首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothalamic paraventricular nucleus (PVN) plays a critical role in cardiovascular and neuroendocrine regulation. ANG II (ANG) acts throughout the periphery in the maintenance of fluid-electrolyte homeostasis and has also been demonstrated to act as a neurotransmitter in PVN exerting considerable influence on neuronal excitability in this nucleus. The mechanisms underlying the ANG-mediated excitation of PVN magnocellular neurons have yet to be determined. We have used whole cell patch-clamp techniques in hypothalamic slices to examine the effects of ANG on magnocellular neurons. Application of ANG resulted in a depolarization of magnocellular neurons, a response that was abolished in TTX, suggesting an indirect mechanism of action. Interestingly, ANG also increased the frequency of excitatory postsynaptic potentials/currents in magnocellular neurons, an effect that was abolished after application of the glutamate antagonist kynurenic acid. ANG was without effect on the amplitude of excitatory postsynaptic currents, suggesting a presynaptic action on an excitatory interneuron within PVN. The ANG-induced depolarization was shown to be sensitive to kynurenic acid, revealing the requisite role of glutamate in mediating the ANG-induced excitation of magnocellular neurons. These observations indicate that the ANGergic excitation of magnocellular PVN neurons are dependent on an increase in glutamatergic input and thus highlight the importance of a glutamate interneuron in mediating the effects of this neurotransmitter.  相似文献   

2.
We previously reported that adrenomedullin (AM) decreases blood pressure following microinjection into the paraventricular nucleus of the hypothalamus (PVN) of the rat. With the use of whole cell recordings in rat hypothalamic slice preparations, we characterized the effects of AM on electrophysiologically identified PVN neurons and described the membrane events underlying such actions. AM hyperpolarized magnocellular (type I) neurons in a dose-dependent manner, a response associated with an increase in the frequency and amplitude of inhibitory postsynaptic potentials. Blockade of action potentials with tetrodotoxin (TTX) abolished AM effects on membrane potential and synaptic activity in magnocellular neurons, suggesting direct actions on inhibitory interneurons. Furthermore, blockade of inhibitory synaptic transmission with the GABA(A) receptor antagonist bicuculline methiodide also abolished AM effects on membrane potential in magnocellular neurons. In contrast, parvocellular (type II) neurons depolarized following AM receptor activation. AM effects on parvocellular neurons were dose dependent and were maintained in the presence of TTX, indicating direct effects on this population of neurons. Voltage-clamp recordings from parvocellular neurons showed AM enhances a nonselective cationic conductance, suggesting a potential mechanism through which AM influences membrane potential. These observations show clear population-specific actions of AM on separate identified groups of PVN neurons. Such effects on magnocellular neurons likely contribute to the hypotensive actions of this peptide in PVN. Although the effects on parvocellular neurons may also contribute to such cardiovascular effects of AM, it is more likely that actions on this population of PVN neurons underlie the previously demonstrated activational effects of AM on the hypothalamic-pituitary-adrenal axis.  相似文献   

3.
Central oxytocin (OT) neurons limit intracerebroventricular (icv) ANG II-induced NaCl intake. Because mineralocorticoids synergistically increase ANG II-induced NaCl intake, we hypothesized that mineralocorticoids may attenuate ANG II-induced activation of inhibitory OT neurons. To test this hypothesis, we determined the effect of deoxycorticosterone (DOCA; 2 mg/day) on icv ANG II-induced c-Fos immunoreactivity in OT and vasopressin (VP) neurons in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus and also on pituitary OT and VP secretion in male rats. DOCA significantly decreased the percentage of c-Fos-positive (%c-Fos+) OT neurons in the SON and PVN, both in the magnocellular and parvocellular subdivisions, and the %c-Fos+ VP neurons in the SON after a 5-ng icv injection of ANG II. DOCA also significantly reduced the %c-Fos+ OT neurons in the SON after 10 ng ANG II and tended to attenuate 10 ng ANG II-induced OT secretion. However, the %c-Fos+ OT neurons in DOCA-treated rats was greater after 10 ng ANG II, and DOCA did not affect the %c-Fos+ OT neurons in the PVN nor VP secretion or c-Fos immunoreactivity in either the SON or PVN after 10 ng ANG II. DOCA also did not significantly alter the effect of intraperitoneal (ip) cholecystokinin (62 microg) on %c-Fos+ OT neurons or of ip NaCl (2 ml of 2 M NaCl) on the %c-Fos+ OT and VP neurons. These findings indicate that DOCA attenuates the responsiveness of OT and VP neurons to ANG II without completely suppressing the activity of these neurons and, therefore, support the hypothesis that attenuation of OT neuronal activity is one mechanism by which mineralocorticoids enhance NaCl intake.  相似文献   

4.
A locally generated angiotensin system in rat carotid body   总被引:7,自引:0,他引:7  
Lam SY  Leung PS 《Regulatory peptides》2002,104(1-3):97-103
Orexinergic neurons originating in the perifornical, lateral hypothalamus project to numerous brain sites including neuroendocrine centers known to be important in the physiologic response to stress. Those projections suggest an action of endogenous orexin on adrenocorticotropin (ACTH) release, either by neuromodulatory effects in the paraventricular nucleus (PVN), or by neuroendocrine actions in the pituitary gland following release into the median eminence. We sought to determine if exogenously applied orexin A might act in the brain to alter ACTH release and to determine if a site of action in the hypothalamic paraventricular nucleus could be identified. Cerebroventricular administration of orexin A in conscious male rats resulted in a dose-related elevation in circulating ACTH levels. At 30 min post-infusion, ACTH levels were elevated 2.5-fold by the low dose of orexin A (0.3 nmol), 5.7-fold by the middle dose tested (1.0 nmol), and 7.5-fold by the highest dose tested (3.0 nmol). Pretreatment with a CRH-antagonist (i.v.) blocked the ability of i.c.v. administered orexin A to activate the hypothalamo-pituitary-adrenal (HPA) axis. Bath application of orexin A in hypothalamic slice preparations resulted in depolarizations (8.0+/-0.6 mV), accompanied by increases in spike frequency in identified magno- and parvocellular neurons in the PVN. Our data suggest a potential role for endogenous orexin in the hypothalamic regulation of stress hormone secretion.  相似文献   

5.
Hypothalamic neurosecretory neurons transcribe, translate, store, and secrete a large number of chemical messengers. The neurons contain hypothalamic signal substances that regulate the secretion of anterior pituitary hormones as well as the neurohypophysial peptides vasopressin and oxytocin. In addition to the classical hypophysiotropic hormones, a large number of neuropeptides and classical transmitters of amine and amino acid nature are present in the same cells. This is particularly evident in the magnocellular neurons of the supraoptic and paraventricular nuclei, and in parvocellular neurons of the arcuate and paraventricular nuclei. The changes in gene expression induced by experimental manipulations and the colocalization chemical messengers in hypothalamic neurosecretory neurons and its possible significance is summarized in this review.  相似文献   

6.
The adipocyte-derived hormone leptin acts in the brain to reduce body weight and fat mass. Recent studies suggest that parvocellular oxytocin (OXT) neurons of the hypothalamic paraventricular nucleus (PVN) can mediate body weight reduction through inhibition of food intake and increased energy expenditure. However, the role of OXT neurons of the PVN as a primary target of leptin has not been investigated. Here, we studied the potential role of OXT neurons of the PVN in leptin-mediated effects on body weight regulation in fasted rats. We demonstrated that intracerebroventricular (ICV) leptin activates STAT3 phosphorylation in OXT neurons of the PVN, showed that this occurs in a subpopulation of OXT neurons that innervate the nucleus of the solitary tract (NTS), and provided further evidence suggesting a role of OXT to mediate leptin’s actions on body weight. In addition, our results indicated that OXT neurons are responsive to ICV leptin and mediate leptin effects on body weight in diet induced obese (DIO) rats, which are resistant to the anorectic effects of the hormone. Thus, we conclude that leptin targets a specific subpopulation of parvocellular OXT neurons of the PVN, and that this action may be important for leptin’s ability to reduce body weight in both control and obese rats.  相似文献   

7.
Interleukin-1beta (IL-1beta) is involved in hypothalamic regulation of the neuroimmune response by influencing the synthesis and secretion of corticotropin releasing hormone (CRH), vasopressin (VP) and other stress-related mediators. VP secretion from magnocellular (MNC) neurons of the paraventricular nucleus (PVN) of the hypothalamus at the posterior pituitary and/or median eminence contributes to increasing adrenocorticotropin hormone (ACTH) output and ultimately glucocorticoid release, which then contributes to the stress response. In this study, using whole-cell patch clamp recordings from neurons in a slice preparation of the rat PVN, we show that MNC neurons are also influenced by IL-1beta. In response to 1 nM IL-1beta, 62% of MNC neurons tested depolarized (mean depolarization=10.9+/-1.4 mV); effects which were maintained in the presence of a sodium channel blocker, tetrodotoxin (TTX). The effects of IL-1beta on MNC neurons were blocked in the presence of a specific cyclooxygenase (COX)-2 inhibitor, NS-398, indicating a dependence on prostaglandins (PG) in mediating these effects. In response to direct application of 1 muM PGE2, 57% of MNC neurons depolarized, exhibiting a membrane potential change similar to that induced by IL-1beta (mean depolarization=7.8+/-1.1 mV). Voltage clamp experiments examining the effects of PGE2 on the currents evoked by slow voltage ramps revealed activation of a conductance characteristic of a non-selective cationic conductance (NSCC) (voltage-independent, with a reversal potential of -41.8+/-7.6 mV), suggesting that this prostanoid directly modifies cationic currents in MNC neurons. These data provide evidence that IL-1beta depolarizes MNC neurons in the PVN as a result of prostaglandin-mediated activation of a NSCC.  相似文献   

8.
Anatomical evidence is presented for an interaction of ACTH1-39 immunostained fibers and a specific population of hypothalamic paraventricular (PVN) neurons; these neurons project to the dorsal vagal complex (DVC) of brainstem medulla. Bilateral injection of 10% HRP-WGA into DVC is incorporated into nerve terminals and transported retrogradely to cell bodies in the parvocellular subdivision of PVN, as revealed by standard HRP-WGA histochemistry or antibody to wheatgerm agglutinin followed by immunocytochemical techniques. Labeled cells are localized predominantly in the ventral portion of the caudal medial parvocellular subdivision and ventrolaterally in the posterior subnucleus of PVN. Few labeled cells are seen in the anterior parvocellular PVN, rostrally in the medial parvocellular component and in the dorsal cap. HRP-WGA cells are rarely observed in the magnocellular divisions of PVN. Dual-staining immunocytochemical-retrograde tracing techniques in the same tissue section demonstrate ACTH1-39 fibers in intimate anatomical proximity to parvocellular PVN neurons that project to DVC. It is suggested that this interaction may partially account for the known cardiovascular effects of opiocortins and supports the role of the paraventricular nucleus in hypothalamic integration and modulation of cardiovascular control.  相似文献   

9.
The present study sought to determine whether water deprivation increases Fos immunoreactivity, a neuronal marker related to synaptic activation, in sympathetic-regulatory neurons of the hypothalamic paraventricular nucleus (PVN). Fluorogold (4%, 50 nl) and cholera toxin subunit B (0.25%, 20-30 nl) were microinjected into the spinal cord (T1-T3) and rostral ventrolateral medulla (RVLM), respectively. Rats were then deprived of water but not food for 48 h. Water deprivation significantly increased the number of Fos-positive nuclei throughout the dorsal, ventrolateral, and lateral parvocellular divisions of the PVN (water deprived, 215 +/- 23 cells; control, 45 +/- 7 cells, P < 0.01). Moreover, a significantly greater number of Fos-positive nuclei were localized in spinally projecting (11 +/- 3 vs. 2 +/- 1 cells, P < 0.025) and RVLM-projecting (45 +/- 7 vs. 7 +/- 1 cells, P < 0.025) neurons of the PVN in water-deprived vs. control rats, respectively. The majority of these double-labeled neurons was found in the ventrolateral and lateral parvocellular divisions of the ipsilateral PVN. Interestingly, a significantly greater percentage of RVLM-projecting PVN neurons were Fos positive compared with spinally projecting PVN neurons in the ventrolateral (25.8 +/- 0.7 vs. 8.0 +/- 1.5%, respectively, P < 0.01) and lateral (23.4 +/- 2.1 vs. 5.0 +/- 0.9%, respectively, P > 0.01) parvocellular divisions. In addition, we analyzed spinally projecting neurons of the RVLM and found a significantly greater percentage were Fos positive in water-deprived rats than in control rats (26 +/- 3 vs. 3 +/- 1%, respectively; P < 0.001). Collectively, the present findings indicate that water deprivation evokes a distinct cellular response in sympathetic-regulatory neurons of the PVN and RVLM.  相似文献   

10.
Neuropeptide FF (NPFF) and neuropeptide VF (NPVF) are octapeptides belonging to the RFamide family of peptides that have been implicated in a wide variety of physiological functions in the brain, including central autonomic and neuroendocrine regulation. The effects of these peptides are mediated via NPFF1 and NPFF2 receptors that are abundantly expressed in the rat brain, including the hypothalamic paraventricular nucleus (PVN), an autonomic nucleus critical for the secretion of neurohormones and the regulation of sympathetic outflow. In this study, we examined, using whole cell patch-clamp recordings in the brain slice, the effects of NPFF and NPVF on inhibitory GABAergic synaptic input to parvocellular PVN neurons. Under voltage-clamp conditions, NPFF and NPVF reversibly and in a concentration-dependent manner reduced the evoked bicuculline-sensitive inhibitory postsynaptic currents (IPSCs) in parvocellular PVN neurons by 25 and 31%, respectively. RF9, a potent and selective NPFF receptor antagonist, blocked NPFF-induced reduction of IPSCs. Recordings of miniature IPSCs in these neurons following NPFF and NPVF applications showed a reduction in frequency but not amplitude, indicating a presynaptic locus of action for these peptides. Under current-clamp conditions, NPVF and NPFF caused depolarization (6-9 mV) of neurons that persisted in the presence of TTX but was abolished in the presence of bicuculline. Collectively, these data provide evidence for a disinhibitory role of NPFF and NPVF in the hypothalamic PVN via an attenuation of GABAergic inhibitory input to parvocellular neurons of this nucleus and explain the central autonomic effects of NPFF.  相似文献   

11.
The neuropeptide thyrotropin releasing hormone (TRH) is capable of influencing both neuronal mechanisms in the brain and the activity of the pituitary-thyroid endocrine axis. By the use of immunocytochemical techniques, first the ultrastructural features of TRH-immunoreactive (IR) perikarya and neuronal processes were studied, and then the relationship between TRH-IR neuronal elements and dopamine-beta-hydroxylase (DBH) or phenylethanolamine-N-methyltransferase (PNMT)-IR catecholaminergic axons was analyzed in the parvocellular subnuclei of the hypothalamic paraventricular nucleus (PVN). In control animals, only TRH-IR axons were detected and some of them seemed to follow the contour of immunonegative neurons. Colchicine treatment resulted in the appearance of TRH-IR material in parvocellular neurons of the PVN. At the ultrastructural level, immunolabel was associated with rough endoplasmic reticulum, free ribosomes and neurosecretory granules. Non-labelled axons formed synaptic specializations with both dendrites and perikarya of the TRH-synthesizing neurons. TRH-IR axons located in the parvocellular units of the PVN exhibited numerous intensely labelled dense-core and fewer small electron lucent vesicles. These axons were frequently observed to terminate on parvocellular neurons, forming both bouton- and en passant-type connections. The simultaneous light microscopic localization of DBH or PNMT-IR axons and TRH-synthesizing neurons demonstrated that catecholaminergic fibers established contacts with the dendrites and cell bodies of TRH-IR neurons. Ultrastructural analysis revealed the formation of asymmetric axo-somatic and axo-dendritic synaptic specializations between PNMT-immunopositive, adrenergic axons and TRH-IR neurons in the periventricular and medial parvocellular subnuclei of the PVN. These morphological data indicate that the hypophysiotrophic, thyrotropin releasing hormone synthesizing neurons of the PVN are directly influenced by the central epinephrine system and that TRH may act as a neurotransmitter or neuromodulator upon other paraventricular neurons.  相似文献   

12.
The present study investigated the effect of acute thermal stimulation in conscious rats on the production of Fos, a marker of increased neuronal activity, in spinally projecting and nitrergic neurons in the hypothalamic paraventricular nucleus (PVN). The PVN contains a high concentration of nitrergic neurons, as well as neurons that project to the intermediolateral cell column (IML) of the spinal cord that can directly influence sympathetic nerve activity (SNA). During thermal stimulation, the PVN is activated, but it is unknown whether spinally projecting PVN neurons and the nitrergic neurons are involved. Compared with controls, rats exposed to an environmental temperature of 39 degrees C for 1 h had a 10-fold increase in the number of cells producing Fos in the PVN (133 +/- 23 vs. 1,336 +/- 43, respectively, P < 0.0001). Of the spinally projecting neurons in the PVN of heated rats (98 +/- 10), over 20% expressed Fos. Additionally, of the nitrergic neurons (NADPH-diaphorase positive) located in the parvocellular PVN (723 +/- 17), 40% also expressed Fos (P < 0.0001 compared with controls). Finally, there was a significant increase in the number of spinally projecting neurons in the PVN that were nitrergic and expressed Fos after heat exposure (12%) compared with controls (0.1%) (P < 0.0001). These results suggest that spinally projecting and nitrergic neurons in the PVN may contribute to the central pathways activated by thermal stimulation.  相似文献   

13.
Activation of pituitary angiotensin (ANG II) type 1 receptors (AT1) mobilizes intracellular Ca2+, resulting in increased prolactin secretion. We first assessed desensitization of AT1 receptors by testing ANG II-induced intracellular Ca2+ concentration ([Ca2+](i)) response in rat anterior pituitary cells. A period as short as 1 min with 10(-7) M ANG II was effective in producing desensitization (remaining response was 66.8 +/- 2.1% of nondesensitized cells). Desensitization was a concentration-related event (EC(50): 1.1 nM). Although partial recovery was obtained 15 min after removal of ANG II, full response could not be achieved even after 4 h (77.6 +/- 2.4%). Experiments with 5 x 10(-7) M ionomycin indicated that intracellular Ca2+ stores of desensitized cells had already recovered when desensitization was still significant. The thyrotropin-releasing hormone (TRH)-induced intracellular Ca2+ peak was attenuated in the ANG II-pretreated group. ANG II pretreatment also desensitized ANG II- and TRH-induced inositol phosphate generation (72.8 +/- 3.5 and 69.6 +/- 6.1%, respectively, for inositol triphosphate) and prolactin secretion (53.4 +/- 2.3 and 65.1 +/- 7.2%), effects independent of PKC activation. We conclude that, in pituitary cells, inositol triphosphate formation, [Ca2+](i) mobilization, and prolactin release in response to ANG II undergo rapid, long-lasting, homologous and heterologous desensitization.  相似文献   

14.
The heterogeneous paraventricular nucleus (PVN) of birds offers favorable conditions for the analysis of intrinsic, afferent, and efferent connections of neuroendocrine systems. Paraventricular neurons are successfully impregnated with the Golgi-technique. The findings indicate a direct influence of the cerebrospinal fluid (CSF) on the magnocellular neurons that, via their axon terminals in the neural lobe of the pituitary, are also exposed to the hemal milieu. The magnocellular neurons are intermingled with parvocellular elements which may represent local interneurons. A group of parvocellular nerve cells is identified as CSF-contacting neurons. This type of cell forms a basic morphologic component of the avian neuroendocrine apparatus. Immunocytochemical and ultrastructural studies further support the concept of neuronal interactions between parvocellular and magnocellular elements. Moreover, these findings speak in favor of the existence of recurrent collaterals of the magnocellular neurons. Nerve cells giving rise to afferent connections to the PVN are located in the limbic system and autonomic areas of the upper and lower brainstem. Further afferents may originate from the subfornical organ, the organon vasculosum laminae terminalis, the ventral tegmentum, and the area postrema. Via efferent projections, the PVN is connected to the nucleus accumbens, lateral septum, several hypothalamic nuclei, the neural lobe of the pituitary, the organon vasculosum laminae terminalis, the subfornical organ, the pineal organ, the area postrema, the lateral habenular complex, and various autonomic areas of the reticular formation in the upper and lower brainstem and the spinal cord. In conclusion, the PVN may be regarded as an integral component of the neuroendocrine apparatus reciprocally coupled to the limbic system, several circumventricular organs, and various autonomic centers of the brain.  相似文献   

15.
The paraventricular nucleus (PVN) of the hypothalamus is known to be an important site of integration in the central nervous system for sympathetic outflow. ANG II and nitric oxide (NO) play an important role in regulation of sympathetic nerve activity. The purpose of the present study was to examine how the interaction between NO and ANG II within the PVN affects sympathetic outflow in rats. Renal sympathetic nerve discharge (RSND), arterial blood pressure (AP), and heart rate (HR) were measured in response to administration of ANG II and N(G)-monomethyl-l-arginine (L-NMMA) into the PVN. Microinjection of ANG II (0.05, 0.5, and 1.0 nmol) into the PVN increased RSND, AP, and HR in a dose-dependent manner, resulting in increases of 53 +/- 9%, 19 +/- 3 mmHg, and 32 +/- 12 beats/min from baseline, respectively, at the highest dose. These responses were significantly enhanced by prior microinjection of L-NMMA and were blocked by losartan, an ANG II type 1 receptor antagonist. Similarly, administration of antisense to neuronal NO synthase within the PVN also potentiated the ANG II responses. Conversely, overexpression of neuronal NOS within the PVN with adenoviral gene transfer significantly attenuated ANG II responses. Push-pull administration of ANG II (1 nmol) into the PVN induced an increase in NO release. Our data indicate that ANG II type 1 receptors within the PVN mediate an excitatory effect on RSND, AP, and HR. NO in the PVN, which can be induced by ANG II stimulation, in turn inhibits the ANG II-mediated increase in sympathetic nerve activity. This negative-feedback mechanism within the PVN may play an important role in maintaining the overall balance and tone of sympathetic outflow.  相似文献   

16.
17.
Chen X  Dong J  Jiang ZY 《Regulatory peptides》2012,173(1-3):21-26
Nesfatin-1 is a recently discovered neuropeptide that has been shown to decrease food intake after lateral, third, or fourth brain ventricle, cisterna magna administration, or PVN injection in ad libitum fed rats. With regards to the understanding of nesfatin-1 brain sites of action, additional microinjection studies will be necessary to define specific nuclei, in addition to the PVN, responsive to nesfatin-1 to get insight into the differential effects on food intake. In the present study, we evaluated nesfatin-1 action to modulate food intake response upon injection into the specific hypothalamic nuclei (PVN, LHA and VMN) in freely fed rats during the dark phase. We extend previous observations by showing that the nesfatin-1 (50 pmol) injected before the onset of the dark period significantly reduced the 1 to 5 h cumulative food intake in rats cannulated into the PVN, LHA, but not in rats cannulated into the VMN. Glucosensing neurons located in the hypothalamus are involved in glucoprivic feeding and homeostatic control of blood glucose. In order to shed light on the mechanisms by which nesfatin-1 exerts its satiety-promoting actions, we examined the effect of nesfatin-1 on the excitability of hypothalamic glucosensing neurons. Nesfatin-1 excited most of the glucose-inhibited (GI) neurons and inhibited most of the glucose-excited (GE) neurons in the PVN. Of 34 GI neurons in the LHA tested, inhibitory effects were seen in 70.6% (24/34) of GI neurons. The main effects were excitatory after intra-VMN administration of nesfatin-1 in GE neurons (27/35, 77.1%). Thus, our data clearly demonstrate that nesfatin-1 may exert at least a part of its physiological actions on the control of food intake as a direct result of its role in modulating the excitability of glucosensing neurons in the PVN, LHA and VMN.  相似文献   

18.
Water deprivation activates sympathoexcitatory neurons in the paraventricular nucleus (PVN); however, the neurotransmitters that mediate this activation are unknown. To test the hypothesis that ANG II and glutamate are involved, effects on blood pressure (BP) of bilateral PVN microinjections of ANG II type 1 receptor (AT1R) antagonists, candesartan and valsartan, or the ionotropic glutamate receptor antagonist, kynurenate, were determined in urethane-anesthetized water-deprived and water-replete male rats. Because PVN may activate sympathetic neurons via the rostral ventrolateral medulla (RVLM) and because PVN disinhibition increases sympathetic activity in part via increased drive of AT1R in the RVLM, candesartan was also bilaterally microinjected into the RVLM. Total blockade of the PVN with bilateral microinjections of muscimol, a GABA(A) agonist, decreased BP more (P < 0.05) in water-deprived (-29 +/- 8 mmHg) than in water-replete (-7 +/- 2 mmHg) rats, verifying that the PVN is required for BP maintenance during water deprivation. PVN candesartan slowly lowered BP by 7 +/- 1 mmHg (P < 0.05). In water-replete rats, however, candesartan did not alter BP (1 +/- 1 mmHg). Valsartan also produced a slowly developing decrease in arterial pressure (-6 +/- 1 mmHg; P < 0.05) in water-deprived but not in water-replete (-1 +/- 1 mmHg) rats. In water-deprived rats, PVN kynurenate rapidly decreased BP (-19 +/- 3 mmHg), and the response was greater (P < 0.05) than in water-replete rats (-4 +/- 1 mmHg). Finally, as in PVN, candesartan in RVLM slowly decreased BP in water-deprived (-8 +/- 1 mmHg; P < 0.05) but not in water-replete (-3 +/- 1 mmHg) rats. These data suggest that activation of AT(1) and glutamate receptors in PVN, as well as of AT1R in RVLM, contributes to BP maintenance during water deprivation.  相似文献   

19.
In addition to its role on water conservation, vasopressin (VP) regulates pituitary ACTH secretion by potentiating the stimulatory effects of corticotropin releasing hormone (CRH). The pituitary actions of VP are mediated by plasma membrane receptors of the V1b subtype, coupled to calcium-phospholipid signaling systems. VP is critical for adaptation of the hypothalamic-pituitary-adrenal (HPA) axis to stress as indicated by preferential expression of VP over CRH in parvocellular neurons of the hypothalamic paraventricular nucleus, and the upregulation of pituitary VP receptors during stress paradigms associated with corticotroph hyperresponsiveness. V1b receptor mRNA levels and coupling of the receptor to phospolipase C are stimulated by glucocorticoids, effects which may contribute to the refractoriness of VP-stimulated ACTH secretion to glucocorticoid feedback. The data suggest that vasopressinergic regulation of the HPA axis is critical for sustaining corticotroph responsiveness in the presence of high circulating glucocorticoid levels during chronic stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号