首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flames N  Marín O 《Neuron》2005,46(3):377-381
GABAergic interneurons are critical components of cortical circuits. However, understanding their function has become extremely challenging because they constitute one of the most diverse groups of cells in the central nervous system. Indeed, cortical GABAergic interneurons are heterogeneous in so many different ways--morphology, molecular profiling, electrical properties--that even attempts to discern what parameters should be used to identify cortical interneuron subtypes have failed to generate broad consensus among experts in the field. The extent to which cortical interneuron diversity emerges during development is largely unknown, but it is likely that insights on how this process takes place may help us understand their role as integrative and synchronizing elements in cortical function. Here, we review recent data on how the large variety of distinct classes of cortical interneurons may arise during development.  相似文献   

2.
3.
Small groups of neighbouring neurons in neocortex are able to form separate microsystem in model situation of habituation during the local repetitive action of acetylcholine. This new functional unit exhibits a number of main properties which are characteristic of systemic processes of habituation. Only some of the properties don't reproduce in microsystem of cortical neurons. There is no effect of full extinction of responses and no direct relationship between the decrease of speed quantity of responses and stimulus action frequency. The data obtained are considered as significant argument for identification of special intermediate level of integrative processes--microsystem level.  相似文献   

4.
A delayed spatial choice (DSC) was elaborated in five cats during electrical stimulation (ES) of the frontal cortical parts with a frequency of 80 imp/s. Then the task fulfillment was tested following cessation of the electrostimulation or under the action of other current frequencies (35,3 and 120 imp/s). The number of erroneous choices increased in the absence of ES or during 3 imp/s ES of the frontal parts. The effects of frequencies of 35,80 and 120 imp/s did not differ. Three cats were trained to DSC without ES. The conditioned reflexes were tested during ES of the frontal cortical parts with current frequency of 3 and 80 imp/s. Statistically significant increase of the number of erroneous responses took place in both situations. The obtained data are discussed from the point of view of the integrative activity of the cerebral structures in DSC. Its disturbance during ES of the cortical zones and dissociation (discordance) after cancellation of stimulation during which the conditioned reflex had been elaborated, point to systemic organization of brain functioning in goal-directed forms of behaviour.  相似文献   

5.
Looking at ambiguous figures results in rivalry with spontaneous alternation between two percepts. Using event-related functional magnetic resonance imaging, we localized transient human brain activity changes during perceptual reversals. Activation occurred in ventral occipital and intraparietal higher-order visual areas, deactivation in primary visual cortex and the pulvinar. Thus, without any physical stimulus changes, salient perceptual flips briefly engage widely separated specialized cortical areas, but are also associated with intermittent activity breakdown in structures putatively maintaining perceptual stability. Together, the dynamics of integrative perceptual experience are reflected in rapid spatially differentiated activity modulation within a cooperative set of neural structures.  相似文献   

6.
Unfertilized eggs of many species of animals contain cortical granules, which are specialized secretory granules that upon fertilization release their contents from the egg. The unfertilized eggs of the sea urchin, Strongylocentrotus purpuratus, contain cortical granules that all display an identical and elaborate internal morphology. It has been assumed that they all contain identical components. In this report we present immunocytochemical data which indicate that the cortical granule population of S. purpuratus eggs is heterogeneous. Two monoclonal antibodies are shown to react to the spiral lamellae region of approximately 20% of the cortical granules, implying that the contents of the reactive granules differ from the contents of the majority of the population. An egg protein of greater than 320 kDa is recognized by the antibody. These antibodies also stain a 130-kDa protein expressed on the surface of primary mesenchyme cells in later development. Both antibodies recognize a post-translational modification of this protein. This suggests that an antigenically similar epitope is present both on the 130-kDa primary mesenchyme cell-specific protein and in the cortical granules. To determine if the primary mesenchyme and cortical granule proteins are related, a fusion protein antibody specific for a region of the 130-kDa protein was used to stain unfertilized eggs. This antibody did not stain cortical granules. Thus, 20% of the cortical granules contain a molecule that has an epitope antigenically similar to the post-translational modification recognized in primary mesenchyme cells by the monoclonal antibodies.  相似文献   

7.
8.
In patients with epileptic lesions in the cortex and mediobasal structures of the brain, studies have been made on the perception of spatial position of sound images during dichotic stimulation. It was established that the extreme interval which is necessary for formation of sensation of the moving sound image increases during right-side lesions of the temporal cortex. During left-side lesion of the temporal lobe, more diffuse disturbances in the trajectory of image movement (from the right and left) are observed, whereas right-side lesions result in disturbances of movement only at the opposite side of the latter. Cortical lesions and those in the mediobasal parts of the temporal lobe are accompanied by identical gradient of disturbances in the trajectory of sound image movement and short-term imprinting of succession of signals which differ with respect to their spatial position. Maximum disturbances are observed during lesions in the cortical and mediobasal parts of the temporal lobe, whereas only cortical lesions or only hippocampal lesions result in less significant disturbances. It is suggested that combined activity of the auditory cortex and hippocamp is necessary for localization of a sound source.  相似文献   

9.
The number of different cortical structures in mammalian brains and the number of extrinsic fibres linking these regions are both large. As with any complex system, systematic analysis is required to draw reliable conclusions about the organization of the complex neural networks comprising these numerous elements. One aspect of organization that has long been suspected is that cortical networks are organized into 'streams' or 'systems'. Here we report computational analyses capable of showing whether clusters of strongly interconnected areas are aspects of the global organization of cortical systems in macaque and cat. We used two different approaches to analyse compilations of corticocortical connection data from the macaque and the cat. The first approach, optimal set analysis, employed an explicit definition of a neural 'system' or 'stream', which was based on differential connectivity. We defined a two-component cost function that described the cost of the global cluster arrangement of areas in terms of the areas' connectivity within and between candidate clusters. Optimal cluster arrangements of cortical areas were then selected computationally from the very many possible arrangements, using an evolutionary optimization algorithm. The second approach, non-parametric cluster analysis (NPCA), grouped cortical areas on the basis of their proximity in multidimensional scaling representations. We used non-metric multidimensional scaling to represent the cortical connectivity structures metrically in two and five dimensions. NPCA then analysed these representations to determine the nature of the clusters for a wide range of different cluster shape parameters. The results from both approaches largely agreed. They showed that macaque and cat cortices are organized into densely intra-connected clusters of areas, and identified the constituent members of the clusters. These clusters reflected functionally specialized sets of cortical areas, suggesting that structure and function are closely linked at this gross, systems level.  相似文献   

10.
The extent to which the auditory system, like the visual system, processes spatial stimulus characteristics such as location and motion in separate specialized neuronal modules or in one homogeneously distributed network is unresolved. Here we present a patient with a selective deficit for the perception and discrimination of auditory motion following resection of the right anterior temporal lobe and the right posterior superior temporal gyrus (STG). Analysis of stimulus identity and location within the auditory scene remained intact. In addition, intracranial auditory evoked potentials, recorded preoperatively, revealed motion-specific responses selectively over the resected right posterior STG, and electrical cortical stimulation of this region was experienced by the patient as incoming moving sounds. Collectively, these data present a patient with cortical motion deafness, providing evidence that cortical processing of auditory motion is performed in a specialized module within the posterior STG.  相似文献   

11.
12.
Summary The cnidoblast of hydra is known to be both a receptor and an effector cell. This paper describes a specialized cell complex in the tentacles of hydra in which the cnidoblast is shown to have a peculiar relationship to the musculoepithelial cell of the ectoderm. The musculoepithelial cell, which is shown for the first time to have myofilaments of two dimensions, also has a highly specialized area of attenuated cytoplasm, the plasmalemma of which makes a peculiar contact with numerous cnidoblasts on one side and with the acellular mesogloea on the other. It is proposed that the musculoepithelial cell serves an integrative function for the activation of its associated cnidoblasts and perhaps for those of other batteries. Intimately associated with this cell complex are numerous neuronal processes and neurosecretory fibers. The receptor element of the cnidoblast, the cnidocil, is described in detail and shown to bear a striking resemblance to the specialized apical surfaces of hair cells in the lateral line organ, organ of Corti and semicircular canals of vertebrates. Speculations as to the mode of action of the various elements of this complex are offered.This investigation was supported by Public Health Service Grant GM-06934, from the National Institute of General Medical Sciences.The author is indebted to Miss Millicent Wedekind for expert technical assistance.  相似文献   

13.
The mechanisms by which cortical neurons perform spatial and temporal integration of synaptic inputs are dependent, in large part, on the numbers, types, and distributions of their synapses. To further our understanding of these integrative mechanisms, we examined the distribution of synapses on identified classes of cortical neurons. Pyramidal cells in the cat motor cortex projecting either to the ipsilateral somatosensory cortex or to the spinal cord were labeled by the retrograde transport of horseradish peroxidase. Entire soma of selected corticocortical and corticospinal cells were examined using serial-section electron microscopy. The profiles of these somata and the synapses formed with each of these profiles were reconstructed from each thin section with a computer-aided morphometry system. All somatic synapses were of the symmetrical, presumably inhibitory type. For both cell types, these synapses were not homogeneously distributed over the somatic membrane, but were clustered at several discrete zones. The number and density of synapses on the somata of different corticocortical and corticospinal neurons were not significantly different. However, the density of these synapses was inversely correlated with the size of their postsynaptic somata. We discuss the significance of these findings to the integrative properties of cortical neurons.  相似文献   

14.
15.
To investigate the role of vestibular afferent input in systemic interactions between cortical areas of the human brain, the dynamics of interregional cortical interactions has been studied in patients with cervical dystonia during their therapy by the removal of the transtympanic chemical vestibular receptor. It has been found that even unilateral vestibular dereception leads to a profound reorganization of systemic interactions between remote cortical areas, particularly, the anterior and posterior associative areas in both hemispheres. Relationships indicating the role of vestibular input in the organization of integrative brain activity have been found, which confirms its systemic role.  相似文献   

16.
Asymmetric cell divisions are central to the generation of cell-fate diversity because factors that are present in a mother cell and distributed unequally at cell division can generate distinct daughters. The process o f asymmetric cell division can be described as consisting of three steps: setting up an asymmetric cue in the mother cell, localizing factors with respect to this cue, and positioning the plane o f cell division so that localized factors are partitioned asymmetrically between daughters. This review describes how specialized cortical domains play a key role in each of these steps and discusses our current understanding of the molecular nature o f cortical domains and the mechanisms by which they may orchestrate asymmetric cell divisions.  相似文献   

17.
In the paper three groups of facts are compared: significant adaptative and adaptational modification of receptive fields of cat's visual cortex neurones, conditioned selective subsensory change of the threshold of perception (detection and recognition) of a letter by man in relation to two control ones and the role of spatially specialized cortical inhibition in formation and adaptative modifications of receptive fields and detector properties of the visual cortex neurones. Interconnection is discussed of the phenomena described as well as community of their mechanisms.  相似文献   

18.
Ristic J  Giesbrecht B 《PloS one》2011,6(9):e24436
Successful completion of many everyday tasks depends on interactions between voluntary attention, which acts to maintain current goals, and reflexive attention, which enables responding to unexpected events by interrupting the current focus of attention. Past studies, which have mostly examined each attentional mechanism in isolation, indicate that volitional and reflexive orienting depend on two functionally specialized cortical networks in the human brain. Here we investigated how the interplay between these two cortical networks affects sensory processing and the resulting overt behavior. By combining measurements of human performance and electrocortical recordings with a novel analytical technique for estimating spatiotemporal activity in the human cortex, we found that the subregions that comprise the reflexive ventrolateral attention network dissociate both spatially and temporally as a function of the nature of the sensory information and current task demands. Moreover, we found that together with the magnitude of the early sensory gain, the spatiotemporal neural dynamics accounted for the high amount of the variance in the behavioral data. Collectively these data support the conclusion that the ventrolateral attention network is recruited flexibly to support complex behaviors.  相似文献   

19.
20.
The cranial ontogeny of specialized mammals is relevant to the understanding of the connection of form and function in a developmental, ecological, and evolutionary context. As highly specialized carnivores, felids are of especial interest. We studied the postnatal ontogeny of the skull in Puma concolor (Mammalia: Carnivora: Felidae) using a quantitative approach. We interpreted our results in the light of a previous qualitative assessment of ontogenetic changes in the species. This represents one of the few integrative studies of skull development in any extant species of wild felids. We report patterns of multivariate allometry of 19 linear skull dimensions measured in 48 Argentine specimens. We examined the (jackknife resampled) departures from isometry as well as the interplay of isometric and allometric trends in shaping the puma skull. Both the qualitative and quantitative results indicate that the major ontogenetic changes are directly linked to cranial structures that support a developing masticatory apparatus and its associated jaw and neck musculature, which are essential for the action of canines and carnassials during the killing bite and slicing flesh. Sexual differences suggest allometric scaling (hypo- or hyper-morphosis) as key processes in the development of the puma skull.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号