首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have shown recently that cholecystokinin octapeptide (CCK-8s) increases glutamate release from nerve terminals onto neurons of the nucleus tractus solitarius pars centralis (cNTS). The effects of CCK on gastrointestinal-related functions have, however, been attributed almost exclusively to its paracrine action on vagal afferent fibers. Because it has been reported that systemic or perivagal capsaicin pretreatment abolishes the effects of CCK, the aim of the present work was to investigate the response of cNTS neurons to CCK-8s in vagally deafferented rats. In surgically deafferented rats, intraperitoneal administration of 1 or 3 mug/kg CCK-8s increased c-Fos expression in cNTS neurons (139 and 251% of control, respectively), suggesting that CCK-8s' effects are partially independent of vagal afferent fibers. Using whole cell patch-clamp techniques in thin brain stem slices, we observed that CCK-8s increased the frequency of spontaneous and miniature excitatory postsynaptic currents in 43% of the cNTS neurons via a presynaptic mechanism. In slices from deafferented rats, the percentage of cNTS neurons receiving glutamatergic inputs responding to CCK-8s decreased by approximately 50%, further suggesting that central terminals of vagal afferent fibers are not the sole site for the action of CCK-8s in the brain stem. Taken together, our data suggest that the sites of action of CCK-8s include the brain stem, and in cNTS, the actions of CCK-8s are not restricted to vagal central terminals but that nonvagal synapses are also involved.  相似文献   

2.
Cholecystokinin (CCK) has been proposed to act in a vagally dependent manner to increase pancreatic exocrine secretion via actions exclusively at peripheral vagal afferent fibers. Recent evidence, however, suggests the CCK-8s may also affect brain stem structures directly. We used an in vivo preparation with the aims of 1) investigating whether the actions of intraduodenal casein perfusion to increase pancreatic protein secretion also involved direct actions of CCK at the level of the brain stem and, if so, 2) determining whether, in the absence of vagal afferent inputs, CCK-8s applied to the dorsal vagal complex (DVC) can also modulate pancreatic exocrine secretion (PES). Sprague-Dawley rats (250-400 g) were anesthetized and the common bile-pancreatic duct was cannulated to collect PES. Both vagal deafferentation and pretreatment with the CCK-A antagonist lorglumide on the floor of the fourth ventricle decreased the casein-induced increase in PES output. CCK-8s microinjection (450 pmol) in the DVC significantly increased PES; the increase was larger when CCK-8s was injected in the left side of the DVC. Protein secretion returned to baseline levels within 30 min. Microinjection of CCK-8s increased PES (although to a lower extent) also in rats that underwent complete vagal deafferentation. These data indicate that, as well as activating peripheral vagal afferents, CCK-8s increases pancreatic exocrine secretion via an action in the DVC. Our data suggest that the CCK-8s-induced increases in PES are due mainly to a paracrine effect of CCK; however, a relevant portion of the effects of CCK is due also to an effect of the peptide on brain stem vagal circuits.  相似文献   

3.
Cholecystokinin-58 has been shown to be the major form of cholecystokinin (CCK) released to the circulation upon lumenal stimulation of the small intestine in humans and dogs. In anesthetized dogs, electrical vagal stimulation evokes pancreatic exocrine secretion that is in part mediated through the release of CCK. We studied the molecular form of CCK stored in canine vagus nerves and that released into circulation upon electrical vagal stimulation. Gel filtration and radioimmunoassay of the water and acid extracts of canine vagus nerves indicated CCK-8 (35%) and CCK-58 (65%) as the major molecular forms in the vagus nerve. Both forms of CCK isolated from the vagal extracts were equally bioactive as the standard CCK-8 and CCK-58, respectively, in stimulation of amylase release from isolated rat pancreatic acini. Analysis of plasma collected after electrical vagal stimulation indicated that CCK-8 is the only form released into the circulation. The release of CCK-8 upon electrical vagal stimulation was not affected by application of lidocaine to the upper small intestinal mucosa, suggesting that it was released from vagal nerve terminals.  相似文献   

4.
Anatomic studies show that the common hepatic branch (CHB) of the vagus contains afferent fibers that innervate sites outside the hepatoportal region, primarily in the gastrointestinal tract. In the current experiments on the anesthetized rat, the source of signals from the CHB was determined by recording CHB neurophysiological responses before and after transection of the gastroduodenal branch (GDB) of the CHB. Serotonin [5-hydroxytryptamine (5-HT)] and CCK-8 were used as probes to stimulate the CHB. Most of the CHB afferent fibers were 5-HT sensitive (56%), and 35% of these were also sensitive to CCK-8. Portal vein vs. jugular vein infusion of 5-HT and CCK-8 and GDB transection showed that 5-HT- and CCK-sensitive fibers innervate the hepatoportal region and areas outside the hepatic hilus (e.g., the gastrointestinal tract). Suppression of basal nerve activity by a 5-HT(3) receptor antagonist (Y-25130) suggests that approximately 50% of CHB afferent fibers contain 5-HT(3) receptors, but none of these fibers appears to be in the hepatoportal region because only in rats with an intact GDB did Y-25130 reduce nerve activity. In summary, these data are in close agreement with anatomic observations on the distribution of the CHB fibers and indicate that neurophysiological studies of the CHB must be carefully evaluated given the prominent role of nonhepatoportal afferent signals recorded from the CHB.  相似文献   

5.
One of the possible mechanisms by which the weight-reducing surgical procedure ileal interposition (II) works is by increasing circulating levels of lower gut peptides that reduce food intake, such as glucagon like peptide-1 and peptide YY. However, since this surgery involves both lower and upper gut segments, we tested the hypothesis that II alters the satiety responses evoked by the classic upper gut peptide cholecystokinin (CCK). To test this hypothesis, we determined meal size (MS), intermeal interval (IMI) and satiety ratio (SR) evoked by CCK-8 and -33 (0, 1, 3, 5 nmol/kg, i.p.) in two groups of rats, II and sham-operated. CCK-8 and -33 reduced MS more in the sham group than in the II group; CCK-33 prolonged IMI in the sham group and increased SR in both groups. Reduction of cumulative food intake by CCK-8 in II rats was blocked by devazepide, a CCK1 receptor antagonist. In addition, as previously reported, we found that II resulted in a slight reduction in body weight compared to sham-operated rats. Based on these observations, we conclude that ileal interposition attenuates the satiety responses of CCK. Therefore, it is unlikely that this peptide plays a significant role in reduction of body weight by this surgery.  相似文献   

6.
Recent studies demonstrated that cholecystokinin (CCK) at physiological levels stimulates pancreatic enzyme secretion via a capsaicin-sensitive afferent vagal pathway. This study examined whether chemical ablation of afferent vagal fibers influences pancreatic growth and secretion in rats. Bilateral subdiaphragmatic vagal trunks were exposed, and capsaicin solution was applied. Pancreatic wet weight and pancreatic secretion and growth in response to endogenous and exogenous CCK were examined 7 days after capsaicin treatment. Perivagal application of capsaicin increased plasma CCK levels and significantly increased pancreatic wet weight compared with those in the control rats. Oral administration of CCK-1 receptor antagonist loxiglumide prevented the increase in pancreatic wet weight after capsaicin treatment. In addition, continuous intraduodenal infusion of trypsin prevented the increase in plasma CCK levels and pancreatic wet weight after capsaicin treatment. There were no significant differences in the expression levels of CCK-1 receptor mRNA and protein in the pancreas in capsaicin-treated and control rats. Intraduodenal administration of camostat or intravenous infusion of CCK-8 stimulated pancreatic secretion in control rats but not in capsaicin-treated rats. In contrast, repeated oral administrations of camostat or intraperitoneal injections of CCK-8 significantly increased pancreatic wet weight in both capsaicin-treated and control rats. Present results suggest that perivagal application of capsaicin stimulates pancreatic growth via an increase in endogenous CCK and that exogenous and endogenous CCK stimulate pancreatic growth not via vagal afferent fibers but directly in rats.  相似文献   

7.
The N-methyl-D-aspartate (NMDA) ion channel blocker MK-801 administered systemically or as a nanoliter injection into the nucleus of the solitary tract (NTS), increases meal size. Furthermore, we have observed that ablation of the NTS abolishes increased meal size following systemic injection of dizocilpine (MK-801) and that MK-801-induced increases in intake are attenuated in rats pretreated with capsaicin to destroy small, unmyelinated, primary afferent neurons. These findings led us to hypothesize that NMDA receptors on central vagal afferent terminals or on higher-order NTS neurons innervated by these vagal afferents might mediate increased food intake. To evaluate this hypothesis, we examined 15% sucrose intake after 50-nl MK-801 injections ipsilateral or contralateral to unilateral nodose ganglion removal (ganglionectomy). On the side contralateral to ganglionectomy, vagal afferent terminals would be intact and functional, whereas ipsilateral to ganglionectomy vagal afferent terminals would be absent. Three additional control preparations also were included: 1) sham ganglionectomy and 2) subnodose vagotomy either contralateral or ipsilateral to NTS cannula placement. We found that rats with subnodose vagotomies increased their sucrose intake after injections of MK-801 compared with saline, regardless of whether injections were made contralateral (12.6 +/- 0.2 vs. 9.6 +/- 0.3 ml) or ipsilateral (14.2 +/- 0.6 vs. 9.7 +/- 0.4 ml) to vagotomy. Rats with NTS cannula placements contralateral to nodose ganglionectomy also increased their intake after MK-801 (12.2 +/- 0.9 and 9.2 +/- 1.1 ml for MK-801 and saline, respectively). However, rats with placements ipsilateral to ganglionectomy did not respond to MK-801 (8.0 +/- 0.5 ml) compared with saline (8.3 +/- 0.4 ml). We conclude that central vagal afferent terminals are necessary for increased food intake in response to NMDA ion channel blockade. The function of central vagal afferent processes or the activity of higher-order NTS neurons driven by vagal afferents may be modulated by NMDA receptors to control meal size.  相似文献   

8.
The relative potencies of cholecystokinin (CCK-33) and its carboxyl terminal octapeptide (CCK-8) for stimulation of amylase release from rat pancreatic acini was measured. Porcine CCK-33 and synthetic CCK-8 were initially subjected to high pressure liquid chromatography to assess purity. Concentrations of each peptide were determined by amino acid analysis. The relative immunoreactivities of CCK-33 and CCK-8 were compared using an antibody that recognizes the common carboxyl terminus of these forms. This antibody bound CCK-8 and CCK-33 with nearly equal affinity. The relative potencies of CCK-33 and CCK-8 were then measured by comparing their abilities to stimulate amylase release from isolated rat pancreatic acini. Statistical analysis of the relative potencies of the two hormones indicated that CCK-8 was 36% more potent than CCK-33 in this assay system. These data suggest that differences in biological activities between large and small forms of CCK are not as great as previously reported.  相似文献   

9.
The paradigm for the control of feeding behavior has changed significantly. Research has shown that leptin, in the presence of CCK, may mediate the control of short-term food intake. This interaction between CCK and leptin occurs at the vagus nerve. In the present study, we aimed to characterize the interaction between CCK and leptin in the vagal primary afferent neurons. Single neuronal discharges of vagal primary afferent neurons innervating the gastrointestinal tract were recorded from rat nodose ganglia. Three groups of nodose ganglia neurons were identified: group 1 responded to CCK-8 but not leptin; group 2 responded to leptin but not CCK-8; group 3 responded to high-dose CCK-8 and leptin. In fact, the neurons in group 3 showed CCK-8 and leptin potentiation, and they responded to gastric distention. To identify the CCK-A receptor (CCKAR) affinity states that colocalize with the leptin receptor OB-Rb, we used CCK-JMV-180, a high-affinity CCKAR agonist and low-affinity CCKAR antagonist. As expected, immunohistochemical studies showed that CCK-8 administration significantly potentiated the increase in the number of c-Fos-positive neurons stimulated by leptin in vagal nodose ganglia. Administration of CCK-JMV-180 eliminated the synergistic interaction between CCK-8 and leptin. We conclude that both low- and high-affinity CCKAR are expressed in nodose ganglia. Many nodose neurons bearing low-affinity CCKAR express OB-Rb. These neurons also respond to mechanical distention. An interaction between CCKAR and OB-Rb in these neurons likely facilitates leptin mediation of short-term satiety.  相似文献   

10.
Imaging fluorescent measurements with fura 2 were used to examine cytosolic calcium signals induced by sulfated CCK octapeptide (CCK-8) in dissociated vagal afferent neurons from adult rat nodose ganglia. We found that 40% (184/465) of the neurons responded to CCK-8 with a transient increase in cytosolic calcium. The threshold concentration of CCK-8 for inducing the response varied from 0.01 to 100 nM. In most neurons (13/16) the response was eliminated by removing extracellular calcium. Depleting intracellular calcium stores with thapsigargin slightly augmented the response. Most neurons were unresponsive to nonsulfated CCK-8. The response was eliminated by the CCK-A receptor antagonist lorglumide. Low concentrations of JMV-180 had no effect; however, high concentrations of JMV-180 reduced responses to CCK-8. These results demonstrate that CCK acts at the low-affinity site of the CCK-A receptor to trigger the entry of extracellular calcium into vagal afferent neurons. Increased cytosolic calcium may participate in acute activation of vagal afferent neurons, or it may initiate long-term changes, which modulate future neuronal responses to sensory stimuli.  相似文献   

11.
The enteric nervous system (ENS: myenteric and submucosal plexuses) of the gastrointestinal tract may have a role in the reduction of food intake by cholecystokinin (CCK). Exogenous cholecystokinin-8 (CCK-8) activates the myenteric plexus and the feeding control areas of the dorsal vagal complex (DVC) of the brainstem. An increasing number of reports, however, have shown that CCK-58 is the sole or the major circulating form of CCK in rat, human and dog, and that it is qualitatively different from CCK-8 in evoking various gastrointestinal physiological responses (e.g., contraction of the gallbladder and exocrine pancreatic secretion). In the current report, we compared the abilities of exogenous CCK-58 to activate the myenteric plexus and the dorsal vagal complex with those of exogenous CCK-8 by quantifying Fos-like immunoreactivity (Fos-LI; a marker for neuronal activation). We report that CCK-58 (1, 3, and 5 nmol/kg) increased Fos-LI in the myenteric plexus (p<0.001) and in the DVC (p<0.001) compared to the saline vehicle. The highest dose of CCK-58 increased Fos-LI more than an equimolar dose of CCK-8 in the myenteric plexus and the area postrema. Thus, CCK-8 and CCK-58 produce the same qualitative pattern of activation of central and peripheral neurons, but do not provoke identical quantitative patterns at higher doses. The different patterns produced by the two peptides at higher doses, in areas open to the circulation (myenteric plexus and area postrema) may reflect endocrine actions not observed at lower doses.  相似文献   

12.
Two separate experiments were performed to localize the gastrointestinal sites of action regulating meal size (MS), intermeal interval (IMI) length and satiety ratio (SR, IMI/MS) by cholecystokinin (CCK) 8 and 33. Experiment 1: CCK-8 (0, 0.05, 0.15, 0.25 nmol/kg) was infused in the celiac artery (CA, supplies stomach and upper duodenum) or the cranial mesenteric artery (CMA, supplies small and part of the large intestine) prior to the onset of the dark cycle in free feeding, male Sprague Dawley rats and MS (normal rat chow), IMI and SR were recorded. Experiment 2: CCK-33 (0, 0.05, 0.15, 0.25 nmol/kg) were infused in the CA or the CMA, under the same experimental conditions above, and MS, IMI and SR were recorded. Experiment 1 found that CCK-8 reduces MS, prolongs the IMI and increases the SR at sites supplied by both arteries. Experiment 2 found that CCK-33 reduces MS and increases the SR at sites supplied by the CMA. We conclude that in male rats the feeding behaviors evoked by CCK-33, but not CCK-8, are regulated at specific gastrointestinal sites of action.  相似文献   

13.
Food induced neurohumoral signals are conduced to data processing brain centers mainly as vagal afferent discharge resulting in food intake regulation. The aim of this study was to evaluate effects of vagal nerve neuromodulation in control of food intake with fed-pattern microchip (MC) pacing. Experiments were performed on 60 rats divided on 5 groups: I group 0,05Hz left vagal pacing, II - pacing of both vagal nerves with MC 0,05Hz, III- left vagal MC 0,1Hz pacing, IV - pacing of both vagal nerves with MC 0,1 Hz was performed. In group V left vagal pacing was combined with right side abdominal vagotomy. Body weight and total food intake decreased by 12% and 14% (I), 26% and 30%(II), 8% and 21%(III), 14% and 30%(IV), 38% and 41%(IV), respectively (p<0.05). Effects of both vagal nerves stimulation on final body weight and food intake was significantly more effective than only single nerve MC pacing however most effective was stimulation with 0,1Hz combined with right vagotomy. We conclude that vagal stimulation reduce food intake and body weight by increasing vagal afferent signals. Our results suggest that information in vagal afferents can be modulated resulting in changes of feeding behaviour and body weight.  相似文献   

14.
Our aim was to determine whether complete hepatic denervation would affect the hormonal response to insulin-induced hypoglycemia in dogs. Two weeks before study, dogs underwent either hepatic denervation (DN) or sham denervation (CONT). In addition, all dogs had hollow steel coils placed around their vagus nerves. The CONT dogs were used for a single study in which their coils were perfused with 37 degrees C ethanol. The DN dogs were used for two studies in a random manner, one in which their coils were perfused with -20 degrees C ethanol (DN + COOL) and one in which they were perfused with 37 degrees C ethanol (DN). Insulin was infused to create hypoglycemia (51 +/- 3 mg/dl). In response to hypoglycemia in CONT, glucagon, cortisol, epinephrine, norepinephrine, pancreatic polypeptide, glycerol, and hepatic glucose production increased significantly. DN alone had no inhibitory effect on any hormonal or metabolic counterregulatory response to hypoglycemia. Likewise, DN in combination with vagal cooling also had no inhibitory effect on any counterregulatory response except to reduce the arterial plasma pancreatic polypeptide response. These data suggest that afferent signaling from the liver is not required for the normal counterregulatory response to insulin-induced hypoglycemia.  相似文献   

15.
Leptin and cholecystokinin (CCK) have a synergistic interaction in the suppression of food intake, and afford similar gastroprotective activity. The present study was designed to investigate the putative protective effects of CCK and leptin on acute colonic inflammation. Leptin or CCK-8s was injected to rats intraperitoneally immediately before and 6 h after the induction of colitis with acetic acid. CCK-A receptor antagonist (L-364,718) or CCK-B receptor antagonist (L-365,260) was injected intraperitoneally 15 min before leptin or CCK treatments. In a group of rats, vagal afferent fibers were denervated by topical application of capsaicin on the cervical vagi. Rats were decapitated at 24 h, and the distal 8 cm of the colon were removed for macroscopic scoring, determination of tissue wet weight index (WWI), histologic assessment and tissue myeloperoxidase (MPO) activity. All inflammation parameters were increased by acetic acid-induced colitis compared to control group. Leptin or CCK-8s treatment reduced these parameters in a similar manner, while co-administration of leptin and CCK was found to be more effective in reducing the macroscopic score and WWI. CCK-8s-induced reduction in the score and WWI was prevented by CCK-A, but not by CCK-B receptor antagonist, whereas neither antagonist altered the inhibitory effect of leptin on colitis-induced injury. On the other hand, perivagal capsaicin prevented the protective effects of both CCK-8s and leptin on colitis. Our results indicate that leptin and CCK have anti-inflammatory effects on acetic acid-induced colitis in rats, which appear to be mediated by capsaicin-sensitive vagal afferent fibers involving the reduction in colonic neutrophil infiltration.  相似文献   

16.
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion and suppresses food intake. Recent studies indicate that the hepatic vagal afferent nerve is involved in this response. Dipeptidyl peptidase-IV (DPP-IV) inhibitor extends the half-life of endogenous GLP-1 by preventing its degradation. This study aimed to determine whether DPP-IV inhibitor-induced elevation of portal GLP-1 levels affect insulin secretion and feeding behavior via the vagal afferent nerve and hypothalamus. The effect of DPP-IV inhibitor infusion into the portal vein or peritoneum on portal and peripheral GLP-1 levels, food intake, and plasma insulin and glucose was examined in sham-operated and vagotomized male Sprague-Dawley rats. Analyses of neuronal histamine turnover and immunohistochemistry were used to identify the CNS pathway that mediated the response. Intraportal administration of the DPP-IV inhibitor significantly increased portal (but not peripheral) GLP-1 levels, increased insulin levels, and decreased glucose levels. The DPP-IV inhibitor suppressed 1- and 12- but not 24-h cumulative food intake. Intraportal infusion of the DPP-IV inhibitor increased hypothalamic neuronal histamine turnover and increased c-fos expression in several areas of the brain. These responses were blocked by vagotomy. Our results indicate that DPP-IV inhibitor-induced changes in portal but not systemic GLP-1 levels affect insulin secretion and food intake. Furthermore, our findings suggest that a neuronal pathway that includes the hepatic vagal afferent nerve and hypothalamic neuronal histamine plays an important role in the pharmacological actions of DPP-IV inhibitor.  相似文献   

17.
Both total subdiaphragmatic vagotomy (TVAGX) and serotonin(3) receptor blockade with tropisetron or ondansetron attenuate amino acid-imbalanced diet (Imb) anorexia. Total vagotomy is less effective than tropisetron in reducing Imb-induced anorexia and also blunts the tropisetron effect. With the use of electrocautery at the subdiaphragmatic level of the vagus, we severed the ventral and dorsal trunks as well as the hepatic, ventral gastric, dorsal gastric, celiac, and accessory celiac branches separately or in combination to determine which vagal branches or associated structures may be involved in these responses. Rats were prefed a low-protein diet. On the first experimental day, tropisetron or saline was given intraperitoneally 1 h before presentation of Imb. Cuts including the ventral branch, i.e., TVAGX, ventral vagotomy (above the hepatic branch), and hepatic + gastric vagotomies (but not hepatic branch cuts alone) caused the highest (P < 0.05) Imb intake on day 1 with or without tropisetron. The responses to tropisetron were not affected significantly. On days 2-8, groups having vagotomies that included the hepatic branch recovered faster than sham-treated animals. Because the hepatic and gastric branches together account for most of the vagal innervation to the proximal duodenum, this area may be important in the initial responses, whereas structures served by the hepatic branch alone apparently act in the later adaptation to Imb.  相似文献   

18.
Cholecystokinin (CCK), acting at CCK1 receptors (CCK1Rs) on intestinal vagal afferent terminals, has been implicated in the control of gastrointestinal function and food intake. Using CCK1R(-/-) mice, we tested the hypothesis that lipid-induced activation of the vagal afferent pathway and intestinal feedback of gastric function is CCK1R dependent. In anesthetized CCK1R(+/+) ("wild type") mice, meal-stimulated gastric acid secretion was inhibited by intestinal lipid infusion; this was abolished in CCK1R(-/-) mice. Gastric emptying of whole egg, measured by nuclear scintigraphy in awake mice, was significantly faster in CCK1R(-/-) than CCK1R(+/+) mice. Gastric emptying of chow was significantly slowed in response to administration of CCK-8 (22 pmol) in CCK1R(+/+) but not CCK1R(-/-) mice. Activation of the vagal afferent pathway was measured by immunohistochemical localization of Fos protein in the nucleus of the solitary tract (NTS; a region where vagal afferents terminate). CCK-8 (22 pmol ip) increased neuronal Fos expression in the NTS of fasted CCK1R(+/+) mice; CCK-induced Fos expression was reduced by 97% in CCK1R(-/-) compared with CCK1R(+/+) mice. Intralipid (0.2 ml of 20% Intralipid and 0.04 g lipid), but not saline, gavage increased Fos expression in the NTS of fasted CCK1R(+/+) mice; lipid-induced Fos expression was decreased by 47% in CCK1R(-/-) compared with CCK1R(+/+)mice. We conclude that intestinal lipid activates the vagal afferent pathway, decreases gastric acid secretion, and delays gastric emptying via a CCK1R-dependent mechanism. Thus, despite a relatively normal phenotype, intestinal feedback in response to lipid is severely impaired in these mice.  相似文献   

19.
The response of gastric motility to the administration of water and saline in the larynx and epiglottis was investigated in urethan-chloralose anesthetized rats. Administration of water inhibited motility of the distal stomach, but 0.15 M NaCl did not induce the inhibitory response. Bilateral sectioning of the superior laryngeal nerve (SLN) abolished the inhibitory response induced by water. Bilateral cervical vagotomies abolished the inhibitory responses, although spinal transection did not affect the inhibitory response. These inhibitory responses have been observed in immobilized animals. The degree of inhibition by water and hypotonic saline was negatively correlated with the sodium concentration. In contrast, the degree of inhibition to hypertonic saline was positively correlated with the sodium concentration. The proximal stomach also showed a reduction in intragastric pressure in response to the administration of water. These findings suggest that water-responsive afferent neurons in the SLN suppress gastric motility via the vagal efferent nerve.  相似文献   

20.
We examined the contribution of afferent vagal A- and C-fibers on abdominal expiratory muscle activity (EMA). In seven spontaneously breathing supine dogs anesthetized with alpha-chloralose we recorded the electromyogram of the external oblique muscle at various vagal temperatures before and after the induction of a pneumothorax. When myelinated fibers were blocked selectively by cooling the vagus nerves to 7 degrees C, EMA decreased to 40% of control (EMA at 39 degrees C). With further cooling to 0 degrees C, removing afferent vagal C-fiber activity, EMA returned to 72% of control. On rewarming the vagus nerves to 39 degrees C, we then induced a pneumothorax (27 ml/kg) that eliminated the EMA in all the dogs studied. Cooling the vagus nerves to 7 degrees C, during the pneumothorax, produced a slight though not significant increase in EMA. However, further cooling of the vagus nerves to 0 degrees C caused the EMA to return vigorously to 116% of control. In three dogs, intravenous infusion of a constant incrementally increasing dose of capsaicin, a C-fiber stimulant, decreased EMA in proportion to the dose delivered. These results suggest that EMA is modulated by a balance between excitatory vagal A-fiber activity, most likely from slowly adapting pulmonary stretch receptors, and inhibitory C-fiber activity, most likely from lung C-fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号