首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of different phenolic antioxidants on mitochondrial Ca2+ capacity (maximum amount of Ca2+ mitochondria can accumulate) was studied. Butylated hydroxytoluene substantially enhanced the Ca2+ capacity in mitochondria oxidizing succinate, butylated hydroxyanisole had a moderate effect while 2,5-di-(t-butyl)- 1,4 benzohydroquinone did not affect Ca2+ capacity at all. The analysis of Ca2+ accumulation in mitochondria oxidizing succinate in the presence of 2,5-di-(t-butyl)-1,4 benzohydroquinone revealed inhibition of the rate of Ca2+ accumulation. This effect was absent when ATP hydrolysis or NAD+-dependent substrate oxidation supported Ca2+ transport. Direct measurements of oxygen consumption revealed the concentration-dependent inhibition of succinate oxidation by increasing concentrations of 2,5-di-(t-butyl)- 1,4 benzohydroquinone. When succinate was substituted by NAD+-dependent respiratory substrates, the Ca2+ capacity of mitochondria with 2,5-di-(t-butyl)-1,4 benzohydroquinone was even higher than in the presence of butylated hydroxytoluene.  相似文献   

2.
Abnormal accumulation of Ca2+ and exposure to pro-apoptotic proteins, such as Bax, is believed to stimulate mitochondrial generation of reactive oxygen species (ROS) and contribute to neural cell death during acute ischemic and traumatic brain injury, and in neurodegenerative diseases, e.g. Parkinson's disease. However, the mechanism by which Ca2+ or apoptotic proteins stimulate mitochondrial ROS production is unclear. We used a sensitive fluorescent probe to compare the effects of Ca2+ on H2O2 emission by isolated rat brain mitochondria in the presence of physiological concentrations of ATP and Mg2+ and different respiratory substrates. In the absence of respiratory chain inhibitors, Ca2+ suppressed H2O2 generation and reduced the membrane potential of mitochondria oxidizing succinate, or glutamate plus malate. In the presence of the respiratory chain Complex I inhibitor rotenone, accumulation of Ca2+ stimulated H2O2 production by mitochondria oxidizing succinate, and this stimulation was associated with release of mitochondrial cytochrome c. In the presence of glutamate plus malate, or succinate, cytochrome c release and H2O2 formation were stimulated by human recombinant full-length Bax in the presence of a BH3 cell death domain peptide. These results indicate that in the presence of ATP and Mg2+, Ca2+ accumulation either inhibits or stimulates mitochondrial H2O2 production, depending on the respiratory substrate and the effect of Ca2+ on the mitochondrial membrane potential. Bax plus a BH3 domain peptide stimulate H2O2 production by brain mitochondria due to release of cytochrome c and this stimulation is insensitive to changes in membrane potential.  相似文献   

3.
Inorganic pyrophosphate (PPi) in the intracellular concentration range causes rapid efflux of Ca2+ from rat heart mitochondria oxidizing pyruvate + malate in a low Na+ medium. Half-maximal rates of Ca2+ efflux were given by 20 microM PPi. During and after PPi-stimulated Ca2+ efflux the mitochondria retain their structural integrity and complete respiratory control. Carboxyatractyloside inhibits PPi-stimulated Ca2+ efflux, indicating PPi must enter the matrix in order to promote Ca2+ efflux. Heart mitochondria have a much higher affinity for PPi uptake and PPi-induced Ca2+ efflux than liver mitochondria.  相似文献   

4.
Activation of initially suppressed oxidative phosphorylation and energy-dependent uptake of Ca2+ and K+ ions by liver mitochondria of hibernating gophers which is prevented by phospholipase A2 inhibitors, has been shown to occur in hypotonic media. Partial inhibition of the respiratory chain of liver mitochondria of active gophers by antimycin A which causes a decrease in the uncoupled respiration rate and delta psi down to values typical of mitochondria of hibernating gophers, practically exactly reproduced the suppression of oxidative phosphorylation and energy-dependent uptake of cations observed during hibernation. It was concluded that partial deenergization arising as a result of inhibition of the respiratory chain is the main and unique cause of suppression of energy-dependent functions of liver mitochondria of hibernating gophers.  相似文献   

5.
We have expressed aequorin in mitochondria of the yeast Saccharomyces cerevisiae and characterized the resulting strain with respect to mitochondrial Ca(2+) transport in vivo and in vitro. When intact cells are suspended in water containing 1.4 mM ethanol and 14 mM CaCl(2), the matrix free Ca(2+) concentration is 200 nM, similar to the values expected in cytoplasm. Addition of ionophore ETH 129 allows an active accumulation of Ca(2+) and promptly increases the value to 1.2 microM. Elevated Ca(2+) concentrations are maintained for periods of 6 min or longer under these conditions. Isolated yeast mitochondria oxidizing ethanol also accumulate Ca(2+) when ETH 129 is present, but the cation is not retained depending on the medium conditions. This finding confirms the presence of a Ca(2+) release mechanism that requires free fatty acids as previously described [P.C. Bradshaw et al. (2001) J. Biol. Chem. 276, 40502-40509]. When a respiratory substrate is not present, Ca(2+) enters and leaves yeast mitochondria slowly, at a specific activity near 0.2 nmol/min/mg protein. Transport under these conditions equilibrates the internal and external concentrations of Ca(2+) and is not affected by ruthenium red, uncouplers, or ionophores that perturb transmembrane gradients of charge and pH. This activity displays sigmoid kinetics and a K(1/2) value for Ca(2+) that is near to 900 nM, in the absence of ethanol or when it is present. It is furthermore shown that the activity coefficient of Ca(2+) in yeast mitochondria is a function of the matrix Ca(2+) content and is substantially larger than that in mammalian mitochondria. Characteristics of the aequorin-expressing strain appear suitable for its use in expression-based methods directed at cloning Ca(2+) transporters from mammalian mitochondria and for further examining the interrelationships between mitochondrial and cytoplasmic Ca(2+) in yeast.  相似文献   

6.
Mitochondria were isolated from the heart and skeletal muscle of rats treated with three consecutive daily doses of 100 000 i.u. of calciol (cholecalciferol; 'vitamin D3'). On the fourth day after the last dose, cardiac necrosis developed. At that time mitochondria isolated from heart displayed a 10-fold higher Ca2+ content and a 6-fold lower respiratory rate with pyruvate-plus-malate as substrate as well as with other NAD-dependent substrates. No decrease in respiratory rate with succinate as substrate was observed. EDTA (5 mM) added to the medium during the isolation procedure restored both the high respiratory rate with pyruvate + malate and the low Ca2+ content of the heart mitochondria. The addition of 1 mM-CaCl2 to the medium in which a healthy (control) rat heart had been homogenized caused the same impairment of the mitochondria as did calciol treatment of the animals. No changes of mitochondria isolated from skeletal muscle were observed in rats treated with calciol. It is concluded that the heart mitochondria in vivo fail to accumulate Ca2+ from the cardiac cell overloaded with Ca2+ as the consequence of calciol treatment. Mitochondrial Ca2+ accumulation occurs during the isolation procedure unless an appropriate amount of chelating agent is added to the homogenization medium. The implication of these findings for the biochemical sequence of events in the calciol-induced cardiac necrosis is discussed.  相似文献   

7.
Permeability transition was examined in heart mitochondria isolated from neonate rats. We found that these mitochondria were more susceptible to Ca(2+)-induced membrane leakiness than mitochondria from adult rats. In K(+) containing medium, at 25?°C, mitochondria were unable to accumulate Ca(2+). Conversely, in Na(+) containing medium, mitochondria accumulated effectively Ca(2+). At 15?°C mitochondria accumulated Ca(2+) regardless of the presence of K(+). Kinetics of Ca(2+) accumulation showed a similar Vmax as that of adult mitochondria. Lipid milieu of inner membrane contained more unsaturated fatty acids than adult mitochondria. Aconitase inhibition and high thiobarbituric acid-reactive substances (TBARS) indicate that oxidative stress caused mitochondrial damage. In addition, proteomics analysis showed that there is a considerable diminution of succinate dehydrogenase C and subunit 4 of cytochrome oxidase in neonate mitochondria. Our proposal is that dysfunction of the respiratory chain makes neonate mitochondria more susceptible to damage by oxidative stress.  相似文献   

8.
Hormonal effects on heart mitochondrial metabolism are investigated by comparing respiratory rates, Ca2+ uptake capacity, and lipolytic activities of mitochondria isolated from control rats to those of mitochondria isolated from thyroparathyroidectomized animals. Two biochemically and morphologically distinct populations of heart mitochondria are prepared--one derived from the region of the cell directly beneath the sarcolemma (subsarcolemmal mitochondria), the other originally between the myofibrils (interfibrillar mitochondria). Subsarcolemmal mitochondria isolated from normal rat cardiac tissue have both lower respiratory rates and Ca2+ uptake capacity than do interfibrillar mitochondria. However, when these mitochondrial populations are isolated from hearts from thyroparathyroidectomized rats, there is a selective increase in the maximal ability of the subsarcolemmal mitochondria to accumulate Ca2+, which is accompanied by a proportionate increase in their maximal respiratory rates. Neither Ca2+ uptake capacity nor respiratory rates are similarly increased in the interfibrillar mitochondria. Cytochrome contents and mitochondrial protein recoveries are not significantly changed in either of these mitochondrial preparations. The relationship between these selective increases in respiratory properties of the subsarcolemmal mitochondria to endogenous lipolytic activities is also investigated. It was previously demonstrated that, in the absence of Ca2+, both the rate and extent of formation of free fatty acids from endogenous phospholipids is greater in subsarcolemmal than interfibrillar mitochondria (J. W. Palmer et al. (1981) Arch. Biochem. Biophys. 211, 674-682). In this study it is shown that lipolysis is also more sustained in the subsarcolemmal mitochondria when Ca2+ is added. In the subsarcolemmal mitochondria isolated from thyroparathyroidectomized rats, however, the rates of release of stearic acid and oleic acid are reduced in both the presence and absence of Ca2+. In the presence of added Ca2+, the rate of release of arachidonic acid is also decreased compared to control subsarcolemmal mitochondria, suggesting that the expressed activity of Ca2+-activated phospholipase A2 is lower in those mitochondria isolated from the thyroparathyroidectomized animals, in which respiratory rates and Ca2+ uptake capacity are increased.  相似文献   

9.
1. Increasing the substrate concentration only decreased the inhibition of mitochondrial oxidations by diphenyleneiodonium or by 2,4-dichlorophenyleneiodonium by a small amount. 2. Diphenyleneiodonium and 2,4-dichlorodiphenyleneiodonium lowered the amounts of succinate, citrate and glutamate accumulated in the matrix of mitochondria in the presence of Cl-, but not in its absences. 2,4-Dichlorodiphenyleneiodonium decreased the accumulation of substrates by mitochondria oxidizing glycerol 3-phosphate. 3. Diphenyleneiodonium caused an alkalinization of the medium with an anaerobic suspension of mitochondria, which was only partly reversed by Triton X-100. 4. The rate of proton extrusion by mitochondria oxidizing succinate was not altered by diphenyleneiodonium or by 2,4-dichlorodiphenyleneiodium, although the rate of decay of proton pulses was increased. 5. 2,4-Dichlorodiphenyleneiodonium shifted the pH optimum for succinate oxidation by intact mitochondria from pH 7.2 to 8.0, whereas there was no effect on that of freeze-thawed mitochondria, which was pH 8.0. 6. The concentration of 2,4-dichlorophenyleneiodonium required to inhibit respiration by 50% is less the higher the absolute rate of oxygen uptake. 7. EDTA, but not EGTA [ethanedioxybis(ethylamine)-tetra-acetic acid] increased the inhibition of respiration by diphenyleneiodonium, 2,4-dichlorodiphenyleneiodonium and by tri-n-propyltin. 8. It is concluded that diphenyleneiodonium and 2,4-dichlorodiphenyleneiodonium limit respiration in Cl--containing medium by causing an acidification of the matrix, and that there are pH-sensitive sites in the respiratory chain between NADH and succinate, and between succinate and cytochrome c.  相似文献   

10.
The total activity of pyruvate dehydrogenase (PDH) complex in rat hind-limb muscle mitochondria was 76.4 units/g of mitochondrial protein. The proportion of complex in the active form was 34% (as isolated), 8-14% (incubation with respiratory substrates) and greater than 98% (incubation without respiratory substrates). Complex was also inactivated by ATP in the presence of oligomycin B and carbonyl cyanide m-chlorophenylhydrazone. Ca2+ (which activates PDH phosphatase) and pyruvate or dichloroacetate (which inhibit PDH kinase) each increased the concentration of active PDH complex in a concentration-dependent manner in mitochondria oxidizing 2-oxoglutarate/L-malate. Values giving half-maximal activation were 10 nM-Ca2+, 3 mM-pyruvate and 16 microM-dichloroacetate. Activation by Ca2+ was inhibited by Na+ and Mg2+. Mitochondria incubated with [32P]Pi/2-oxoglutarate/L-malate incorporated 32P into three phosphorylation sites in the alpha-chain of PDH; relative rates of phosphorylation were sites 1 greater than 2 greater than 3, and of dephosphorylation, sites 2 greater than 1 greater than 3. Starvation ( 48h ) or induction of alloxan-diabetes had no effect on the total activity of PDH complex in skeletal-muscle mitochondria, but each decreased the concentration of active complex in mitochondria oxidizing 2-oxoglutarate/L-malate and increased the concentrations of Ca2+, pyruvate or dichloracetate required for half-maximal reactivation. In extracts of mitochondria the activity of PDH kinase was increased 2-3-fold by 48 h starvation or alloxan-diabetes, but the activity of PDH phosphatase was unchanged.  相似文献   

11.
The three-vessel occlusion model of Kameyama et al. (Kameyama, M., Suzuki, J., Shirane, R. and Ogawa, A. (1985) Stroke 16, 489-493) was adapted with modifications to induce complete reversible rat forebrain ischemia. A fast and simple procedure for the isolation and purification of rat brain mitochondria, which provides high yield, is described. Mitochondria isolated from ischemic brain (12-30 min ischemia) exhibited decreases in State 3 respiratory rates of approx. 70% with NAD-linked respiratory substrates. Less effect was observed with succinate and rotenone. The State 4 respiratory activity remained near control levels except at 15 min of ischemia (25% increase) with NAD-linked substrates. Similarly, with succinate and rotenone, an approx. 30% increase in State 4 activity was observed at 20 min of ischemia. Consequently, the respiratory control indices (RCIs) were decreased. Both the respiratory rates and RCIs could be restored to near control levels upon the addition of EGTA(EDTA) or ruthenium red to the assay mixture. Analysis employing fura-2 as a Ca2+ probe, indicated a great decrease in the first order rate constant for Ca2+ uptake of ischemic mitochondria and a significant increase in Ca2+ homeostasis with an increase in the cytosolic Ca2+ concentration which results in excessive association of Ca2+ on the mitochondrial membrane and an inhibition of the respiratory chain-linked oxidative phosphorylation and Ca(2+)-transport activity of forebrain mitochondria. These deficits are proportional to the duration of ischemia.  相似文献   

12.
It has been found that Sr2+, La3+ Mn2+ (10-50 microM) inhibit Ca2+ transport into mitochondria in a competitive manner. Cd2+ ions show the mixed type inhibition of this transport. The inhibitory constants (Ki, microM) of the metals cations effect on Ca2+ transport increases in such a sequence: La3+ (2,11), Cd2+ (10,36), Mn2+ (49,29), Sr2+ (66,43). The metals cations inhibitory effect has an insignificant dependence on their ionic radii. But it is good correlated with the series of metals cations, based on the stability constants of their complexes with acetate (r = -0.96), aspartic (r = -0.91) and glutaminic acids and their hydratation enthalpy (r = -0.78). These data reveal that hydratation of metals cations and their interaction with carboxyles of Ca(2+)-uniporter plays an important role in the process of Ca2+ transport into mitochondrial matrix space and its inhibition by the metals cations. The mixed type inhibition of mitochondrial Ca2+ uptake by Cd2+ seems to be caused by the partial de-energization of mitochondria owing to Cd2+ interaction with SH-containing respiratory chain components and pore-forming ligands of mitochondrial membrane.  相似文献   

13.
1. The conversion of inactive (phosphorylated) pyruvate dehydrogenase complex into active (dephosphorylated) complex by pyruvate dehydrogenase phosphate phosphatase is inhibited in heart mitochondria prepared from alloxan-diabetic or 48h-starved rats, in mitochondria prepared from acetate-perfused rat hearts and in mitochondria prepared from normal rat hearts incubated with respiratory substrates for 6 min (as compared with 1 min). 2. This conclusion is based on experiments with isolated intact mitochondria in which the pyruvate dehydrogenase kinase reaction was inhibited by pyruvate or ATP depletion (by using oligomycin and carbonyl cyanide m-chlorophenylhydrazone), and in experiments in which the rate of conversion of inactive complex into active complex by the phosphatase was measured in extracts of mitochondria. The inhibition of the phosphatase reaction was seen with constant concentrations of Ca2+ and Mg2+ (activators of the phosphatase). The phosphatase reaction in these mitochondrial extracts was not inhibited when an excess of exogenous pig heart pyruvate dehydrogenase phosphate was used as substrate. It is concluded that this inhibition is due to some factor(s) associated with the substrate (pyruvate dehydrogenase phosphate complex) and not to inhibition of the phosphatase as such. 3. This conclusion was verified by isolating pyruvate dehydrogenase phosphate complex, free of phosphatase, from hearts of control and diabetic rats an from heart mitochondria incubed for 1min (control) or 6min with respiratory substrates. The rates of re-activation of the inactive complexes were then measured with preparations of ox heart or rat heart phosphatase. The rates were lower (relative to controls) with inactive complex from hearts of diabetic rats or from heart mitochondria incubated for 6min with respiratory substrates. 4. The incorporation of 32Pi into inactive complex took 6min to complete in rat heart mitocondria. The extent of incorporation was consistent with three or four sites of phosphorylation in rat heart pyruvate dehydrogenase complex. 5. It is suggested that phosphorylation of sites additional to an inactivating site may inhibit the conversion of inactive complex into active complex by the phosphatase in heart mitochondria from alloxan-diabetic or 48h-starved rats or in mitochondria incubated for 6min with respiratory substrates.  相似文献   

14.
Polarization of the inner membrane is the key factor in maintenance of the physiologically significant cations accumulation, in particular Ca2+, in the mitochondria. It has been well established that mitochondria accumulate calcium through the uniporter, driven by the mitochondrial membrane potential. Nevertheless, it has been shown that depolarized mitochondria also accumulate Ca2+. The aim of this paper is to investigate free Ca level in depolarized myometrium mitochondria. As we have shown previously Ca2+ addition to the incubation medium, that did not contain K-phosphate, ATP and Mg2+, led to inner mitochondrial membrane depolarization. Nevertheless Ca2+ addition to such medium led to the concentration-dependent accumulation of this cation in the matrix. RuR or Mg addition to the incubation medium led to the higher elevation of mitochondrial Ca2+ level in depolarized mitochondria. Mitochondrial Ca2+ level was not affected by 5 microM cyclosporine A. It was suggested that H+/Ca2+ exchanger could provide calcium accumulation in depolarized mitochondria. The elevation of mitochondrial Ca2+ level after addition of Mg2+ and RuR may be due to inhibition of Ca2+- efflux through Ca2+ uniporter.  相似文献   

15.
Peroxide-induced state 3 respiratory inhibition and Ca2+ efflux in isolated renal mitochondria exhibited a NADH-linked substrate dependence. ADP-stimulated respiratory rates in the presence of various concentrations of tert-butyl hydroperoxide (tBOOH, 0-1000 nmol/mg protein) were determined using glutamate, beta-hydroxybutyrate, or pyruvate as substrates. Pyruvate-driven respiration was most sensitive to inhibition (Ki approximately equal to 75 nmol of tBOOH/mg protein) followed by beta-hydroxybutyrate and glutamate (Ki approximately equal to 150 nmol of tBOOH/mg protein for each). Calcium (5-10 nmol/mg protein) potentiated tBOOH-induced respiratory inhibition using all three substrates. Mitochondrial Ca2+ efflux, induced by tBOOH, was most pronounced with pyruvate as substrate. Glutamate prevented Ca2+ efflux while the efflux rate with beta-hydroxybutyrate was intermediate between glutamate and pyruvate. The substrate-dependent pattern of tBOOH-induced NAD(P)H (NADH plus NADPH) and cytochrome b oxidation was similar to that seen for respiratory inhibition and Ca2+ efflux suggesting that NAD(P)H may be a common factor in both responses. Low tBOOH concentrations inhibited pyruvate dehydrogenase flux while higher concentrations enhanced pyruvate dehydrogenase flux and activation. The results are discussed in relation to currently proposed theories of reactive oxygen-induced respiratory inhibition, Ca2+ efflux, and reperfusion injury.  相似文献   

16.
The influence of mitochondrial permeability transition pore (MPTP) opening on reactive oxygen species (ROS) production in the rat brain mitochondria was studied. It was shown that ROS production is regulated differently by the rate of oxygen consumption and membrane potential, dependent on steady-state or non-equilibrium conditions. Under steady-state conditions, at constant rate of Ca2+-cycling and oxygen consumption, ROS production is potential-dependent and decreases with the inhibition of respiration and mitochondrial depolarization. The constant rate of ROS release is in accord with proportional dependence of the rate of ROS formation on that of oxygen consumption. On the contrary, transition to non-equilibrium state, due to the release of cytochrome c from mitochondria and progressive respiration inhibition, results in the loss of proportionality in the rate of ROS production on the rate of respiration and an exponential rise of ROS production with time, independent of membrane potential. Independent of steady-state or non-equilibrium conditions, the rate of ROS formation is controlled by the rate of potential-dependent uptake of Ca2+ which is the rate-limiting step in ROS production. It was shown that MPTP opening differently regulates ROS production, dependent on Ca2+ concentration. At low calcium MPTP opening results in the decrease in ROS production because of partial mitochondrial depolarization, in spite of sustained increase in oxygen consumption rate by a cyclosporine A-sensitive component due to simultaneous work of Ca2+-uniporter and MPTP as Ca2+-influx and efflux pathways. The effect of MPTP opening at low Ca2+ concentrations is similar to that of Ca2+-ionophore, A-23187. At high calcium MPTP opening results in the increase of ROS release due to the rapid transition to non-equilibrium state because of cytochrome c loss and progressive gating of electron flow in respiratory chain. Thus, under physiological conditions MPTP opening at low intracellular calcium could attenuate oxidative damage and the impairment of neuronal functions by diminishing ROS formation in mitochondria.  相似文献   

17.
Accumulation of Ca2+ (+ phosphate) by respiring mitochondria from Ehrlich ascites or AS30-D hepatoma tumor cells inhibits subsequent phosphorylating respiration in response to ADP. The respiratory chain is still functional since a proton-conducting uncoupler produces a normal stimulation of electron transport. The inhibition of phosphorylating respiration is caused by intramitochondrial Ca2+ (+ phosphate). ATP + Mg2+ together, but not singly, prevents the inhibitory action of Ca2+. Neither AMP, GTP, GDP, nor any other nucleoside 5'-triphosphate or 5'-diphosphate could replace ATP in this effect. Phosphorylating respiration on NAD(NADP)-linked substrates was much more susceptible to the inhibitory effect of intramitochondrial Ca2+ than succinate-linked respiration. Significant inhibition of oxidative phosphorylation is given by the endogenous Ca2+ present in freshly isolated tumor mitochondria. The phosphorylating respiration of permeabilized Ehrlich ascites tumor cells is also inhibited by Ca2+ accumulated by the mitochondria in situ. Possible causes of the Ca2+-induced inhibition of oxidative phosphorylation are considered.  相似文献   

18.
The inotropic Cd2+ action on frog heart is studied with taking into account its toxic effects upon mitochondria. Cd2+ at concentrations of 1, 10, and 20 microM is established to decrease dosedependently (21.3, 50.3, and 72.0%, respectively) the muscle contraction amplitude; this is explained by its competitive action on the potential-controlled Ca2(+)-channels of the L-type (Ca 1.2). In parallel experiments on isolated rat heart mitochondria (RHM) it was shown that Cd2+ at concentrations of 15 and 25 microM produces swelling of non-energized and energized mitochondria in isotonic (with KNO2 and NH4NO3) and hypoosmotic (with 25 mM CH3COOK) media. Study of oxidative processes in RHM by polarographic method has shown 20 microM Cd2+ to disturb activity of respiratory mitochondrial chain. The rate of endogenous respiration of isolated mitochondria in the medium with Cd2+ in the presence of malate and succinate was approximately 5 times lower than in control. In experimental preparations, addition into the medium of DNP-uncoupler of oxidation and phosphorylation did not cause an increase of the oxygen consumption rate. Thus, the obtained data indicate that a decrease in the cardiac muscle contractility caused by Cd2+ is due not only to its direct blocking action on Ca2(+)-channels, but also is mediated by toxic effect on rat heart mitochondria, which was manifested as an increase in ion permeability of the inner mitochondrial membrane (IMM), acceleration of the energy-dependent K+ transport into the matrix of mitochondria, and inhibition of their respiratory chain.  相似文献   

19.
Increase of Ca2+ concentration in the cytosol of thymocytes to 400-600 nM causes slow accumulation of Ca2+ in mitochondria. Release of Ca2+ from mitochondria into the cytosol is induced by an uncoupler (FCCP) or by a dithiol cross-linking agent (phenylarsine oxide) and is inhibited by cyclosporin A--a specific inhibitor of the permeability transition pore in the inner mitochondrial membrane. In the presence of oxidizing agents (tert-butyl hydroperoxide and diamide), sub-optimal concentrations of uncoupler induce rapid cyclosporin-sensitive release of Ca2+. 6-Ketocholestanol, a recoupler under these conditions, causes redistribution of Ca2+ from the cytosol into mitochondria. These data indicate that partial uncoupling under conditions of oxidative stress causes opening of the permeability transition pore in a fraction of the mitochondria in intact lymphocytes. This mechanism mediates rapid release of Ca2+ from mitochondria into the cytosol.  相似文献   

20.
Ca2+ transport in mitochondria of Ehrlich ascite tumour cells and in liver mitochondria has been compared. It has been shown that in tumour cell mitochondria unlike liver ones even small amounts of Ca2+ caused marked increase in membrane-bound Ca2+ level. Therefore, a decrease in the electro-neutral Ca2+ efflux, stabilization of mitochondria membranes and inhibition of phosphorylated respiration were observed. It has been proposed that high content of membrane-bound Ca2+ is predetermined by a higher affinity of membrane phospholipids to Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号