首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Zarrabi M  Naderi-Manesh H 《Proteins》2008,71(3):1441-1449
Kappa-Hefutoxin1 is a K(+) channel-blocking toxin from the scorpion Heterometrus fluvipes. It is a 22-residue protein that adapts a novel fold of two parallel helices linked by two disulfide bridges without beta-sheets. Recognition of interactions of kappa-Hefutoxin1 with the voltage-gated potassium channels, Kv1.1, Kv1.2, and Kv1.3, was studied by 3D-Dock software package. All structures of kappa-Hefutoxin1 were considered during the simulations, which indicated that even small changes in the structure of kappa-Hefutoxin1 considerably affected both the recognition and the binding between kappa-Hefutoxin1 and the Kv1 channels. kappa-Hefutoxin1 is located around the extracellular part of the Kv1 channels, making contacts with its helices. Lys 19, Tyr 5, Arg 6, Trp 9, or Arg 10 in the toxin and residues Asp 402, His 404, Thr 407,Gly 401, and Asp 386 in each subunit of the Kv potassium channel are the key residues for the toxin-channel recognition. Moreover, the simulation result demonstrates that the hydrophobic interactions are important in interaction of negatively charged toxins with potassium channels. The results of our docking/molecular dynamics simulations indicate that our 3D model structure of the kappa-Hefutoxin1-complex is both reasonable and acceptable and could be helpful for smarter drug design and the blocking agents of Kv1 channels.  相似文献   

2.
Recently, the structure of the Shaker channel Kv1.2 has been determined at a 2.9-angstroms resolution. This opens new possibilities in deciphering the mechanism underlying the function of voltage-gated potassium (Kv) channels. Molecular dynamics simulations of the channel, embedded in a membrane environment show that the channel is in its open state and that the gating charges carried by S4 are exposed to the solvent. The hydrated environment of S4 favors a local collapse of the electrostatic potential, which generates high electric-field gradients around the arginine gating charges. Comparison to experiments suggests furthermore that activation of the channel requires mainly a lateral displacement of S4. Overall, the results agree with the transporter model devised for Kv channels from electrophysiology experiments, and provide a possible pathway for the mechanistic response to membrane depolarization.  相似文献   

3.
Analysis of the crystal structures of the intact voltage-sensitive potassium channel KvAP (from Aeropyrum pernix) and Kv1.2 (from rat brain), along with the isolated voltage sensor (VS) domain from KvAP, raises the question of the exact nature of the voltage-sensing conformational change that triggers activation of Kv and related voltage-gated channels. Molecular dynamics simulations of the isolated VS of KvAP in a detergent micelle environment at two different temperatures (300 K and 368 K) have been used to probe the intrinsic flexibility of this domain on a tens-of-nanoseconds timescale. The VS contains a positively charged (S4) helix which is packed against a more hydrophobic S3 helix. The simulations at elevated temperature reveal an intrinsic flexibility/conformational instability of the S3a region (i.e., the C-terminus of the S3 helix). It is also evident that the S4 helix undergoes hinge bending and swiveling about its central I130 residue. The conformational instability of the S3a region facilitates the motion of the N-terminal segment of S4 (i.e., S4a). These simulations thus support a gating model in which, in response to depolarization, an S3b-S4a "paddle" may move relative to the rest of the VS domain. The flexible S3a region may in turn act to help restore the paddle to its initial conformation upon repolarization.  相似文献   

4.
Understanding the structure and functional mechanisms of voltage-gated calcium channels remains a major task in membrane biophysics. In the absence of three dimensional structures, homology modelling techniques are the method of choice, to address questions concerning the structure of these channels. We have developed models of the open Cav1.2 pore, based on the crystal structure of the mammalian voltage-gated potassium channel Kv1.2 and a model of the bacterial sodium channel NaChBac. Our models are developed to be consistent with experimental data and modelling criteria. The models highlight major differences between voltage-gated potassium and calcium channels, in the P segments, as well as the inner pore helices. Molecular dynamics simulations support the hypothesis of a clockwise domain arrangement and experimental observations of asymmetric calcium channel behaviour. In the accompanying paper these models were used to study structural effects of a channelopathy mutation.  相似文献   

5.
Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.  相似文献   

6.
Activation of voltage-dependent ion channels is primarily controlled by the applied potential difference across the membrane. For potassium channels the Drosophila Shaker channel has served as an archetype of all other potassium channels in studies of activation mechanisms. In the Shaker potassium channel much of the voltage sensitivity is conferred by the S4 transmembrane helix, which contains seven positively charged residues. During gating, the movement of these charges produces gating currents. Mutagenic and fluorescence studies indicate that four of these residues are particularly important and contribute to the majority of gating charge, R362, R365, R368 and R371. The channel is thought to dwell in several closed states prior to opening. Ionic-charge pairing with negatively charged residues in the S2 and S3 helices is thought to be important in regulating these closed states and detailed kinetic models have attempted to define the kinetics and charge of the transitions between these states. Neutral residues throughout the S4 and S5 helices are thought to control late steps in channel opening and may have important roles in modulating the stability of the open state and late closed states. In response to depolarization, the S4 helix is thought to undergo a rotational translation and this movement is also important in studies of the movement of the pore helices, S5 and S6, during opening. This review will examine residues that are important during activation as well as kinetic models that have attempted to quantitatively define the activation pathway of voltage-dependent potassium channels.  相似文献   

7.
In voltage-gated K(+) channels (Kv), membrane depolarization promotes a structural reorganization of each of the four voltage sensor domains surrounding the conducting pore, inducing its opening. Although the crystal structure of Kv1.2 provided the first atomic resolution view of a eukaryotic Kv channel, several components of the voltage sensors remain poorly resolved. In particular, the position and orientation of the charged arginine side chains in the S4 transmembrane segments remain controversial. Here we investigate the proximity of S4 and the pore domain in functional Kv1.2 channels in a native membrane environment using electrophysiological analysis of intersubunit histidine metallic bridges formed between the first arginine of S4 (R294) and residues A351 or D352 of the pore domain. We show that histidine pairs are able to bind Zn(2+) or Cd(2+) with high affinity, demonstrating their close physical proximity. The results of molecular dynamics simulations, consistent with electrophysiological data, indicate that the position of the S4 helix in the functional open-activated state could be shifted by approximately 7-8 A and rotated counterclockwise by 37 degrees along its main axis relative to its position observed in the Kv1.2 x-ray structure. A structural model is provided for this conformation. The results further highlight the dynamic and flexible nature of the voltage sensor.  相似文献   

8.
A number of ion channels contain transmembrane (TM) alpha-helices that contain proline-induced molecular hinges. These TM helices include the channel-forming peptide alamethicin (Alm), the S6 helix from voltage-gated potassium (Kv) channels, and the D5 helix from voltage-gated chloride (CLC) channels. For both Alm and KvS6, experimental data implicate hinge-bending motions of the helix in an aspect of channel gating. We have compared the hinge-bending motions of these TM helices in bilayer-like environments by multi-nanosecond MD simulations in an attempt to describe motions of these helices that may underlie possible modes of channel gating. Alm is an alpha-helical channel-forming peptide, which contains a central kink associated with a Gly-x-x-Pro motif in its sequence. Simulations of Alm in a TM orientation for 10 ns in an octane slab indicate that the Gly-x-x-Pro motif acts as a molecular hinge. The S6 helix from Shaker Kv channels contains a Pro-Val-Pro motif. Modeling studies and recent experimental data suggest that the KvS6 helix may be kinked in the vicinity of this motif. Simulations (10 ns) of an isolated KvS6 helix in an octane slab and in a POPC bilayer reveal hinge-bending motions. A pattern-matching approach was used to search for possible hinge-bending motifs in the TM helices of other ion channel proteins. This uncovered a conserved Gly-x-Pro motif in TM helix D5 of CLC channels. MD simulations of a model of hCLC1-D5 spanning an octane slab suggest that this channel also contains a TM helix that undergoes hinge-bending motion. In conclusion, our simulations suggest a model in which hinge-bending motions of TM helices may play a functional role in the gating mechanisms of several different families of ion channels.  相似文献   

9.
Grottesi A  Sansom MS 《FEBS letters》2003,535(1-3):29-33
Toxins that block voltage-gated potassium (Kv) channels provide a possible template for improved homology models of the Kv pore. In assessing the interactions of Kv channels and their toxins it is important to determine the dynamic flexibility of the toxins. Multiple 10 ns duration molecular dynamics simulations combined with essential dynamics analysis have been used to explore the flexibility of four different Kv channel-blocking toxins. Three toxins (Tc1, AgTx and ChTx) share a common fold. They also share a common pattern of conformational dynamics, as revealed by essential dynamics analysis of the simulation results. This suggests that some aspects of dynamic behaviour are conserved across a single protein fold class. In each of these three toxins, the residue exhibiting minimum flexibility corresponds to a conserved lysine residue that is suggested to interact with the filter domain of the channel. Thus, comparative simulations reveal functionally important conservation of molecular dynamics as well as protein fold across a family of related toxins.  相似文献   

10.
The voltage sensor is a four-transmembrane helix bundle (S1-S4) that couples changes in membrane potential to conformational alterations in voltage-gated ion channels leading to pore opening and ion conductance. Although the structure of the voltage sensor in activated potassium channels is available, the conformation of the voltage sensor at rest is still obscure, limiting our understanding of the voltage-sensing mechanism. By employing a heterologously expressed Bacillus halodurans sodium channel (NaChBac), we defined constraints that affect the positioning and depolarization-induced outward motion of the S4 segment. We compared macroscopic currents mediated by NaChBac and mutants in which E43 on the S1 segment and the two outermost arginines (R1 and R2) on S4 were substituted. Neutralization of the negatively charged E43 (E43C) had a significant effect on channel gating. A double-mutant cycle analysis of E43 and R1 or R2 suggested changes in pairing during channel activation, implying that the interaction of E43 with R1 stabilizes the voltage sensor in its closed/available state, whereas interaction of E43 with R2 stabilizes the channel open/unavailable state. These constraints on S4 dynamics that define its stepwise movement upon channel activation and positioning at rest are novel, to the best of our knowledge, and compatible with the helical-screw and electrostatic models of S4 motion.  相似文献   

11.
The opening and closing of the pore of voltage-gated ion channels is the basis for the nervous impulse. These conformational changes are triggered by the movement of an intrinsic voltage sensor, the fourth transmembrane segment, S4. The central problem of how the movement of S4 is coupled to channel opening and where S4 is located in relation to the pore is still unsolved. Here, we estimate the position of the extracellular end of S4 in the Shaker potassium channel by analyzing the electrostatic effect of introduced charges in the pore-forming motif (S5-S6). We also present a three-dimensional model for all transmembrane segments. Knowledge of this structure is essential for the attempts to understand how voltage opens these channels.  相似文献   

12.
We have determined the three-dimensional structure of the potassium channel inhibitor HsTX1, using nuclear magnetic resonance and molecular modeling. This protein belongs to the scorpion short toxin family, which essentially contains potassium channel blockers of 29 to 39 amino acids and three disulfide bridges. It is highly active on voltage-gated Kv1.3 potassium channels. Furthermore, it has the particularity to possess a fourth disulfide bridge. We show that HsTX1 has a fold similar to that of the three-disulfide-bridged toxins and conserves the hydrophobic core found in the scorpion short toxins. Thus, the fourth bridge has no influence on the global conformation of HsTX1. Most residues spatially analogous to those interacting with voltage-gated potassium channels in the three-disulfide-bridged toxins are conserved in HsTX1. Thus, we propose that Tyr21, Lys23, Met25, and Asn26 are involved in the biological activity of HsTX1. As an additional positively charged residue is always spatially close to the aromatic residue in toxins blocking the voltage-gated potassium channels, and as previous mutagenesis experiments have shown the critical role played by the C-terminus in HsTX1, we suggest that Arg33 is also important for the activity of the four disulfide-bridged toxin. Docking calculations confirm that, if Lys23 and Met25 interact with the GYGDMH motif of Kv1.3, Arg33 can contact Asp386 and, thus, play the role of the additional positively charged residue of the toxin functional site. This original configuration of the binding site of HsTX1 for Kv1.3, if confirmed experimentally, offers new structural possibilities for the construction of a molecule blocking the voltage-gated potassium channels.  相似文献   

13.
Closing in on the resting state of the Shaker K(+) channel   总被引:4,自引:0,他引:4  
Membrane depolarization causes voltage-gated ion channels to transition from a resting/closed conformation to an activated/open conformation. We used voltage-clamp fluorometry to measure protein motion at specific regions of the Shaker Kv channel. This enabled us to construct new structural models of the resting/closed and activated/open states based on the Kv1.2 crystal structure using the Rosetta-Membrane method and molecular dynamics simulations. Our models account for the measured gating charge displacement and suggest a molecular mechanism of activation in which the primary voltage sensors, S4s, rotate by approximately 180 degrees as they move "outward" by 6-8 A. A subsequent tilting motion of the S4s and the pore domain helices, S5s, of all four subunits induces a concerted movement of the channel's S4-S5 linkers and S6 helices, allowing ion conduction. Our models are compatible with a wide body of data and resolve apparent contradictions that previously led to several distinct models of voltage sensing.  相似文献   

14.
Prolines in transmembrane (TM) alpha-helices are believed to play an important structural and/or functional role in membrane proteins. At a structural level a proline residue distorts alpha-helical structure due to the loss of at least one stabilizing backbone hydrogen bond, and introduces flexibility in the helix that may result in substantial kink and swivel motions about the effective "hinge." At a functional level, for example in Kv channels, it is believed that proline-induced molecular hinges may have a direct role in gating, i.e., the conformational change linked to opening/closing the channel to movement of ions. In this article we study the conformational dynamics of the S6 TM helix from of the Kv channel Shaker, which possesses the motif PVP--a motif that is conserved in Kv channels. We perform multiple molecular dynamics simulations of single S6 helices in a membrane-mimetic environment in order to effectively map the kink-swivel conformational space of the protein, exploiting the ability of multiple simulations to achieve greater sampling. We show that the presence of proline locally perturbs the helix, disrupting local dihedral angles and producing local twist and unwinding in the region of the hinge--an effect that is relaxed with distance from the PVP motif. We furthermore show that motions about the hinge are highly anisotropic, reflecting a preferred region of kink-swivel conformation space that may have implications for the gating process.  相似文献   

15.
Models of the transmembrane region of the NaChBac channel were developed in two open/inactivated and several closed conformations. Homology models of NaChBac were developed using crystal structures of Kv1.2 and a Kv1.2/2.1 chimera as templates for open conformations, and MlotiK and KcsA channels as templates for closed conformations. Multiple molecular-dynamic simulations were performed to refine and evaluate these models. A striking difference between the S4 structures of the Kv1.2-like open models and MlotiK-like closed models is the secondary structure. In the open model, the first part of S4 forms an α-helix, and the last part forms a 310 helix, whereas in the closed model, the first part of S4 forms a 310 helix, and the last part forms an α-helix. A conformational change that involves this type of transition in secondary structure should be voltage-dependent. However, this transition alone is not sufficient to account for the large gating charge movement reported for NaChBac channels and for experimental results in other voltage-gated channels. To increase the magnitude of the motion of S4, we developed another model of an open/inactivated conformation, in which S4 is displaced farther outward, and a number of closed models in which S4 is displaced farther inward. A helical screw motion for the α-helical part of S4 and a simple axial translation for the 310 portion were used to develop models of these additional conformations. In our models, four positively charged residues of S4 moved outwardly during activation, across a transition barrier formed by highly conserved hydrophobic residues on S1, S2, and S3. The S4 movement was coupled to an opening of the activation gate formed by S6 through interactions with the segment linking S4 to S5. Consistencies of our models with experimental studies of NaChBac and Kv channels are discussed.  相似文献   

16.
Kv2.1 is a voltage-gated potassium (Kv) channel that generates delayed rectifier currents in mammalian heart and brain. The biophysical properties of Kv2.1 and other ion channels have been characterized by functional expression in heterologous systems, and most commonly in Xenopus laevis oocytes. A number of previous oocyte-based studies of mammalian potassium channels have revealed expression-level-dependent changes in channel properties, leading to the suggestion that endogenous oocyte factors regulate channel gating. Here, we show that endogenous oocyte potassium channel KCNE ancillary subunits xMinK and xMiRP2 slow the activation of oocyte-expressed mammalian Kv2.1 channels two-to-fourfold. This produces a sigmoidal relationship between Kv2.1 current density and activation rate in oocyte-based two-electrode voltage clamp studies. The effect of endogenous xMiRP2 and xMinK on Kv2.1 activation is diluted at high Kv2.1 expression levels, or by RNAi knockdown of either endogenous subunit. RNAi knockdown of both xMiRP2 and xMinK eliminates the correlation between Kv2.1 expression level and activation kinetics. The data demonstrate a molecular basis for expression-level-dependent changes in Kv channel gating observed in heterologous expression studies.  相似文献   

17.
Transient cerebral ischemia is known to induce endogenous mechanisms that can prevent or delay neuronal injury, such as the activation of mitochondrial potassium channels. However, the molecular mechanism of this effect remains unclear. In this study, the single-channel activity was measured using the patch-clamp technique of the mitoplasts isolated from gerbil hippocampus. In 70% of all patches, a potassium-selective current with the properties of a voltage-gated Kv-type potassium channel was recorded with mean conductance 109 ± 6 pS in a symmetrical solution. The channel was blocked at negative voltages and irreversibly by margatoxin, a specific Kv1.3 channel inhibitor. The ATP/Mg2+ complex and Ca2+ ions had no effect on channel activity. Additionally, agitoxin-2, a potent inhibitor of voltage-gated potassium channels, had no effect on mitochondrial channel activity. This observation suggests that in contrast to surface membrane channels, the mitochondrial voltage-gated potassium channel could have a different molecular structure with no affinity to agitoxin-2. Western blots of gerbil hippocampal mitochondria and immunohistochemistry on gerbil brain sections confirmed the expression of the Kv1.3 protein in mitochondria. Our findings indicate that gerbil brain mitochondria contain a voltage-gated potassium channel that can influence the function of mitochondria in physiological and pathological conditions and that has properties similar to the surface membrane Kv1.3 channel.  相似文献   

18.
The voltage-gated potassium channel subunit Kv2.1 forms heterotetrameric channels with the silent subunit Kv6.4. Chimeric Kv2.1 channels containing a single transmembrane segment from Kv6.4 have been shown to be functional. However, a Kv2.1 chimera containing both S1 and S5 from Kv6.4 was not functional. Back mutation of individual residues in this chimera (to the Kv2.1 counterpart) identified four positions that were critical for functionality: A200V and A203T in S1, and T343M and P347S in S5. To test for possible interactions in Kv2.1, we used substitutions with charged residues and tryptophan for the outermost pair 203/347. Combinations of substitutions with opposite charges at both T203 and S347 were tolerated but resulted in channels with altered gating kinetics, as did the combination of negatively charged aspartate substitutions. Double mutant cycle analysis with these mutants indicated that both residues are energetically coupled. In contrast, replacing both residues with a positively charged lysine together (T203K + S347K) was not tolerated and resulted in a folding or trafficking deficiency. The nonfunctionality of the T203K + S347K mutation could be restored by introducing the R300E mutation in the S4 segment of the voltage sensor. These results indicate that these specific S1, S4, and S5 residues are in close proximity and interact with each other in the functional channel, but are also important determinants for Kv2.1 channel maturation. These data support the view of an anchoring interaction between S1 and S5, but indicate that this interaction surface is more extensive than previously proposed.  相似文献   

19.
Ion channels are gated, i.e. they can switch conformation between a closed and an open state. Molecular dynamics simulations may be used to study the conformational dynamics of ion channels and of simple channel models. Simulations on model nanopores reveal that a narrow (<4 A) hydrophobic region can form a functionally closed gate in the channel and can be opened by either a small (approximately 1 A) increase in pore radius or an increase in polarity. Modelling and simulation studies confirm the importance of hydrophobic gating in K channels, and support a model in which hinge-bending of the pore-lining M2 (or S6 in Kv channels) helices underlies channel gating. Simulations of a simple outer membrane protein, OmpA, indicate that a gate may also be formed by interactions of charged side chains within a pore, as is also the case in ClC channels.  相似文献   

20.
Voltage-gated K+ channels share a common voltage sensor domain (VSD) consisting of four transmembrane helices, including a highly mobile S4 helix that contains the major gating charges. Activation of ether-a-go-go (EAG) family K+ channels is sensitive to external divalent cations. We show here that divalent cations slow the activation rate of two EAG family channels (Kv12.1 and Kv10.2) by forming a bridge between a residue in the S4 helix and acidic residues in S2. Histidine 328 in the S4 of Kv12.1 favors binding of Zn2+ and Cd2+, whereas the homologous residue Serine 321 in Kv10.2 contributes to effects of Mg2+ and Ni2+. This novel finding provides structural constraints for the position of transmembrane VSD helices in closed, ion-bound EAG family channels. Homology models of Kv12.1 and Kv10.2 VSD structures based on a closed-state model of the Shaker family K+ channel Kv1.2 match these constraints. Our results suggest close conformational conservation between closed EAG and Shaker family channels, despite large differences in voltage sensitivity, activation rates, and activation thresholds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号