from potato and obtained the transgenic potato plants transformed with the sense and antisense PPase genes respectively. In the present experiment, the physiological indexes, tuber dormancy, and sprouting characteristics of the transgenic potatoes were analyzed and evaluated. The result showed that the PPase activity and the inorganic phosphate content of tubers were lower in the antisense transgenic plant lines but were higher in the sense transgenic plant lines, compared with wild-type tubers. Soluble sugars, such as glucose, fructose and sucrose increased in transgenic plants that had overexpression of the sense PPase gene, but decreased in the antisense transgenic plant lines, compared with wild-type tubers. Tuber sprouting time of the antisense transgenic plants were delayed for 2 and 3 weeks and reached the 100 % sprouting rate only after 14 and 16 weeks storage compared with the wild-type when tubers are stored under 25 and 4 °C, respectively. In contrast, tuber sprouting time of the sense transgenic plants was earlier by approximately 2 weeks than that of wild-type tubers under these storage temperatures.  相似文献   

2.
Potato plants (Solanum tuberosum L. cv. Désirée) transformed with sense and antisense constructs of a cDNA encoding the potato hexokinase 2 exhibited altered enzyme activities and expression of hexokinase 2 mRNA. Measurements of the maximum catalytic activity of hexokinase revealed an 11-fold variation in leaf (from 48% of the wild-type activity in antisense transformants to 446% activity in sense transformants) and an 8-fold variation in developing tubers (from 35% of the wild-type activity in antisense transformants to 212% activity in sense transformants). Despite the wide range of hexokinase activities, no substantial change was found in the fresh weight yield, starch, sugar and metabolite levels of transgenic tubers. However, both potato hexokinases 1 and 2 were able to complement the hyposensitivity of antisense hexokinase 1 Arabidopsis transgenic plants to glucose. In an in vitro bioassay of seed germination in a medium with high glucose levels, double transformants showed the same sensitivity to glucose as that of the wild-type ecotype, displaying a stunted phenotype in hypocotyls, cotyledons and roots.  相似文献   

3.
Transgenic potato (Solanum tuberosum L.) plants were created with sense and antisense copies of the potato D-enzyme (disproportionating enzyme; EC␣2.4.1.25) cDNA linked to patatin and cauliflower mosaic virus 35 S promoters, and screened for D-enzyme activity in tubers. Transformants with sense constructs mostly had wild type D-enzyme activity but two plants had only about 1% wild-type activity. Transformants with antisense constructs had activity ranging from 90% to about 1% of wild type. Three 35 S antisense plants with very low activity were analysed in detail. Western blot analysis showed that D-enzyme was present in greatly reduced amounts in tubers and in leaves, whereas plastidic starch phosphorylase (EC 2.4.1.1) was unaffected. The lack of D-enzyme resulted in slow plant growth but development was otherwise apparently normal. Furthermore, the starch content of tubers was not appreciably altered in amount, proportion of amylose, molecular weight of debranched amylopectin, or branch chain length, despite the lack of D-enzyme. These results do not indicate a direct requirement for D-enzyme in the synthesis and accumulation of storage starch in tubers. The results are discussed in terms of the known reactions catalysed by D-enzyme and possible involvement of D-enzyme in starch metabolism. Received: 12 November 1997 / Accepted: 23 December 1997  相似文献   

4.
The metabolic function of the plastidic ATP/ADP transporter (AATP) in heterotrophic plastids was examined in transgenic potato plants that exhibited increased or decreased amounts of the protein. Altered mRNA levels correlated with activities of the plastidic ATP/ADP transporter. Potato tubers with decreased plastidic ATP/ADP transporter activities exhibited reduced starch contents whereas sense lines accumulated increased amounts of tuber starch. Starch from wild-type tubers had an amylose content of 18.8%, starch from antisense plants contained 11.5–18.0% amylose, whereas starch from sense plants had levels of 22.7–27.0%. The differences in physiological parameters were accompanied with altered tuber morphology. These changes are discussed with respect to the stromal ATP supply during starch biosynthesis.  相似文献   

5.
The synthesis of amylose in amyloplasts is catalyzed by granule-bound starch synthase (GBSS). GBSS gene expression was inhibited via antisense RNA in Agrobacterium rhizogenes-transformed potato plants. Analysis of starch production and starch granule composition in transgenic tubers revealed that reduction of GBSS activity always resulted in a reduction of the production of amylose. Field experiments, performed over a 2-year period, showed that stable inhibition of GBSS gene expression can be obtained. Microscopic evaluation of iodine-stained starch granules was shown to be a sensitive system for qualitative and quantitative examination of amylose formation in starch granules of transgenic potato tubers. In plants showing inhibition of GBSS gene expression, the reduced amylose content in tuber starch was not a consequence of a lower amylose content throughout the entire starch granule. Starch granules of transgenic tubers were found to contain amylose at a percentage similar to wild-type starch in a core of varying size at the hilum of each granule. This indicated that reduced GBSS gene expression results in amylose formation in a restricted zone of the granules. The size of this zone is suggested to be dependent on the GBSS protein level. During development of the granules, the available GBSS protein is thought to become limiting, resulting in the formation of starch that lacks amylose. RNA gel blot analysis of tuber tissue showed that inhibition of GBSS gene expression resulted in a reduced GBSS mRNA level but did not affect the expression level of other starch synthesizing enzymes. Antisense RNA could only be detected in leaf tissue of the transgenic plants.  相似文献   

6.
Potato (Solanum tuberosum L.) plants transformed with sense and antisense constructs of a cDNA encoding the potato hexokinase 1 (StHK1) exhibited altered enzyme activities and expression of StHK1 mRNA. Measurements of the maximum catalytic activity of hexokinase revealed a 22-fold variation in leaves (from 22% of the wild-type activity in antisense transformants to 485% activity in sense transformants) and a 7-fold variation in developing tubers (from 32% of the wild-type activity in antisense transformants to 222% activity in sense transformants). Despite the wide range of hexokinase activities, no change was found in the fresh weight yield, starch, sugar, or metabolite levels of transgenic tubers. However, there was a 3-fold increase in the starch content of leaves from the antisense transformants after the dark period. Starch accumulation at the end of the night period was correlated with a 2-fold increase of glucose and a decrease of sucrose content. These results provide strong support for the hypothesis that glucose is a primary product of transitory starch degradation and is the sugar that is exported to the cytosol at night to support sucrose biosynthesis.  相似文献   

7.
To change the hexose-to-sucrose ratio within phloem cells, yeast-derived cytosolic invertase was expressed in transgenic potato (Solanum tuberosum cv. Desirée) plants under control of the rolC promoter. Vascular tissue specific expression of the transgene was verified by histochemical detection of invertase activity in tuber cross-sections. Vegetative growth and tuber yield of transgenic plants was unaltered as compared to wild-type plants. However, the sprout growth of stored tubers was much delayed, indicating impaired phloem-transport of sucrose towards the developing bud. Biochemical analysis of growing tubers revealed that, in contrast to sucrose levels, which rapidly declined in growing invertase-expressing tubers, hexose and starch levels remained unchanged as compared to wild-type controls. During storage, sucrose and starch content declined in wild-type tubers, whereas glucose and fructose levels remained unchanged. A similar response was found in transgenic tubers with the exception that starch degradation was accelerated and fructose levels increased slightly. Furthermore, changes in carbohydrate metabolism were accompanied by an elevated level of phosphorylated intermediates, and a stimulated rate of respiration. Considering that sucrose breakdown was restricted to phloem cells it is concluded that, in response to phloem-associated sucrose depletion or hexose elevation, starch degradation and respiration is triggered in parenchyma cells. To study further whether elevated hexose and/or hexose-phosphates or decreased sucrose levels are responsible for the metabolic changes observed, sucrose content was decreased by tuber-specific expression of a bacterial sucrose isomerase. Sucrose isomerase catalyses the reversible conversion of sucrose into palatinose, which is not further metabolizable by plant cells. Tubers harvested from these plants were found to accumulate high levels of palatinose at the expense of sucrose. In addition, starch content decreased slightly, while hexose levels remained unaltered, compared with the wild-type controls. Similar to low sucrose-containing invertase tubers, respiration and starch breakdown were found to be accelerated during storage in palatinose-accumulating potato tubers. In contrast to invertase transgenics, however, no accumulation of phosphorylated intermediates was observed. Therefore, it is concluded that sucrose depletion rather than increased hexose metabolism triggers reserve mobilization and respiration in stored potato tubers.  相似文献   

8.
Transgenic potato tubers that overexpressed either a cytosolic or an apoplastic invertase in the wild type or AGPase antisense background were used to analyse the effect of invertase activity on cell expansion, starch granule formation and turgor pressure during tuber development. Although the transgenic plants did not develop a visible phenotype in aerial regions the size and number of tubers were significantly modified in the various lines. Transmission electron and light microscopy were performed to monitor starch grain size and number, cell size and cell wall thickness. Water potential, osmotic pressure, and indirectly, turgor pressure were determined during the final stages of tuber development. Glucose levels were high in transgenic tubers that overexpressed a yeast-derived invertase. The number of starch grains per cell was almost identical in all transgenic lines. However, the amount of starch was modified in the transgenics as compared to the wild type. As expected, the size of starch grains was reduced in all lines that expressed an AGPase antisense mRNA. These results indicate that invertase activity and glucose levels do not affect initiation of starch grain formation during the early stages of tuber development, but growth of starch corns in the later stages of tuber maturation.  相似文献   

9.
Transgenic potato plants were created in which the expression of ADP-glucose pyrophosphorylase (AGPase) was inhibited by introducing a chimeric gene containing the coding region of one of the subunits of the AGPase linked in an antisense orientation to the CaMV 35S promoter. Partial inhibition of the AGPase enzyme was achieved in leaves and almost complete inhibition in tubers. This resulted in the abolition of starch formation in tubers, thus proving that AGPase has a unique role in starch biosynthesis in plants. Instead up to 30% of the dry weight of the transgenic potato tubers was represented by sucrose and up to 8% by glucose. The process of tuber formation also changed, resulting in significantly more tubers both per plant and per stolon. The accumulation of soluble sugars in tubers of antisense plants resulted in a significant increase of the total tuber fresh weight, but a decrease in dry weight of tubers. There was no significant change in the RNA levels of several other starch biosynthetic enzymes, but there was a great increase in the RNA level of the major sucrose synthesizing enzyme sucrose phosphate synthase. In addition, the inhibition of starch biosynthesis was accompanied by a massive reduction in the expression of the major storage protein species of potato tubers, supporting the idea that the expression of storage protein genes is in some way connected to carbohydrate formation in sink storage tissues.  相似文献   

10.
Transgenic plants of a tetraploid potato cultivar were obtained in which the amylose content of tuber starch was reduced via antisense RNA-mediated inhibition of the expression of the gene encoding granule-bound starch synthase (GBSS). GBSS is one of the key enzymes in the biosynthesis of starch and catalyses the formation of amylose. The antisense GBSS genes, based on the full-length GBSS cDNA driven by the 35S CaMV promoter or the potato GBSS promoter, were introduced into the potato genome by Agrobacterium tumefaciens-mediated transformation. Expression of each of these genes resulted in the complete inhibition of GBSS gene expression, and thus in the production of amylose-free tuber starch, in mature field-grown plants originating from rooted in vitro plantlets of 4 out of 66 transgenic clones. Clones in which the GBSS gene expression was incompletely inhibited showed an increase of the extent of inhibition during tuber growth. This is likely to be due to the increase of starch granule size during tuber growth and the specific distribution pattern of starch components in granules of clones with reduced GBSS activity. Expression of the antisense GBSS gene from the GBSS promoter resulted in a higher stability of inhibition in tubers of field-grown plants as compared to expression from the 35S CaMV promoter. Field analysis of the transgenic clones indicated that inhibition of GBSS gene expression could be achieved without significantly affecting the starch and sugar content of transgenic tubers, the expression level of other genes involved in starch and tuber metabolism and agronomic characteristics such as yield and dry matter content.  相似文献   

11.
12.
In potato tubers two starch phosphorylase isozymes, types L and H, have been described and are believed to be responsible for the complete starch breakdown in this tissue. Type L has been localized in amyloplasts, whereas type H is located within the cytosol. In order to investigate whether the same isozymes are also present in potato leaf tissue a cDNA expression library from potato leaves was screened using a monoclonal antibody recognizing both isozyme forms. Besides the already described tuber L-type isozyme a cDNA clone encoding a second L-type isozyme was isolated. The 3171 nucleotide long cDNA clone contains an uninterrupted open reading frame of 2922 nucleotides which encodes a polypeptide of 974 amino acids. Sequence comparison between both L-type isozymes on the amino acid level showed that the polypeptides are highly homologous to each other, reaching 81–84% identity over most parts of the polypeptide. However the regions containing the transit peptide (amino acids 1–81) and the insertion sequence (amino acids 463–570) are highly diverse, reaching identities of only 22.0% and 29.0% respectively.Northern analysis revealed that both forms are differentially expressed. The steady-state mRNA levels of the tuber L-type isozyme accumulates strongly in potato tubers and only weakly in leaf tissues, whereas the mRNA of the leaf L-type isozyme accumulates in both tissues to the same extent. Constitutive expression of an antisense RNA specific for the leaf L-type gene resulted in a strong reduction of starch phosphorylase L-type activity in leaf tissue, but had only sparse effects in potato tuber tissues. Determination of the leaf starch content revealed that antisense repression of the starch phosphorylase activity has no significant influence on starch accumulation in leaves of transgenic potato plants. This result indicated that different L-type genes are responsible for the starch phosphorylase activity in different tissues, but the function of the different enzymes remains unclear.  相似文献   

13.
The early stages of tuber development are characterized by cell division, high metabolic activity, and the predominance of invertase as the sucrose (Suc) cleaving activity. However, during the subsequent phase of starch accumulation the cleavage of Suc occurs primarily by the action of Suc synthase. The mechanism that is responsible for this switch in Suc cleaving activities is currently unknown. One striking difference between the invertase and Suc synthase mediated cleavage of Suc is the direct involvement of inorganic pyrophosphate (PPi) in the latter case. There is presently no convincing explanation of how the PPi required to support this process is generated in potato (Solanum tuberosum) tubers. The major site of PPi production in a maturing potato tubers is likely to be the reaction catalyzed by ADP-glucose pyrophosphorylase, the first committed step of starch biosynthesis in amyloplasts. We present data based on the analysis of the PPi levels in various transgenic plants altered in starch and Suc metabolism that support the hypothesis that PPi produced in the plastid is used to support cytosolic Suc breakdown and that PPi is an important coordinator of cytosolic and plastidial metabolism in potato tubers.  相似文献   

14.
Potato is a globally important crop. Unfortunately, potato farming is plagued with problems associated with the sprouting behavior of seed tubers. The data presented here demonstrate that using transgenic technology can influence this behavior. Transgenic tubers cytosolically expressing an inorganic pyrophosphatase gene derived from Escherichia coli under the control of the tuber-specific patatin promoter display significantly accelerated sprouting. The period of presprouting dormancy for transgenic tubers planted immediately after harvest is reduced by six to seven weeks when compared to wild-type tubers. This study demonstrates a method with which to regulate dormancy, an important aspect of potato crop management.  相似文献   

15.
Summary Granule-bound starch synthase [GBSS; EC 24.1.21] determines the presence of amylose in reserve starches. Potato plants were transformed to produce antisense RNA from a gene construct containing a full-length granule-bound starch synthase cDNA in reverse orientation, fused between the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator. The construct was integrated into the potato genome by Agrobacterium rhizogenes-mediated transformation. Inhibition of GBSS activity in potato tuber starch was found to vary from 70% to 100%. In those cases where total suppression of GBSS activity was found both GBSS protein and amylose were absent, giving rise to tubers containing amylose-free starch. The variable response of the transformed plants indicates that position effects on the integrated sequences might be important. The results clearly demonstrate that in tubers of potato plants which constitutively synthesize antisense RNA the starch composition is altered.  相似文献   

16.
17.
The aim of this work was to investigate the role of cytosolic phosphoglucomutase (PGM; EC 5.4.2.2) in the regulation of carbohydrate metabolism. Many in vitro studies have indicated that PGM plays a central role in carbohydrate metabolism; however, until now the importance of this enzyme in plants has not been subject to reverse-genetics investigations. With this intention we cloned the cytosolic isoform of potato PGM (StcPGM) and expressed this in the antisense orientation under the control of the CaMV 35 S promoter in potato plants. We confirmed that these plants contained reduced total PGM activity and that loss in activity was due specifically to a reduction in cytosolic PGM activity. These plants were characterised by a severe phenotype: stunted aerial growth combined with limited root growth and a reduced tuber yield. Analysis of the metabolism of these lines revealed that leaves of these plants were inhibited in sucrose synthesis whereas the tubers exhibited decreased levels of sucrose and starch as well as decreased levels of glycolytic intermediates but possessed unaltered levels of adenylates. Furthermore, a broader metabolite screen utilising GC-MS profiling revealed that these lines contained altered levels of several intermediates of the TCA cycle and of amino acids. In summary, we conclude that cytosolic PGM plays a crucial role in the sucrose synthetic pathway within the leaf and in starch accumulation within the tuber, and as such is important in the maintenance of sink-source relationships.  相似文献   

18.
In an attempt to study the importance of starch synthesis inleaves with respect to sink-source interactions, we investigateddaily turnover of carbohydrates in leaves of transgenic potatoplants inhibited for ADP-glucose pyrophosphorylase (AGPase).Down-regulation of AGPase has been performed using two differentpromoters: the near-constitutive CaMV 35S promoter, and theSTLSI promoter which is active in photosynthetic cells only.Residual AGPase activity in leaves was between 6 and 30% inindividual transformants as compared to wild-type potato plants.We found that: (i) photosynthesis is not significantly alteredrelative to wild-type plants; (ii) levels of starch are markedlyreduced in leaves of transgenic plants; (iii) levels of solublesugars and malate are largely unaffected by the inhibition ofAGPase; (iv) the reduction of starch synthesis leads to a higherportion of assimilated carbon being transported from leavesto sink tissues during the light period; (v) altered leaf exportcharacteristics do not change tuber yield under greenhouse conditions.Collectively, these data demonstrate a striking flexibilityof the potato plant with respect to day/night rhythms of carbonexport from leaves and utilization by the major storage sinks,i.e. developing tubers. (Received November 1, 1994; Accepted March 2, 1995)  相似文献   

19.
Sink strength of growing potato tubers is believed to be limited by sucrose metabolism and/or starch synthesis. Sucrose synthase (Susy) is most likely responsible for the entire sucrose cleavage in sink tubers, rather than invertases. To investigate the unique role of sucrose synthase with respect to sucrose metabolism and sink strength in growing potato tubers, transgenic potato plants were created expressing Susy antisense RNA corresponding to the T-type sucrose synthase isoform. Although the constitutive 35S CaMV promotor was used to drive the expression of the antisense RNA the inhibition of Susy activity was tuber-specific, indicating that independent Susy isoforms are responsible for Susy activity in different potato organs. The inhibition of Susy leads to no change in sucrose content, a strong accumulation of reducing sugars and an inhibition of starch accumulation in developing potato tubers. The increase in hexoses is paralleled by a 40-fold increase in invertase activities but no considerable changes in hexokinase activities. The reduction in starch accumulation is not due to an inhibition of the major starch biosynthetic enzymes. The changes in carbohydrate accumulation are accompanied by a decrease in total tuber dry weight and a reduction of soluble tuber proteins. The reduced protein accumulation is mainly due to a decrease in the major storage proteins patatin, the 22 kDa proteins and the proteinase inhibitors. The lowered accumulation of storage proteins is not a consequence of the availability of the free amino acid pool in potato tubers. Altogether these data are in agreement with the assumption that sucrose synthase is the major determinant of potato tuber sink strength. Contradictory to the hypothesis that the sink strength of growing potato tubers is inversely correlated with the tuber number per plant, no increase in tuber number per plant was found in Susy antisense plants.  相似文献   

20.
A full length cDNA clone encoding plastidic fructose-1,6-bisphosphatase (cp-FBPase), together with a transit peptide, was isolated from a potato (Solanum tuberosum L.) leaf cDNA library. Potato plants were transformed with the isolated cp-FBPase sequence behind a patatin class I promoter to ensure tuber-specific expression of the enzyme. Plant lines were selected which expressed up to 250 mU (g FW)-1 in the developing tubers, which is 10- to 20-fold the activity found in wild-type tubers. Intact amyloplasts were isolated from in vitro-grown minitubers developed in darkness. Comparison with marker enzymes showed that cp-FBPase activity in transgenic tubers, as well as the low FBPase activity in the wild-type tubers, was localised inside the amyloplasts. The intact amyloplasts isolated from both wild-type and transgenic tubers synthesised starch from [U-14C] glucose-6-phosphate. Conversely, only the transgenic tubers expressing cp-FBPase showed appreciable synthesis of starch from [U-14C] dihydroxyacetone phosphate, and this synthesis rate was correlated to the activity of cp-FBPase. Thus, the expression of cp-FBPase in tubers allows for a new route of starch biosynthesis from triose-phosphates imported from the cytosol. The transgenic tubers did not differ from wild-type tubers with respect to starch content, or the levels of neutral sugars and phosphorylated hexoses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号