首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine whether the inflammatory effects of inhaled endotoxin could be prevented, we pretreated mice with synthetic competitive antagonists (975, 1044, and 1287) for lipopolysaccharide (LPS) before a LPS inhalation challenge. In preliminary studies, we found that these LPS antagonists did not act as agonists in vitro (THP-1 cells) or in vivo (after intratracheal instillation of 10 microg) and that these compounds (at least 1 microg/ml) effectively antagonized the release of tumor necrosis factor-alpha by LPS-stimulated THP-1 cells. Pretreatment of mice with 10 microg of either 1044 or 1287 resulted in a decrease in the LPS-induced airway hyperreactivity. Moreover, pretreatment of mice with 10 microg of 975, 1044, or 1287 resulted in significant reductions in LPS-induced lung lavage fluid concentrations of total cells, neutrophils, and specific proinflammatory cytokines compared with mice pretreated with sterile saline. Using residual oil fly ash to induce airway inflammation, we found that the action of the LPS antagonists was specific to LPS-induced airway disease. These results suggest that LPS antagonists may be an effective and potentially safe treatment for endotoxin-induced airway disease.  相似文献   

2.
To examine the role of the fibrinolytic system in LPS-induced airway disease, we compared the effect of a chronic LPS challenge in plasminogen activator inhibitor-deficient (C57BL/6JPAI-1-/-) mice and wild-type (WT) C57BL/6J mice. Physiological and biological assessments were performed, immediately after, and 4 wk after an 8-wk exposure to LPS or saline. Immediately after the LPS exposure, WT mice had increased estimates of airway reactivity to methacholine compared with C57BL/6JPAI-1-/- mice; however, airway inflammation was similar in both LPS-exposed groups. Significant increases in both active transforming growth factor (TGF)-beta1 and active matrix metalloproteinase (MMP)-9 was detected after LPS exposure in WT but not C57BL/6JPAI-1-/- mice. C57BL/6JPAI-1-/- mice showed significantly less TGF-beta1 in the lavage and higher MMP-9 in the lung tissue than WT mice at the end of exposure and 4 wk later. After LPS exposure, both WT and C57BL/6JPAI-1-/- mice had substantial expansion of the subepithelial area of the medium [diameter (d) = 90-129 microm]- and large (d > 129 microm)-size airways when compared with saline-exposed mice. Subepithelial fibrin deposition was prevalent in WT mice but diminished in C57BL/6JPAI-1-/-. PAI-1 expression by nonciliated bronchial epithelial cells was enhanced in LPS-exposed WT mice compared with the saline-exposed group. Four weeks after LPS inhalation, airway hyperreactivity and the expansion of the subepithelial area in the medium and large airways persisted in WT but not C57BL/6JPAI-1-/- mice. We conclude that an active fibrinolytic system can substantially alter the development and resolution of the postinflammatory airway remodeling observed after chronic LPS inhalation.  相似文献   

3.
The endotoxin component of organic dusts causes acute reversible airflow obstruction and airway inflammation. To test the hypothesis that endotoxin alone causes airway remodeling, we have compared the response of two inbred mouse strains to subchronic endotoxin exposure. Physiological and biological parameters were evaluated after 1 day, 5 days, or 8 wk of exposure to endotoxin [lipopolysaccharide (LPS)] in endotoxin-sensitive (C3HeB/FeJ) and endotoxin-resistant (C3H/HeJ) mice. After 5 days or 8 wk of LPS exposure, only C3HeB/FeJ had elevated airway hyperreactivity to inhaled methacholine. Only the C3HeB/FeJ mice had significant inflammation of the lower respiratory tract after 1 day, 5 days, or 8 wk of LPS exposure. Stereological measurements of small, medium, and large airways indicated that an 8-wk exposure to LPS resulted in expansion of the submucosal area only in the C3HeB/FeJ mice. Cell proliferation as measured by bromodeoxyuridine incorporation contributed to the expansion of the submucosa and was only significantly elevated in C3HeB/FeJ mice actively exposed to LPS. C3HeB/FeJ mice had significantly elevated levels of interleukin-1beta protein in whole lung lavage after 1 day and 5 days of LPS exposure and significantly elevated protein levels of total and active transforming growth factor-beta1 in whole lung lavage fluid after 5 days of LPS exposure. Our findings demonstrate that subchronic inhalation of LPS results in the development of persistent airway disease in endotoxin-responsive mice.  相似文献   

4.
We investigated the role of neutrophils in the development of endotoxin-induced airway disease via systemic neutrophil depletion of C3H/HeBFeJ mice and coincident inhalation challenge with lipopolysaccharide (LPS) over a 4-wk period. Mice were made neutropenic with intraperitoneal injections of neutrophil antiserum before and throughout the exposure period. Experimental conditions included LPS-exposed, antiserum-treated; LPS-exposed, control serum-treated; air-exposed, antiserum-treated; and air-exposed, control serum-treated groups. Physiological, biological, and morphological assessments were performed after a 4-wk exposure and again after a 4-wk recovery period. After the 4-wk exposure, LPS-induced inflammation of the lower airways was significantly attenuated in the neutropenic mice, although airway responsiveness (AR) to methacholine (MCh) remained unchanged. After the recovery period, LPS-exposed neutrophil-replete mice had increased AR to MCh when compared with the LPS-exposed neutropenic animals. Morphometric data indicate that the 4-wk exposure to LPS leads to a substantial expansion of the subepithelial area of the medium-sized airways (90-129 microm diameter) in nonneutropenic mice but not neutropenic mice, and this difference persisted even after the recovery period. Expression of bronchial epithelial and subepithelial transforming growth factor-beta1 (TGF-beta1) was diminished in the challenged neutropenic mice compared with the neutrophil-sufficient mice. These studies demonstrate that neutrophils play a critical role in the development of chronic LPS-induced airway disease.  相似文献   

5.
Chronic lipopolysaccharide (LPS) inhalation in rodents recapitulates many classic features of chronic obstructive pulmonary disease seen in humans, including airways hyperresponsiveness, neutrophilic inflammation, cytokine production in the lung, and small airways remodeling. CD14-deficient mice (C57BL/6(CD14-/-)) have an altered response to systemic LPS, and yet the role of CD14 in the response to inhaled LPS has not been defined. We observed that C57BL/6(CD14-/-) mice demonstrate no discernable physiological or inflammatory response to a single LPS inhalation challenge. However, the physiological (airways hyperresponsiveness) and inflammatory (presence of neutrophils and TNF-alpha in whole lung lavage fluid) responsiveness to inhaled LPS in C57BL/6(CD14-/-) mice was restored by instilling soluble CD14 intratracheally. Intratracheal instillation of wild-type macrophages into C57BL/6(CD14-/-) mice restored neutrophilic inflammation only and failed to restore airways hyperresponsiveness or TNF-alpha protein in whole lung lavage. These findings demonstrate that CD14 is critical to LPS-induced airway disease and that macrophage CD14 is sufficient to initiate neutrophil recruitment into the airways but that CD14 may need to interact with other cell types as well for the development of airways hyperresponsiveness and for cytokine production.  相似文献   

6.
Airways are densely innervated by capsaicin-sensitive sensory neurons expressing transient receptor potential vanilloid 1 (TRPV1) receptors/ion channels, which play an important regulatory role in inflammatory processes via the release of sensory neuropeptides. The aim of the present study was to investigate the role of TRPV1 receptors in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity with functional, morphological, and biochemical techniques using receptor gene-deficient mice. Inflammation was evoked by intranasal administration of Escherichia coli lipopolysaccharide (60 microl, 167 microg/ml) in TRPV1 knockout (TRPV1(-/-)) mice and their wild-type counterparts (TRPV1(+/+)) 24 h before measurement. Airway reactivity was assessed by unrestrained whole body plethysmography, and its quantitative indicator, enhanced pause (Penh), was calculated after inhalation of the bronchoconstrictor carbachol. Histological examination and spectrophotometric myeloperoxidase measurement was performed from the lung. Somatostatin concentration was measured in the lung and plasma with radioimmunoassay. Bronchial hyperreactivity, histological lesions (perivascular/peribronchial edema, neutrophil/macrophage infiltration, goblet cell hyperplasia), and myeloperoxidase activity were significantly greater in TRPV(-/-) mice. Inflammation markedly elevated lung and plasma somatostatin concentrations in TRPV1(+/+) but not TRPV1(-/-) animals. In TRPV1(-/-) mice, exogenous administration of somatostatin-14 (4 x 100 microg/kg ip) diminished inflammation and hyperreactivity. Furthermore, in wild-type mice, antagonizing somatostatin receptors by cyclo-somatostatin (4 x 250 microg/kg ip) increased these parameters. This study provides the first evidence for a novel counterregulatory mechanism during endotoxin-induced airway inflammation, which is mediated by somatostatin released from sensory nerve terminals in response to activation of TRPV1 receptors of the lung. It reaches the systemic circulation and inhibits inflammation and consequent bronchial hyperreactivity.  相似文献   

7.
To determine whether interleukin-10 (IL-10) could alter the development of grain dust-induced airway disease, we pretreated mice with either saline or IL-10 intravenously, exposed the mice to an inhalation challenge with corn dust extract (CDE), and measured inflammation and the development of airway hyperreactivity. Pretreatment with IL-10, in comparison to saline, reduced the concentration and percentage of polymorphonuclear cells in the lavage fluid 30 min after the inhalation challenge with CDE (P < 0. 05). In comparison to saline-treated mice, IL-10 did not significantly alter the degree of airway hyperreactivity 30 min after the exposure to CDE. IL-10-treated mice lavaged 18 h after challenge with CDE also exhibited a lower percentage of polymorphonuclear cells in the lavage fluid (P < 0.05) and had significantly less airway hyperreactivity than did mice pretreated with the saline placebo (P < 0.05). These findings indicate that exogenous IL-10 is effective in reducing airway inflammation and airway hyperreactivity due to the inhalation of CDE.  相似文献   

8.
9.
The presence of pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors in capsaicin-sensitive peptidergic sensory nerves, inflammatory and immune cells suggest its involvement in inflammation. However, data on its role in different inflammatory processes are contradictory and there is little known about its functions in the airways. Therefore, our aim was to examine intranasal endotoxin-induced subacute airway inflammation in PACAP gene-deficient (PACAP−/−) and wild-type (PACAP+/+) mice. Airway responsiveness to inhaled carbachol was determined in unrestrained mice with whole body plethysmography 6 h and 24 h after LPS. Myeloperoxidase (MPO) activity referring to the number of accumulated neutrophils and macrophages was measured with spectrophotometry and interleukin-1β (IL-1β) concentration with ELISA from the lung homogenates. Histological evaluation and semiquantitative scoring were also performed. Bronchial responsiveness, as well as IL-1β concentration and MPO activity markedly increased at both timepoints. Perivascular edema dominated the histological picture at 6 h, while remarkable peribronchial granulocyte accumulation, macrophage infiltration and goblet cell hyperplasia were seen at 24 h. In PACAP−/− mice, airway hyperreactivity was significantly higher 24 h after LPS and inflammatory histopathological changes were more severe at both timepoints. MPO increase was almost double in PACAP−/− mice compared to the wild-types at 6 h. In contrast, there was no difference between the IL-1β concentrations of the PACAP+/+ and PACAP−/− mice. These results provide evidence for a protective role for PACAP in endotoxin-induced airway inflammation and hyperreactivity.  相似文献   

10.
When administered to mice systemically or via the airways, LPS induces bronchoconstriction (BC) and/or bronchopulmonary hyperreactivity (BHR), associated with inflammation. Accordingly, a relationship between inflammation and allergic and nonallergic BHR can be hypothesized. We therefore studied the interference of the anti-inflammatory cytokine murine IL-10 (mIL-10) with LPS-induced lung inflammation, BC, and BHR. mIL-10 was administered directly into the airways by intranasal instillation or generated in vivo after muscle electrotransfer of mIL-10-encoding plasmid. Electrotransfer led to high mIL-10 circulating levels for a longer time than after the injection of recombinant mIL-10 (rmIL-10). rmIL-10 administered intranasally reduced lung inflammation and BHR after LPS administration into airways. It also reduced the ex vivo production of TNF-alpha by LPS-stimulated lung tissue explants. Two days after electrotransfer, mIL-10 blood levels were elevated, but lung inflammation, BC, and BHR persisted unaffected. Blood mIL-10 reaches the airways poorly, which probably accounts for the ineffectiveness of mIL-10-encoding plasmid electrotransfer. When LPS was aerosolized 15 days after electrotransfer, lung inflammation persisted but BHR was significantly reduced, an effect that may be related to the longer exposure of the relevant cells to mIL-10. The dissociation between inflammation and BHR indicates that both are not directly correlated. In conclusion, this study shows that mIL-10 is efficient against BHR when present in the airway compartment. Despite this, the muscle electrotransfer with mIL-10-encoding plasmid showed a protective effect against BHR after a delay of 2 wk that should be further investigated.  相似文献   

11.
Endotoxin is one of the principal components of grain dust that causes acute reversible airflow obstruction and airway inflammation. To determine whether endotoxin responsiveness influences the development of chronic grain dust-induced airway disease, physiological and airway inflammation remodeling parameters were evaluated after an 8-wk exposure to corn dust extract (CDE) and again after a 4-wk recovery period in a strain of mice sensitive to (C3H/HeBFeJ) and one resistant to (C3H/HeJ) endotoxin. After the CDE exposure, both strains of mice had equal airway hyperreactivity to a methacholine challenge; however, airway hyperreactivity persisted only in the C3H/HeBFeJ mice after the recovery period. Only the C3H/HeBFeJ mice showed significant inflammation of the lower airway after the 8-wk exposure to CDE. After the recovery period, this inflammatory response completely resolved. Lung stereological measurements indicate that an 8-wk exposure to CDE resulted in persistent expansion of the airway submucosal cross-sectional area only in the C3H/HeBFeJ mice. Collagen type III and an influx of cells into the subepithelial area participated in the expansion of the submucosa. Our findings demonstrate that subchronic inhalation of grain dust extract results in the development of chronic airway disease only in mice sensitive to endotoxin but not in mice that are genetically hyporesponsive to endotoxin, suggesting that endotoxin is important in the development of chronic airway disease.  相似文献   

12.
Endotoxin (Lipopolysaccharide, LPS) is a potent inducer of inflammation and there is various LPS contamination in the environment, being a trigger of lung diseases and exacerbation. The objective of this study was to assess the time course of inflammation and the sensitivities of the airways and alveoli to targeted LPS inhalation in order to understand the role of LPS challenge in airway disease.In healthy volunteers without any bronchial hyperresponsiveness we targeted sequentially 1, 5 and 20 μg LPS to the airways and 5 μg LPS to the alveoli using controlled aerosol bolus inhalation. Inflammatory parameters were assessed during a 72 h time period. LPS deposited in the airways induced dose dependent systemic responses with increases of blood neutrophils (peaking at 6 h), Interleukin-6 (peaking at 6 h), body temperature (peaking at 12 h), and CRP (peaking at 24 h). 5 μg LPS targeted to the alveoli caused significantly stronger effects compared to 5 μg airway LPS deposition. Local responses were studied by measuring lung function (FEV(1)) and reactive oxygen production, assessed by hydrogen peroxide (H(2)O(2)) in fractionated exhaled breath condensate (EBC). FEV(1) showed a dose dependent decline, with lowest values at 12 h post LPS challenge. There was a significant 2-fold H(2)O(2) induction in airway-EBC at 2 h post LPS inhalation. Alveolar LPS targeting resulted in the induction of very low levels of EBC-H(2)O(2).Targeting LPS to the alveoli leads to stronger systemic responses compared to airway LPS targeting. Targeted LPS inhalation may provide a novel model of airway inflammation for studying the role of LPS contamination of air pollution in lung diseases, exacerbation and anti-inflammatory drugs.  相似文献   

13.
Substance P (SP) and calcitonin gene-related peptide (CGRP) released from capsaicin-sensitive afferents induce neurogenic inflammation via NK(1), NK(2) and CGRP1 receptor activation. This study examines the role of capsaicin-sensitive fibres and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity with functional, morphological and biochemical techniques in mice. Carbachol-induced bronchoconstriction was measured with whole body plethysmography 24 h after intranasal lipopolysaccharide administration. SP and CGRP were determined with radioimmunoassay, myeloperoxidase activity with spectrophotometry, interleukin-1beta with ELISA and histopathological changes with semiquantitative scoring from lung samples. Treatments with resiniferatoxin for selective destruction of capsaicin-sensitive afferents, NK(1) antagonist SR 140333, NK(2) antagonist SR 48968, their combination, or CGRP1 receptor antagonist CGRP(8-37) were performed. Lipopolysaccharide significantly increased lung SP and CGRP concentrations, which was prevented by resiniferatoxin pretreatment. Resiniferatoxin-desensitization markedly enhanced inflammation, but decreased bronchoconstriction. CGRP(8-37) or combination of SR 140333 and SR 48968 diminished neutrophil accumulation, MPO levels and IL-1beta production, airway hyperresponsiveness was inhibited only by SR 48968. This is the first evidence that capsaicin-sensitive afferents exert a protective role in endotoxin-induced airway inflammation, but contribute to increased bronchoconstriction. Activation of CGRP1 receptors or NK(1)+NK(2) receptors participate in granulocyte accumulation, but NK(2) receptors play predominant role in enhanced airway resistance.  相似文献   

14.
The detection of Gram-negative LPS depends upon the proper function of the TLR4-MD-2 receptor complex in immune cells. TLR4 is the signal transduction component of the LPS receptor, whereas MD-2 is the endotoxin-binding unit. MD-2 appears to activate TLR4 when bound to TLR4 and ligated by LPS. Only the monomeric form of MD-2 was found to bind LPS and only monomeric MD-2 interacts with TLR4. Monomeric MD-2 binds TLR4 with an apparent Kd of 12 nM; this binding avidity was unaltered in the presence of endotoxin. E5564, an LPS antagonist, appears to inhibit cellular activation by competitively preventing the binding of LPS to MD-2. Depletion of endogenous soluble MD-2 from human serum, with an immobilized TLR4 fusion protein, abrogated TLR4-mediated LPS responses. By determining the concentration of added-back MD-2 that restored normal LPS responsiveness, the concentration of MD-2 was estimated to be approximately 50 nM. Similarly, purified TLR4-Fc fusion protein, when added to the supernatants of TLR4-expressing cells in culture, inhibited the interaction of MD-2 with TLR4, thus preventing LPS stimulation. The ability to inhibit the effects of LPS as a result of the binding of TLR4-Fc or E5564 to MD-2 highlights MD-2 as the logical target for drug therapies designed to pharmacologically intervene against endotoxin-induced disease.  相似文献   

15.
We have examined the effects of a PAF receptor antagonist, WEB 2170, on several indices of acute and chronic airway inflammation and associated changes in lung function in a primate model of allergic asthma. A single oral administration WEB 2170 provided dose related inhibition of the release of leukotriene C(4) (LTC(4)) and prostaglandin D(2) (PGD(2)) recovered and quantified in bronchoalveolar lavage (BAL) fluid obtained during the acute phase response to inhaled antigen. In addition, oral WEB 2170 treatment in dual responder primates blocked the acute influx of neutrophils into the airways as well as the associated late-phase airway obstruction occurring 6 h after antigen inhalation. In contrast, a multiple dosing regime with WEB 2170 (once a day for 7 consecutive days) failed to reduce the chronic airway inflammation (eosinophilic) and associated airway hyperresponsiveness to inhaled methacholine that is characteristic of dual responder monkeys. Thus, we conclude that the generation of PAF following antigen inhalation contributes to the development of lipid mediators, acute airway inflammation and associated late-phase airway obstruction in dual responder primates; however, PAF does not play a significant role in the maintenance of chronic airway inflammation and associated airway hyperresponsiveness in this primate model.  相似文献   

16.
Increases in the epidermal growth factor receptor (EGFR) have been associated with the severity of airway thickening in chronic asthmatic subjects, and EGFR signaling is induced by asthma-related cytokines and inflammation. The goal of this study was to determine the role of EGFR signaling in a chronic allergic model of asthma and specifically in epithelial cells, which are increasingly recognized as playing an important role in asthma. EGFR activation was assessed in mice treated with intranasal house dust mite (HDM) for 3 wk. EGFR signaling was inhibited in mice treated with HDM for 6 wk, by using either the drug erlotinib or a genetic approach that utilizes transgenic mice expressing a mutant dominant negative epidermal growth factor receptor in the lung epithelium (EGFR-M mice). Airway hyperreactivity (AHR) was assessed by use of a flexiVent system after increasing doses of nebulized methacholine. Airway smooth muscle (ASM) thickening was measured by morphometric analysis. Sensitization to HDM (IgG and IgE), inflammatory cells, and goblet cell changes were also assessed. Increased EGFR activation was detected in HDM-treated mice, including in bronchiolar epithelial cells. In mice exposed to HDM for 6 wk, AHR and ASM thickening were reduced after erlotinib treatment and in EGFR-M mice. Sensitization to HDM and inflammatory cell counts were similar in all groups, except neutrophil counts, which were lower in the EGFR-M mice. Goblet cell metaplasia with HDM treatment was reduced by erlotinib, but not in EGFR-M transgenic mice. This study demonstrates that EGFR signaling, especially in the airway epithelium, plays an important role in mediating AHR and remodeling in a chronic allergic asthma model.  相似文献   

17.
Asthma is a chronic airway inflammatory disease that encompasses three cardinal processes: T helper (Th) cell type 2 (Th2)-polarized inflammation, bronchial hyperreactivity, and airway wall remodeling. However, the link between the immune-inflammatory phenotype and the structural-functional phenotype remains to be fully defined. The objective of these studies was to evaluate the relationship between the immunologic nature of chronic airway inflammation and the development of abnormal airway structure and function in a mouse model of chronic asthma. Using IL-4-competent and IL-4-deficient mice, we created divergent immune-inflammatory responses to chronic aeroallergen challenge. Immune-inflammatory, structural, and physiological parameters of chronic allergic airway disease were evaluated in both strains of mice. Although both strains developed airway inflammation, the profiles of the immune-inflammatory responses were markedly different: IL-4-competent mice elicited a Th2-polarized response and IL-4-deficient mice developed a Th1-polarized response. Importantly, this chronic Th1-polarized immune response was not associated with airway remodeling or bronchial hyperresponsiveness. Transient reconstitution of IL-4 in IL-4-deficient mice via an airway gene transfer approach led to partial Th2 repolarization and increased bronchial hyperresponsiveness, along with full reconstitution of airway remodeling. These data show that distinct structural-functional phenotypes associated with chronic airway inflammation are strictly dependent on the nature of the immune-inflammatory response.  相似文献   

18.
Allergic asthma is an inflammatory disease of the airways characterized by eosinophilic inflammation and airway hyper-reactivity. Cytokines and chemokines specific for Th2-type inflammation predominate in asthma and in animal models of this disease. The role of Th1-type inflammatory mediators in asthma remains controversial. IFN-gamma-inducible protein 10 (IP-10; CXCL10) is an IFN-gamma-inducible chemokine that preferentially attracts activated Th1 lymphocytes. IP-10 is up-regulated in the airways of asthmatics, but its function in asthma is unclear. To investigate the role of IP-10 in allergic airway disease, we examined the expression of IP-10 in a murine model of asthma and the effects of overexpression and deletion of IP-10 in this model using IP-10-transgenic and IP-10-deficient mice. Our experiments demonstrate that IP-10 is up-regulated in the lung after allergen challenge. Mice that overexpress IP-10 in the lung exhibited significantly increased airway hyperreactivity, eosinophilia, IL-4 levels, and CD8(+) lymphocyte recruitment compared with wild-type controls. In addition, there was an increase in the percentage of IL-4-secreting T lymphocytes in the lungs of IP-10-transgenic mice. In contrast, mice deficient in IP-10 demonstrated the opposite results compared with wild-type controls, with a significant reduction in these measures of Th2-type allergic airway inflammation. Our results demonstrate that IP-10, a Th1-type chemokine, is up-regulated in allergic pulmonary inflammation and that this contributes to the airway hyperreactivity and Th2-type inflammation seen in this model of asthma.  相似文献   

19.
Bronchial eosinophil and mononuclear cell infiltrates are a hallmark of the asthmatic lung and are associated with the induction of reversible airway hyperreactivity. In these studies, we have found that monocyte chemotactic protein-1 (MCP-1), a CC (beta) chemokine, mediates airway hyperreactivity in normal and allergic mice. Using a murine model of cockroach Ag-induced allergic airway inflammation, we have demonstrated that anti-MCP-1 Abs inhibit changes in airway resistance and attenuate histamine release into the bronchoalveolar lavage, suggesting a role for MCP-1 in mast cell degranulation. In normal mice, instillation of MCP-1 induced prolonged airway hyperreactivity and histamine release. In addition, MCP-1 directly induced pulmonary mast cell degranulation in vitro. These latter effects would appear to be selective because no changes were observed when macrophage-inflammatory protein-1alpha, eotaxin, or MCP-3 were instilled into the airways of normal mice or when mast cells were treated in vitro. Airway hyperreactivity was mediated by MCP-1 through CCR2 because allergen-induced as well as direct MCP-1 instilled-induced changes in airway hyperreactivity were significantly attenuated in CCR2 -/- mice. The neutralization of MCP-1 in allergic animals and instillation of MCP-1 in normal animals was related to leukotriene C4 levels in the bronchoalveolar lavage and was directly induced in pulmonary mast cells by MCP-1. Thus, these data identify MCP-1 and CCR2 as potentially important therapeutic targets for the treatment of hyperreactive airway disease.  相似文献   

20.
Ambient ozone primes pulmonary innate immunity in mice   总被引:1,自引:0,他引:1  
Exposure to ozone in air pollution in urban environments is associated with increases in pulmonary-related hospitalizations and mortality. Because ozone also alters clearance of pulmonary bacterial pathogens, we hypothesized that inhalation of ozone modifies innate immunity in the lung. To address our hypothesis, we exposed C57BL/6J mice to either free air or ozone, and then subsequently challenged with an aerosol of Escherichia coli LPS. Pre-exposure to ozone resulted in enhanced airway hyperreactivity, higher concentrations of both total protein and proinflammatory cytokines in lung lavage fluid, enhanced LPS-mediated signaling in lung tissue, and higher concentrations of serum IL-6 following inhalation of LPS. However, pre-exposure to ozone dramatically reduced inflammatory cell accumulation to the lower airways in response to inhaled LPS. The reduced concentration of cells in the lower airways was associated with enhanced apoptosis of both lung macrophages and systemic circulating monocytes. Moreover, both flow cytometry and confocal microscopy indicate that inhaled ozone causes altered distribution of TLR4 on alveolar macrophages and enhanced functional response to endotoxin by macrophages. These observations indicate that ozone exposure increases both the pulmonary and the systemic biologic response to inhaled LPS by priming the innate immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号