首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We previously isolated a rheumatoid arthritis-related antigen (RA-A47) protein that had reactivity with RA sera from a human chondrosarcoma-derived chondrocytic cell line, HCS-2/8. Sequencing analysis of ra-a47 cDNA revealed RA-A47 as a product of the colligin-2 gene, which is also known as the human heat shock protein (HSP) 47 gene. Expression of hsp47 has been shown to be cooperatively altered with that of collagen genes upon stimulation. In this study, it was confirmed that the mRNA expression of ra-a47 and COL2A1, a type II collagen gene, was upregulated on stimulation with transforming growth factor (TGF) beta in chondrocytes. However, in contrast, inflammatory cytokines such as tumor necrosis factor (TNF) alpha, interferon (IFN) beta, and interleukin (IL)-6 downregulated the expression of ra-a47 mRNA, whereas the expression of COL2A1 mRNA was not repressed, or even upregulated, in HCS-2/8 cells. Of note, inducible NO synthase (iNOS) and matrix metalloproteinase (MMP)-9 mRNAs were strongly stimulated by TNFalpha. We also found that cell-surface type II collagen disappeared upon such a stimulation, suggesting that decrement of RA-A47 may inhibit the secretion of type II collagen and lead to its accumulation inside the cells. RA-A47 was detected in the cultured medium of TNFalpha-treated HCS-2/8 cells and of IL-1-treated rabbit chondrocytes by Western blot analysis. Under the same conditions, RA-A47 was detected on the cell surface by immunofluorescence staining. These findings demonstrate that the RA-A47 chaperone protein is specifically downregulated, causing the intracellular accumulation of unsecretable type II collagen, while the extracellular matrix (ECM) is degraded by MMPs and iNOS through the stimulation of chondrocytes by TNFalpha. The altered localization of RA-A47 to the surface or outside of cells may represent the mechanism for the recognition of RA-A47 as an autoantigen during rheumatoid arthritis.  相似文献   

3.
CCN2/CTGF is a multifunctional growth factor. Our previous studies have revealed that CCN2 plays important roles in both growth and differentiation of chondrocytes and that the 3'-untranslated region (3'-UTR) of ccn2 mRNA contains a cis-repressive element of gene expression. In the present study, we found that the stability of chicken ccn2 mRNA is regulated in a differentiation stage-dependent manner in chondrocytes. We also found that stimulation by bone morphogenetic protein 2, platelet-derived growth factor, and CCN2 stabilized ccn2 mRNA in proliferating chondrocytes but that it destabilized the mRNA in prehypertrophic-hypertrophic chondrocytes. The results of a reporter gene assay revealed that the minimal repressive cis-element of the 3'-UTR of chicken ccn2 mRNA was located within the area between 100 and 150 bases from the polyadenylation tail. Moreover, the stability of ccn2 mRNA was correlated with the interaction between this cis-element and a putative 40-kDa trans-factor in nuclei and cytoplasm. In fact, the binding between them was prominent in proliferating chondrocytes and attenuated in (pre)hypertrophic chondrocytes. Stimulation by the growth factors repressed the binding in proliferating chondrocytes; however, it enhanced it in (pre)hypertrophic chondrocytes. Therefore, gene expression of ccn2 mRNA during endochondral ossification is properly regulated, at least in part, by changing the stability of the mRNA, which arises from the interaction between the RNA cis-element and putative trans-factor.  相似文献   

4.
5.
6.
7.
8.
Hepatocyte growth factor/scatter factor (HGF/SF) can induce proliferation and motility and promote invasion of tumor cells. Since HGF/SF receptor, c-Met, is expressed by tumor cells, and since stimulation of CD44, a transmembrane glycoprotein known to bind hyaluronic acid (HA) in its extracellular domain, is involved in activation of c-Met, we have studied the effects of CD44 stimulation by ligation with HA upon the expression and tyrosine phosphorylation of c-Met on human chondrosarcoma cell line HCS-2/8. The current study indicates that (a) CD44 stimulation by fragmented HA upregulates expression of c-Met proteins; (b) fragmented HA also induces tyrosine phosphorylation of c-Met protein within 30 min, an early event in this pathway as shown by the early time course of stimulation; (c) the effects of HA fragments are critically HA size-dependent. High molecular weight HA is inactive, but lower molecular weight fragments (M(r) 3.5 kDa) are active with maximal effect in the microg/ml range; (d) the standard form of CD44 (CD44s) is critical for the response because the effect on c-Met, both in terms of upregulation and phosphorylation, is inhibited by preincubation with an anti-CD44 monoclonal antibody; and (e) phosphorylation of c-Met induced by CD44 stimulation is inhibited by protein tyrosine kinase inhibitor, tyrphostin. Therefore, our study represents the first report that CD44 stimulation induced by fragmented HA enhances c-Met expression and tyrosine phosphorylation in human chondrosarcoma cells. Taken together, these studies establish a signal transduction cascade or cross-talk emanating from CD44 to c-Met.  相似文献   

9.
10.
Previously we have shown that the expression of RA-A47 (rheumatoid arthritis-related antigen) which is identical to HSP47, a collagen-binding chaperon, is downregulated in chondrocytes by tumor necrosis factor alpha (TNFalpha). RA-A47 was also found on the surface of chondrocytes where it is recognized as an antigen in the serum of rheumatoid arthritis (RA) patients. Its translocation to the cell surface from endoplasmic reticulum membrane where it is normally located was also enhanced by TNFalpha. To understand the significance of RA-A47 downregulation in chondrocytes independent from other effects of TNFalpha, we used an antisense oligonucleotide approach and investigated the effect of this treatment on the expression of molecules related to matrix degradation and production of growth factors for chondrocytic, endothelial, and synovial cells. Here we show that treatment of rabbit chondrocyes and human chondrosarcoma cells HCS-2/8 by ra-a47 antisense S-oligonucleotides significantly reduced the expression of ra-a47 both at mRNA and protein level. Interestingly, this TNFalpha-independent RA-A47 downregulation was associated with a strong induction of matrix metalloproteinase (MMP)-9 mRNA and inducible NO synthase (iNOS) mRNA. The induction of active-type MMP-9 was further detected by gelatin zymography. Under the same conditions, the release of basic fibroblast growth factor (bFGF) and connective tissue growth factor (CTGF) from HCS-2/8 cells into the conditioned medium (CM) was strongly enhanced. These effects were not a result of TNFalpha upregulation, since the ra-a47 antisense oligonucleotide treatment did not enhance TNFalpha synthesis. These observations indicate that downregulation of RA-A47 induces TNFalpha-independent cartilage-degrading pathways involving iNOS and MMP-9. Furthermore, the stimulation of bFGF and CTGF release from chondrocytes may stimulate the proliferation of adjacent endothelial and/or synovial cells.  相似文献   

11.
Matrix metalloproteinase-1 (MMP-1, collagenase-1) plays a pivotal role in the process of joint destruction in degenerative joint diseases. We have examined the regulation of MMP-1 production in human chondrocytic HCS-2/8 cells stimulated by tumor necrosis factor-alpha (TNF-alpha). In response to TNF-alpha, MMP-1 is induced and actively released from HCS-2/8 cells. The induction of MMP-1 expression correlates with activation of ERK1/2, MEK, and Raf-1, and is potently prevented by U0126, a selective inhibitor of MEK1/2 activation. In contrast, SB203580, a selective p38 mitogen-activated protein kinases (MAPK) inhibitor, had no effects on TNF-alpha-induced MMP-1 release. A serine/threonine kinase, Akt was not activated in TNF-alpha-stimulated HCS-2/8 cells. TNF-alpha stimulated the production of PGE(2) in addition to MMP-1 in HCS-2/8 cells. Exogenously added PGE(2) potently inhibited TNF-alpha-induced both MMP-1 production and activation of ERK1/2. The effects of PGE(2) were mimicked by ONO-AE1-329, a selective EP4 receptor agonist but not by butaprost, a selective EP2 agonist. In contrast, blockade of endogenously produced PGE(2) signaling by ONO-AE3-208, a selective EP4 receptor antagonist, enhanced TNF-alpha-induced MMP-1 production. Furthermore, the suppression of MMP-1 production by exogenously added PGE(2) was reversed by ONO-AE3-208. Activation of EP4 receptor resulted in cAMP-mediated phosphorylation of Raf-1 on Ser259, a negative regulatory site, and blocked activation of Raf-1/MEK/ERK cascade. Taken together, these findings indicate that Raf-1/MEK/ERK signaling pathway plays a crucial role in the production of MMP-1 in HCS-2/8 cells in response to TNF-alpha, and that the produced PGE(2) downregulates the expression of MMP-1 by blockage of TNF-alpha-induced Raf-1 activation through EP4-PGE(2) receptor activation.  相似文献   

12.
Nishida T  Maeda A  Kubota S  Takigawa M 《Biorheology》2008,45(3-4):289-299
Mechanical stress plays an important role in the cartilage metabolism. The aim of this study is to determine the influence of mechanical load magnitude and frequency on cartilage metabolism in terms of the expression of hypertrophic chondrocyte-specific gene product 24/connective tissue growth factor/CCN family 2 (Hcs24/CTGF/CCN2), as an essential mediator of extracellular matrix (ECM) production. When a human chondrocytic cell line, HCS-2/8 was exposed to uni-axial cyclic mechanical force (6% elongation, 10 times/min) only for 30 min, the expression level of Hcs24/CTGF/CCN2 (CCN2) increased, and c-Jun N-terminal protein kinase (JNK) was activated. These findings suggest that stretch-induced CCN2 may be mediated by the JNK pathway. When HCS-2/8 cells were subjected to cyclic tension force at 15 kPa, 30 cycles/min, which has been reported to be a degradation force for HCS-2/8 cells, the expressions of CCN2 and aggrecan were inhibited, and such expressions remained unchanged in rabbit hyaline costal cartilage cells. However, these expressions increased in rabbit meniscus tissue cells. These findings suggest that the sensitivity of mechanical stretch may be different depending on the type of cells. Furthermore, CCN2 was co-localized with aggrecan in this meniscus tissue region exposed to mechanical stress in vivo. These findings suggest that CCN2 induced by mechanical stress may therefore play some role in meniscus growth and regeneration.  相似文献   

13.
Low density lipoprotein receptor (LDLR)-related protein 1 (LRP1/CD91) is one of the receptors of CCN2 that conducts endochondral ossification and cartilage repair. LRP1 is a well-known endocytic receptor, but its distribution among chondrocytes remains to be elucidated. We herein demonstrate for the first time that the distribution of LRP1 in chondrocytes except for hypertrophic chondrocytes in vivo and in vitro. Interestingly, the LRP1 levels were higher in mature chondrocytic HCS-2/8 and osteoblastic SaOS-2 than in other cells, whereas the other LDLR family members involved in ossification were detected at lower levels in HCS-2/8. It was interesting to note that in HCS-2/8, LRP1 was observed not only on the cell surface and in the cytoplasm, but also in the nucleus. Exogenously added CCN2 was incorporated into HCS-2/8, which was partially co-localized with LRP1, and targeted to the recycling endosomes and nucleus as well as the lysosomes. These findings suggest specific roles of LRP1 in cartilage biology.  相似文献   

14.
15.
豚鼠气道炎症中Eotaxin基因表达的意义   总被引:3,自引:0,他引:3  
通过气管内滴注葡聚糖诱导豚鼠气道炎症,研究嗜酸细胞在气道炎症中的意义。用葡聚糖G200(5mg/kg)滴注形成气道炎症,进行支气管肺泡灌洗,通过RTPCR方法,检测气道炎症时肺匀浆Eotaxin基因的表达。结果可见,葡聚糖G200所致豚鼠肺损伤后Eotaxin的mRNA表达水平随葡聚糖G200刺激时间延长而明显升高(P<0.05),同时支气管肺泡灌洗液中白细胞数及上清液中Th2型细胞因子IL4也随之升高(P<0.05);试验中采用甲强龙琥珀酸钠抑制气道炎症,与盐水对照组比较P>0.05。可见,用葡聚糖G200进行气管滴注是形成气管炎症简单而实用的动物模型;Eotaxin在聚集、活化炎性细胞过程中起重要作用;糖皮质激素类药物能有效抑制Eotaxin的表达。  相似文献   

16.
17.
18.
CCN4/Wnt-induced secreted protein 1 (WISP1) is one of the CCN (CTGF/Cyr61/Nov) family proteins. CCN members have typical structures composed of four conserved cysteine-rich modules and their variants lacking certain modules, generated by alternative splicing or gene mutations, have been described in various pathological conditions. Several previous reports described a CCN4/WISP1 variant (WISP1v) lacking the second module in a few malignancies, but no information concerning the production of WISP1 variants in normal tissue is currently available. The expression of CCN4/WISP1 mRNA and its variants were analyzed in a human chondrosarcoma-derived chondrocytic cell line, HCS-2/8, and primary rabbit growth cartilage (RGC) chondrocytes. First, we found WISP1v and a novel variant of WISP1 (WISP1vx) to be expressed in HCS-2/8, as well as full-length WISP1 mRNA. This new variant was lacking the coding regions for the second and third modules and a small part of the first module. To monitor the expression of CCN4/WISP1 mRNA along chondrocyte differentiation, RGC cells were cultured and sampled until they were mineralized. As a result, we identified a WISP1v ortholog in normal RGC cells. Interestingly, the WISP1v mRNA level increased dramatically along with terminal differentiation. Furthermore, overexpression of WISP1v provoked expression of an alkaline phosphatase gene that is a marker of terminal differentiation in HCS-2/8 cells. These findings indicate that WISP1v thus plays a critical role in chondrocyte differentiation toward endochondral ossification, whereas HCS-2/8-specific WISP1vx may be associated with the transformed phenotypes of chondrosarcomas.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号