首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Although ischemia-induced late preconditioning (PC) is known to be mediated by inducible nitric oxide (NO) synthase (iNOS), the role of this enzyme in pharmacologically induced late PC remains unclear. We tested whether targeted disruption of the iNOS gene abrogates late PC elicited by three structurally different NO donors [diethylenetriamine/NO (DETA/NO), nitroglycerin (NTG), and S-nitroso-N-acetyl-penicillamine (SNAP)], an adenosine A1 receptor agonist [2-chloro-N6-cyclopentyladenosine (CCPA)], and a delta1-opioid receptor agonist (TAN-670). The mice were subjected to a 30-min coronary occlusion followed by 24 h of reperfusion. In iNOS knockout (iNOS-/-) mice, infarct size was similar to wild-type (WT) controls, indicating that iNOS does not modulate infarct size in the absence of PC. Pretreatment of WT mice with DETA/NO, NTG, SNAP, TAN-670, or CCPA 24 h before coronary occlusion markedly reduced infarct size. In iNOS-/- mice, however, the late PC effect elicited by DETA/NO, NTG, SNAP, TAN-670, and CCPA was completely abrogated. Furthermore, in WT mice pretreated with TAN-670 or CCPA, the selective iNOS inhibitor 1400W also abolished the delayed PC properties of these drugs; 1400W had no effect in WT mice. These data demonstrate that iNOS plays an obligatory role in NO donor-induced, adenosine A1 receptor agonist-induced, and delta1-opioid receptor agonist-induced late PC, underscoring the critical role of this enzyme as a common mediator of cardiac adaptations to stress.  相似文献   

2.
We investigated the role of p38 mitogen-activated protein kinase (MAPK) phosphorylation and opening of the mitochondrial ATP-sensitive K(+) [(K(ATP))(mito)] channel in the adenosine A(1) receptor (A(1)AR)-induced delayed cardioprotective effect in the mouse heart. Adult male mice were treated with vehicle (5% DMSO) or the A(1)AR agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA; 0.1 mg/kg ip). Twenty-four hours later, hearts were subjected to 30 min of global ischemia and 30 min of reperfusion in the Langendorff mode. Genistein or SB-203580 (1 mg/kg i.p.) given 30 min before CCPA treatment was used to block receptor tyrosine kinase or p38 MAPK phosphorylation, respectively. 5-Hydroxydecanoate (5-HD; 200 microM) was used to block (K(ATP))(mito) channels. CCPA produced marked improvement in left ventricular function, which was partially blocked by SB-203580 and 5-HD and completely abolished with genistein. CCPA caused a reduction in infarct size (12.0 +/- 2.0 vs. 30.3 +/- 3.0% in vehicle), which was blocked by genistein (29.4 +/- 2.3%), SB-203580 (28.3 +/- 2.6%), and 5-HD (33.9 +/- 2.4%). CCPA treatment also caused increased phosphorylation of p38 MAPK during ischemia, which was blocked by genistein, SB-203580, and 5-HD. The results suggest that A(1)AR-triggered delayed cardioprotection is mediated by p38 MAPK phosphorylation. Blockade of cardioprotection with 5-HD concomitant with decrease in p38 MAPK phosphorylation suggests a potential role of (K(ATP))(mito) channel opening in phosphorylation and ensuing the late preconditioning effect of A(1)AR.  相似文献   

3.
Protein kinase C (PKC) plays a central role in both early and late preconditioning (PC) but its association with inducible nitric oxide synthase (iNOS) is not clear in late PC. This study investigates the PKC signaling pathway in the late PC induced by activation of adenosine A(1) receptor (A(1)R) with adenosine agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) and the effect on iNOS upregulation. Adult male mice were pretreated with saline or CCPA (100 microg/kg iv) or CCPA (100 microg/kg iv) with PKC-delta inhibitor rottlerin (50 microg/kg ip). Twenty-four hours later, the hearts were isolated and perfused in the Langendorff mode. Hearts were subjected to 40 min of ischemia, followed by 30 min reperfusion. After ischemia, the left ventricular end-diastolic pressure (LVEDP) was significantly improved and the rate-pressure product (RPP) was significantly higher in the CCPA group compared with the ischemia-reperfusion (I/R) control group. Creatine kinase release and infarct size were significantly lower in the CCPA group compared with the I/R control group. These salutary effects of CCPA were abolished in hearts pretreated with rottlerin. Immunoblotting of PKC showed that PKC-delta was upregulated (150.0 +/- 11.4% of control group) whereas other PKC isoforms remained unchanged, and iNOS was also significantly increased (146.2 +/- 9.0%, P < 0.05 vs. control group) after 24 h of treatment with CCPA. The data show that PKC is an important component of PC with adenosine agonist. It is concluded that activation of A(1)R induces late PC via PKC-delta and iNOS signaling pathways.  相似文献   

4.
5.
Interleukin-8 (IL-8) is released in response to inflammatory stimuli, such as bacterial products. Either porins or lipopolysaccharide (LPS) stimulated THP-1 cells to release IL-8 after 24 h. We have previously reported that stimulation of monocytic cells with Salmonella enterica serovar Typhimurium porins led to the activation of mitogen-activated protein kinase cascades and of protein tyrosine kinases (PTKs). In this report, we demonstrate, using two potent and selective inhibitors of MEK activation by Raf-1 (PD-098059) and p38 (SB-203580), that both ERK1/2 and p38 pathways play a key role in the production of IL-8 by porins and LPS. Porin-stimulated expression of activating protein 1 (AP-1) and correlated IL-8 release is also inhibited by PD-098059 or SB-203580 indicating that the Raf-1/MEK1-MEK2/MAPK cascade is required for their activation. Also PTKs modulate the pathway that control IL-8 gene expression, in fact its expression is abolished by tyrphostin. By using N-acetyl-leucinyl-leucinyl-norleucinal-H (ALLN) an inhibitor of nuclear factor-kappaB (NF-kappaB) activity, we also observed IL-8 release modulation. Our results elucidate some of the molecular mechanisms by which AP-1 and NF-kappaB regulate IL-8 release and open new strategies for the design of specific molecules that will modulate IL-8 effects in various infectious diseases.  相似文献   

6.
p38 MAP kinase activation is known to be deleterious not only to mitochondria but also to contractile function. Therefore, p38 MAP kinase inhibition therapy represents a promising approach in preventing reperfusion injury in the heart. However, reversal of p38 MAP kinase-mediated contractile dysfunction may disrupt the fragile sarcolemma of ischemic-reperfused myocytes. We, therefore, hypothesized that the beneficial effect of p38 MAP kinase inhibition during reperfusion can be enhanced when contractility is simultaneously blocked. Isolated and perfused rat hearts were paced at 330 rpm and subjected to 20 min of ischemia followed by reperfusion. p38 MAP kinase was activated after ischemia and early during reperfusion (<30 min). Treatment with the p38 MAP kinase inhibitor SB-203580 (10 microM) for 30 min during reperfusion, but not the c-Jun NH(2)-terminal kinase inhibitor SP-600125 (10 microM), improved contractility but increased creatine kinase release and infarct size. Cotreatment with SB-203580 and the contractile blocker 2,3-butanedione monoxime (BDM, 20 mM) or the ultra-short-acting beta-blocker esmorol (0.15 mM) for the first 30 min during reperfusion significantly reduced creatine kinase release and infarct size. In vitro mitochondrial ATP generation and myocardial ATP content were significantly increased in the heart cotreated with SB-203580 and BDM during reperfusion. Dystrophin was translocated from the sarcolemma during ischemia and reperfusion. SB-203580 increased accumulation of Evans blue dye in myocytes depleted of sarcolemmal dystrophin during reperfusion, whereas cotreatment with BDM facilitated restoration of sarcolemmal dystrophin and mitigated sarcolemmal damage after withdrawal of BDM. These results suggest that treatment with SB-203580 during reperfusion aggravates myocyte necrosis but concomitant blockade of contractile force unmasks cardioprotective effects of SB-203580.  相似文献   

7.
There are conflicting data regarding the role of nitric oxide (NO) produced by inducible NO synthase (iNOS) in the pathophysiology of traumatic brain injury (TBI). In this report, we evaluated the effect of a potent selective (iNOS) inhibitor, 1400W, on histopathological outcome following TBI in a rat model of lateral fluid percussion brain injury. First, to design an appropriate treatment protocol, the parallel time courses of iNOS and neuronal NOS (nNOS) gene expression, protein synthesis, and activity were investigated. Early induction of iNOS gene was observed in the cortex of injured rats, from 6 to 72 h with a peak at 24 h. Similarly, iNOS protein was detected from 24 to 72 h and de novo synthesized iNOS was functionally active, as measured by Ca2+-independent NOS activity. The kinetic studies of nNOS showed discrepancies, since nNOS gene expression and protein synthesis were constant in the cortex of injured rats from 24 to 72 h, while Ca2+-dependent constitutive NOS activity was markedly decreased at 24 h, persisting up to 72 h. Second, treatment with 1400W, started as a bolus of 20 mg kg-1 (s.c.) at 18 h post-TBI, followed by s.c.-infusion at a rate of 2.2 mg kg-1 h-1 between 18 and 72 h, reduced by 64% the brain lesion volume at 72 h. However, the same treatment paradigm initiated 24 h post-TBI did not have any effect. In conclusion, administration of a selective iNOS inhibitor, 1400W, even delayed by 18 h improves histopathological outcome supporting a detrimental role for iNOS induction after TBI.  相似文献   

8.
In addition to inotropic effects, cardiac glycosides exert deleterious effects on the heart which limit their use for cardiac therapeutics. In this study, we determined the possible contribution of ouabain-induced iNOS stimulation to the resultant hypertrophic as well as cytotoxic effects of the glycoside on cultured adult rat ventricular myocytes. Myocytes were treated with ouabain (50 μM) for up to 24 h. Ouabain significantly increased gene and protein levels of inducible nitric oxide synthase (iNOS) which was associated with significantly increased release of NO from myocytes as well as increased total release of reactive oxygen species (ROS), superoxide anion (O(2) (-)), and increased peroxynitrite formation as assessed by protein tyrosine nitration. Administration of ouabain was also associated with increased levels of myocyte toxicity as determined by myocyte morphology, trypan blue staining and lactate dehydrogenase (LDH) efflux. The nonspecific NOS inhibitor Nω-nitro-L: -arginine methyl ester and the more selective iNOS inhibitor 1400W both abrogated the increase in LDH release but had no significant effect on either morphology or trypan blue staining. Ouabain also significantly increased both myocyte surface area and expression of atrial natriuretic peptide indicating a hypertrophic response with both parameters being completely prevented by NOS inhibition. The effects of iNOS inhibitors were associated with diminished ouabain tyrosine nitration as well as abrogation of ouabain-induced p38 and ERK phosphorylation. Our study shows that ouabain is a potent inducer of NO formation, iNOS upregulation, and increased production of ROS. Inhibition of ouabain-dependent peroxynitrite formation may contribute to the antihypertrophic effect of iNOS inhibition possibly by preventing downstream MAPK activation.  相似文献   

9.
There is increasing evidence for interactions among adenosine receptor subtypes in the brain and heart. The purpose of this study was to determine whether the adenosine A(2a) receptor modulates the infarct size-reducing effect of preischemic administration of adenosine receptor agonists in intact rat myocardium. Adult male rats were submitted to in vivo regional myocardial ischemia (25 min) and 2 h reperfusion. Vehicle-treated rats were compared with rats pretreated with the A(1) agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA, 10 mug/kg), the nonselective agonist 5'-N-ethylcarboxamidoadenosine (NECA, 10 mug/kg), or the A(2a) agonist 2-[4-(2-carboxyethyl)phenethylamino]-5'-N-methylcarboxamidoadenosine (CGS-21680, 20 mug/kg). Additional CCPA- and NECA-treated rats were pretreated with the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 100 mug/kg), the A(2a)/A(2b) antagonist 4-(-2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a} {1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM-241385, 1.5 mg/kg) or the A(3) antagonist 3-propyl-6-ethyl-5[(ethylthio)carbonyl]-2-phenyl-4-propyl-3-pyridine carboxylate (MRS-1523, 2 mg/kg). CCPA and NECA reduced myocardial infarct size by 50% and 35%, respectively, versus vehicle, but CGS-21680 had no effect. DPCPX blunted the bradycardia associated with CCPA and NECA, whereas ZM-241385 attenuated their hypotensive effects. Both DPCPX and ZM-241385 blocked the protective effects of CCPA and NECA. The A(3) antagonist did not alter the hemodynamic effects of CCPA or NECA, nor did it alter adenosine agonist cardioprotection. None of the antagonists alone altered myocardial infarct size. These findings suggest that although preischemic administration of an A(2a) receptor agonist does not induce cardioprotection, antagonism of the A(2a) and/or the A(2b) receptor blocks the cardioprotection associated with adenosine agonist pretreatment.  相似文献   

10.
Mitogen-activated protein (MAP) kinases signal to proteins that could modify smooth muscle contraction. Caldesmon is a substrate for extracellular signal-related kinases (ERK) and p38 MAP kinases in vitro and has been suggested to modulate actin-myosin interaction and contraction. Heat shock protein 27 (HSP27) is downstream of p38 MAP kinases presumably participating in the sustained phase of muscle contraction. We tested the role of caldesmon and HSP27 phosphorylation in the contractile response of vascular smooth muscle by using inhibitors of both MAP kinase pathways. In intact smooth muscle, PD-098059 abolished endothelin-1 (ET-1)-stimulated phosphorylation of ERK MAP kinases and caldesmon, but p38 MAP kinase activation and contractile response remained unaffected. SB-203580 reduced muscle contraction and inhibited p38 MAP kinase and HSP27 phosphorylation but had no effect on ERK MAP kinase and caldesmon phosphorylation. In permeabilized muscle fibers, SB-203580 and a polyclonal anti-HSP27 antibody attenuated ET-1-dependent contraction, whereas PD-098059 had no effect. These results suggest that ERK MAP kinases phosphorylate caldesmon in vivo but that activation of this pathway is unnecessary for force development. The generation of maximal force may be modulated by the p38 MAP kinase/HSP27 pathway.  相似文献   

11.
Preconditioning with brief periods of ischemia-reperfusion (I/R) induces a delayed protection of coronary endothelial cells against reperfusion injury. We assessed the possible role of nitric oxide (NO) produced during prolonged I/R as a mediator of this endothelial protection. Anesthetized rats were subjected to 20-min cardiac ischemia/60-min reperfusion, 24 h after sham surgery or cardiac preconditioning (1 x 2-min ischemia/5-min reperfusion and 2 x 5-min ischemia/5-min reperfusion). The nonselective NO synthase (NOS) inhibitor l-NAME, the selective inhibitors of neuronal (7-nitroindazole) or inducible (1400W) NOS, or the peroxynitrite scavenger seleno-l-methionine were administered 10 min before prolonged ischemia. Preconditioning prevented the reperfusion-induced impairment of coronary endothelium-dependent relaxations to acetylcholine (maximal relaxation: sham 77 +/- 3; I/R 44 +/- 6; PC 74 +/- 5%). This protective effect was abolished by l-NAME (41 +/- 7%), whereas 7-NI, 1400W or seleno-l-methionine had no effect. The abolition of preconditioning by l-NAME, but not by selective nNOS or iNOS inhibition, suggests that NO produced by eNOS is a mediator of delayed endothelial preconditioning.  相似文献   

12.
We determined the effects of cyclooxygenase-1 (COX-1; SC-560), COX-2 (SC-58125), and inducible nitric oxide synthase (iNOS; 1400W) inhibitors on atorvastatin (ATV)-induced myocardial protection and whether iNOS mediates the ATV-induced increases in COX-2. Sprague-Dawley rats received 10 mg ATV.kg(-1).day(-1) added to drinking water or water alone for 3 days and received intravenous SC-58125, SC-560, 1400W, or vehicle alone. Anesthesia was induced with ketamine and xylazine and maintained with isoflurane. Fifteen minutes after intravenous injection rats underwent 30-min myocardial ischemia followed by 4-h reperfusion [infarct size (IS) protocol], or the hearts were explanted for biochemical analysis and immunoblotting. Left ventricular weight and area at risk (AR) were comparable among groups. ATV reduced IS to 12.7% (SD 3.1) of AR, a reduction of 64% vs. 35.1% (SD 7.6) in the sham-treated group (P < 0.001). SC-58125 and 1400W attenuated the protective effect without affecting IS in the non-ATV-treated rats. ATV increased calcium-independent NOS (iNOS) [11.9 (SD 0.8) vs. 3.9 (SD 0.1) x 1,000 counts/min; P < 0.001] and COX-2 [46.7 (SD 1.1) vs. 6.5 (SD 1.4) pg/ml of 6-keto-PGF(1alpha); P < 0.001] activity. Both SC-58125 and 1400W attenuated this increase. SC-58125 did not affect iNOS activity, whereas 1400W blocked iNOS activity. COX-2 was S-nitrosylated in ATV-treated but not sham-treated rats or rats pretreated with 1400W. COX-2 immunoprecipitated with iNOS but not with endothelial nitric oxide synthase. We conclude that ATV reduced IS by increasing the activity of iNOS and COX-2, iNOS is upstream to COX-2, and iNOS activates COX-2 by S-nitrosylation. These results are consistent with the hypothesis that preconditioning effects are mediated via PG.  相似文献   

13.
We have shown that stimulation of beta-adrenergic receptors (beta-AR) by norepinephrine (NE) increases apoptosis in adult rat ventricular myocytes (ARVMs) via a cAMP-dependent mechanism that is antagonized by activation of G(i) protein. The family of mitogen-activated protein kinases (MAPKs) is involved in the regulation of cardiac myocyte growth and apoptosis. Here we show that beta-AR stimulation activates p38 kinase, c-jun N-terminal kinases (JNKs), and extracellular signal-regulated kinase (ERK1/2) in ARVMs. Inhibition of p38 kinase with SB-202190 (10 micrometer) potentiated beta-AR-stimulated apoptosis as measured by flow cytometry and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) staining. SB-202190 at this concentration specifically blocked beta-AR-stimulated activation of p38 kinase and its downstream substrate MAPK-activated protein kinase-2 (MAPKAPK2). Pertussis toxin, an inhibitor of G(i)/G(o) proteins, blocked the activation of p38 kinase and potentiated beta-AR-stimulated apoptosis. Activation of G(i) protein with the muscarinic receptor agonist carbachol protected against beta-AR-stimulated apoptosis. Carbachol also activated p38 kinase, and the protective effect of carbachol was abolished by SB-202190. PD-98059 (10 micrometer), an inhibitor of ERK1/2 pathway, blocked beta-AR-stimulated activation of ERK1/2 but had no effect on apoptosis. These data suggest that 1) beta-AR stimulation activates p38 kinase, JNKs, and ERK1/2; 2) activation of p38 kinase plays a protective role in beta-AR-stimulated apoptosis in cardiac myocytes; and 3) the protective effects of G(i) are mediated via the activation of p38 kinase.  相似文献   

14.
15.
It was previously shown that nitric oxide produced by inducible nitric oxide synthase (iNOS) and peroxynitrite are responsible for cyclophosphamide (CP)-induced cystitis. Since endogenous production of peroxynitrite is known to lead to poly(ADP-ribose) polymerase (PARP) activation, in this study, the aim was to evaluate whether the PARP activation pathway is also included in the pathogenesis of CP-induced bladder ulceration in rats. A total of 48 male albino Wistar rats were divided into 5 groups. Group 1 served as control and was given 2 ml saline; four groups received a single dose of CP (200 mg/kg) with the same time intervals. Group 2 received CP only; Group 3, selective iNOS inhibitor 1400W (20 mg/kg); Group 4, peroxynitrite scavenger ebselen (30 mg/kg); and Group 5, PARP inhibitor 3-aminobenzamide (20 mg/kg). CP injection resulted in severe cystitis with continuous macroscopic hemorrhage, strong edema, inflammation, and ulceration. Moreover, bladder iNOS activation and urine nitrite-nitrate levels were dramatically increased. Histologically, 1400W protected bladder against CP damage and decreased urine nitrite-nitrate levels and bladder iNOS induction. Ebselen has shown similar histologic results with 1400W without changing urinary nitrite-nitrate level and iNOS activity. Furthermore in the 3-aminobenzamide group, beneficial effects had also occurred including decreased ulceration. These results suggest that PARP activation involves pathogenesis of CP-induced bladder ulceration. Furthermore, PARP is not only important for ulceration but also for bladder edema, hemorrhage, and inflammation because of broken uroepithelial cellular integrity.  相似文献   

16.
It is known that TNF-alpha increases the production of ROS and decreases antioxidant enzymes, resulting in an increase in oxidative stress. IL-10 appears to modulate these effects. The present study investigated the role of p38 and ERK1/2 MAPKs in mediating the interplay of TNF-alpha and IL-10 in regulating oxidative stress and cardiac myocyte apoptosis in Sprague-Dawley male rats. Isolated adult cardiac myocytes were exposed to TNF-alpha (10 ng/ml), IL-10 (10 ng/ml), and IL-10 + TNF-alpha (ratio 1) for 4 h. H(2)O(2) (100 microM) as a positive control and the antioxidant Trolox (20 micromol/l) were used to confirm the involvement of oxidative stress. H(2)O(2) treatment increased oxidative stress and apoptosis; TNF-alpha mimicked these effects. Exposure to TNF-alpha significantly increased ROS production, caused cell injury, and increased the number of apoptotic cells and Bax-to-Bcl-xl ratio. This change was associated with an increase in the phospho-p38 MAPK-to-total p38 MAPK ratio and a decrease in the phospho-ERK1/2-to-total ERK1/2 ratio. IL-10 treatment by itself had no effect on these parameters, but it prevented the above-listed changes caused by TNF-alpha. The antioxidant Trolox modulated TNF-alpha-induced changes in Bax/Bcl-xl, cell injury, and MAPKs. Preexposure of cells to the p38 MAPK inhibitor SB-203580 prevented TNF-alpha-induced changes. Inhibition of the ERK pathway with PD-98059 attenuated the protective role of IL-10 against TNF-alpha-induced apoptosis. This study provides evidence in support of the essential role of p38 and ERK1/2 MAPKs in the interactive role of TNF-alpha and IL-10 in cardiac myocyte apoptosis.  相似文献   

17.
This study investigated the role of inducible nitric oxide synthase (iNOS) in failure of ethanol-induced fatty liver grafts. Rat livers were explanted 20 h after gavaging with ethanol (5 g/kg) and storing in UW solution for 24h before implantation. Hepatic oil red O staining-positive areas increased from ~2 to ~33% after ethanol treatment, indicating steatosis. iNOS expression increased ~8-fold after transplantation of lean grafts (LG) and 25-fold in fatty grafts (FG). Alanine aminotransferase release, total bilirubin, hepatic necrosis, TUNEL-positive cells, and cleaved caspase-3 were higher in FG than LG. A specific iNOS inhibitor 1400W (5 μM in the cold-storage solution) blunted these alterations by >42% and increased survival of fatty grafts from 25 to 88%. Serum nitrite/nitrate and hepatic nitrotyrosine adducts increased to a greater extent after transplantation of FG than LG, indicating reactive nitrogen species (RNS) overproduction. Phospho-c-Jun and phospho-c-Jun N-terminal kinase-1/2 (JNK1/2) were higher in FG than in LG, indicating more JNK activation in fatty grafts. RNS formation and JNK activation were blunted by 1400W. Mitochondrial polarization and cell death were visualized by intravital multiphoton microscopy of rhodamine 123 and propidium iodide, respectively. After implantation, viable cells with depolarized mitochondria were 3-fold higher in FG than in LG and 1400W decreased mitochondrial depolarization in FG to the levels of LG. Taken together, iNOS is upregulated after transplantation of FG, leading to excessive RNS formation, JNK activation, mitochondrial dysfunction, and severe graft injury. The iNOS inhibitor 1400W could be an effective therapy for primary nonfunction of fatty liver grafts.  相似文献   

18.
Oxidative stress is involved in the tolerance to ischemia-reperfusion (I/R) injury. Because angiotensin II type 1 receptor blockers (ARBs) inhibit oxidative stress, there is concern that ARBs abolish the tolerance to I/R injury. Dahl salt-sensitive (DS) hypertensive and salt-resistant (DR) normotensive rats received an antioxidant, 2-mercaptopropionylglycine (MPG), or an ARB, losartan, for 7 days. Losartan and MPG significantly inhibited oxidative stress as determined by tissue malondialdehyde + 4-hydroxynoneal and increased expression of inducible nitric oxide synthase (iNOS) in the DS rat heart. However, losartan but not MPG activated endothelial nitric oxide synthase (eNOS) as assessed by phosphorylation of eNOS on Ser1177. Infarct size after 30-min left coronary artery occlusion followed by 2-h reperfusion was comparable between DS and DR rat hearts. Although MPG and losartan had no effect on infarct size in the DR rat heart, MPG but not losartan significantly increased infarct size in the DS rat heart. A selective iNOS inhibitor, 1400W, increased infarct size in the DS rat heart, but it had no effect on infarct size in the losartan-treated DS rat heart. However, a nonselective NOS inhibitor, Nomega-nitro-l-arginine methyl ester, increased infarct size in the losartan-treated DS rat heart. These results suggest that losartan preserves the tolerance to I/R injury by activating eNOS despite elimination of redox-sensitive upregulation of iNOS and iNOS-dependent cardioprotection in the DS rat heart.  相似文献   

19.
Nitric oxide (NO) production during endotoxemia is associated with decreased total CYP content, CYP 1A1/2, 2B1/2, 2C6, 2C11, 3A1, and 3A2 mRNA, protein expression or activity which is prevented by NO synthase (NOS) inhibitors in rats. This study was conducted to determine if endotoxin-induced hypotension caused by NO production is mediated by inhibition of renal CYP 4A protein expression and activity. In conscious male Sprague-Dawley rats, endotoxin (10 mg/kg, ip) reduced mean arterial pressure (MAP), increased serum and renal nitrite levels, and inducible NOS (iNOS), and decreased renal CYP 4A1/A3 protein and CYP 4A activity. The selective iNOS inhibitor 1,3-PBIT (10 mg/kg, ip; 1h after endotoxin) prevented endotoxin-induced decrease in MAP, renal CYP 4A1/A3 protein level and CYP 4A activity and increase in systemic and renal nitrite production. The selective constitutive NOS (cNOS) inhibitor N(G)-nitro-L-arginine (L-NNA; 20 mg/kg, ip; 1 h after endotoxin) partially attenuated endotoxin-induced decrease in MAP. The selective CYP 4A inhibitor, aminobenzotriazole (50 mg/kg, ip; 1 h after endotoxin) diminished CYP 4A1/A3 protein level and CYP 4A activity. Aminobenzotriazole did not alter the endotoxin-induced decrease in MAP, but it reversed the effect of 1,3-PBIT in preventing endotoxin-induced fall in MAP and CYP 4A activity. These data suggest that the endotoxemia-induced increase in NO production primarily via iNOS suppresses renal CYP 4A expression and activity, and inhibition of iNOS with 1,3-PBIT restores renal CYP 4A protein and activity and MAP presumably due to increased production of arachidonic acid metabolites derived from CYP 4A.  相似文献   

20.
Delayed cardiac protection mediated by 12-lipoxygenase (12-LO) expression and activity has been linked to opioid receptor stimulation. The role of 12-LO in volatile anesthetic-induced delayed cardiac protection has not been determined. We tested the hypothesis that expression and activity of 12-LO mediate delayed cardiac protection induced by isoflurane in the mouse heart in vivo. Mice were pretreated with 1.4% isoflurane for 30 min and allowed to recover for 1, 12, or 24 h. Immunoblot analysis showed isoflurane significantly enhanced 12-LO protein expression at 12 and 24 h after isoflurane exposure, and this induction of 12-LO was confirmed by immunohistochemistry of whole heart sections at 24 h. The induced protein expression appeared to be localized to intercalated disc regions adjoining adjacent cardiac myocytes. Additionally, mice +/- isoflurane (24 h previously) were subjected to 30 min coronary artery occlusion followed by 2 h of reperfusion in the presence and absence of a 12-LO inhibitor. Isoflurane reduced infarct size (27.1 +/- 2.2% of the area at risk; n = 8) compared with the control group (44.6 +/- 3.6%, n = 8). Baicalein (3 mg/kg), a selective 12-LO inhibitor, blocked the delayed protective effects of isoflurane pretreatment on infarct size (40.6 +/- 3.6%, n = 8). These data suggest that 12-LO is an important mediator of isoflurane-induced delayed preconditioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号