首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The perfused in situ juvenile rat preparation produces phrenic discharge patterns comparable to eupnea and gasping in vivo. These ventilatory patterns of eupnea and gasping differ in multiple aspects, including most prominently the rate of rise of inspiratory activity. Because gasping, but not eupnea, appeared similar after vagotomy in spontaneous breathing preparations, it has been assumed that gasping was unresponsive to afferent stimuli from pulmonary stretch receptors. In the present study, efferent activity of the phrenic nerve was recorded during eupnea and gasping in the in situ juvenile rat preparation. Gasping was induced in hypoxic-hypercapnia or ischemia. An increase in the pressure of tonic lung inflation from 1 to 10 cmH2O caused a prolongation of the duration between phrenic bursts in both eupnea or gasping. Bilateral vagotomy eliminated these changes. We conclude that the neural substrate mediating the Hering-Breuer reflex is retained in the in situ preparation and that the brain stem circuitry generating the respiratory patterns responds to tonic activation of pulmonary stretch receptors in a similar manner in eupnea and gasping. These findings support the homology of eupnea-like phrenic discharge patterns in the reduced in situ preparation and eupnea in vivo and disprove the common supposition that gasping is insensitive to vagal afferent feedback from pulmonary stretch receptor mechanisms.  相似文献   

2.
We hypothesized that the in situ perfused preparation of the juvenile rat exhibits patterns of ventilatory activity comparable to eupnea and gasping in vivo. To evaluate this hypothesis, we examined high-frequency oscillations of activity of the phrenic nerve at 27-34 degrees C. The peak frequency of these high-frequency oscillations was defined from power spectral analysis. In situ, recordings were obtained in hyperoxic normocapnia, during ventilatory cycles in which the peak of integrated phrenic activity was achieved late in the burst, as in eupnea in vivo. Recordings were also obtained in hypoxic hypercapnia, when the peak of integrated phrenic activity occurred in the first half of the burst, as in gasping in vivo. In situ, peak frequencies in the power spectra were significantly higher in gasping than during eupnea. Frequencies during eupnea and gasping were progressively elevated as the temperature of the in situ preparation was increased. The shift in peak frequencies between eupnea and gasping and the temperature sensitivity of frequencies in situ were the same as in vivo. Results provide additional support for the conclusion that the in situ preparation demonstrates distinctly different patterns of automatic ventilatory activity, comparable to eupnea and gasping in vivo.  相似文献   

3.
This study evaluated possible neuronal mechanisms responsible for the transition from normal breathing (eupnea) to gasping. We hypothesized that a blockade of both inhibitory glycinergic synaptic transmission and potassium channels, combined with an increase in extracellular concentration of potassium, would induce a switch from an eupneic respiratory pattern to gasping. Efferent activities of the phrenic, vagal, and hypoglossal nerves were recorded during eupnea and ischemia-induced gasping in a perfused in situ preparation of the juvenile rat (4-6 wk of age). To block potassium channels, 4-aminopyridine (4-AP, 1-10 microM) was administered. Strychnine (0.2-0.6 microM) was used to block glycinergic neurotransmission. After administrations of 4-AP, excess extracellular potassium (10.25-17.25 mM), and strychnine, the incrementing pattern of eupneic phrenic activity was altered to a decrementing discharge. Hypoglossal and vagal activities became concentrated to the period of the phrenic burst with expiratory activity being reduced or eliminated. These changes in neural activities were similar to those in ischemia-induced gasping. Results are consistent with the concept that the elicitation of gasping represents a switch from a network-based rhythmogenesis for eupnea to a pacemaker-driven mechanism.  相似文献   

4.
Differing activities of medullary respiratory neurons in eupnea and gasping   总被引:1,自引:0,他引:1  
Our purpose was to compare further eupneic ventilatory activity with that of gasping. Decerebrate, paralyzed, and ventilated cats were used; the vagi were sectioned within the thorax caudal to the laryngeal branches. Activities of the phrenic nerve and medullary respiratory neurons were recorded. Antidromic invasion was used to define bulbospinal, laryngeal, or not antidromically activated units. The ventilatory pattern was reversibly altered to gasping by exposure to 1% carbon monoxide in air. In eupnea, activities of inspiratory neurons commenced at various times during inspiration, and for most the discharge frequency gradually increased. In gasping, the peak discharge frequency of inspiratory neurons was unaltered. However, all commenced activities at the start of the phrenic burst and reached peak discharge almost immediately. The discharge frequencies of all groups of expiratory neurons fell in gasping, with many neurons ceasing activity entirely. These data are consistent with the hypothesis that brain stem mechanisms controlling eupnea and gasping differ fundamentally.  相似文献   

5.
Single-fiber phrenic nerve action potentials were recorded together with activity of contralateral whole phrenic nerve rootlets during eupnea and gasping in decerebrate, cerebellectomized, vagotomized, paralyzed, and ventilated cats. Gasping was reversibly produced by cooling a fork thermode positioned through the pontomedullary junction. In eupnea, phrenic motoneurons were distributed into "early" and "late" populations relative to their onset of activity during inspiration. During gasping, however, both fiber types typically commenced activity at the beginning of the phrenic nerve burst. Moreover, late fibers, but not early units, exhibited an augmentation of discharge frequency with the onset of gasping. The concentration of activity of all phrenic motoneurons at the beginning of inspiration and the increase in late-unit discharge frequency account for the faster rise of the gasp as compared with the eupneic breath. It is concluded that the pattern of phrenic nerve activation during gasping differs fundamentally from that during eupnea. These results support the concept that mechanisms underlying the neurogenesis of gasping and eupnea may not be identical.  相似文献   

6.
Phase locking of the respiratory rhythm in cats to a mechanical ventilator   总被引:1,自引:0,他引:1  
Mechanical ventilation of paralyzed, pentobarbital-anesthetized adult cats was performed while recording phrenic nerve activity. The periodic changes in lung volume owing to mechanical ventilation affected the rhythm of central respiratory activity, resulting in a variety of regular and irregular patterns of coupling between respiratory system output, monitored by phrenic activity, and the mechanical ventilator. Phase-locked patterns, in which phrenic burst onset occurred at specific and repetitive phase(s) of the mechanical ventilator, with ratios of ventilator frequency: phrenic burst frequency of 1:2, 1:1, 3:2, 2:1, and 3:1 were observed. Regular and irregular patterns occurred over specific ranges of frequency and volume of the mechanical ventilator. A careful study was made of the 1:1 phase locking as the frequency and inflation volume of the mechanical ventilator were changed. The inspiratory time (TI) was defined as the interval between the time when phrenic activity began to rise and the onset of its rapid decline, and the expiratory time (TE) as the time between inspirations. In the 1:1 phase-locking region, as the frequency of the ventilator was increased both TI and TE decreased, and the phase of phrenic onset in the ventilator cycle changed. During ventilation with frequencies higher than the intrinsic phrenic frequency (initial burst frequency of phrenic activity with the ventilator turned off) inspiratory activity was prematurely terminated by lung inflation (Hering-Breuer inspiratory inhibitory reflex). During ventilation with frequencies lower than the intrinsic phrenic frequency, the onset of phrenic activity was delayed (TE was prolonged) by lung inflation (Hering-Breuer expiratory promoting reflex).  相似文献   

7.
In severe hypoxia or ischemia, normal eupneic breathing is replaced by gasping, which can serve as a powerful mechanism for "autoresuscitation." We have proposed that gasping is generated by medullary neurons having intrinsic pacemaker bursting properties dependent on a persistent sodium current. A number of neuromodulators, including serotonin, influence persistent sodium currents. Thus we hypothesized that endogenous serotonin is essential for gasping to be generated. To assess such a critical role for serotonin, a preparation of the perfused, juvenile in situ rat was used. Activities of the phrenic, hypoglossal, and vagal nerves were recorded. We added blockers of type 1 and/or type 2 classes of serotonergic receptors to the perfusate delivered to the preparation. Eupnea continued following additions of any of the blockers. Changes were limited to an increase in the frequency of phrenic bursts and a decline in peak heights of all neural activities. In ischemia, gasping was induced following any of the blockers. Few statistically significant changes in parameters of gasping were found. We thus did not find a differential suppression of gasping, compared with eupnea, following blockers of serotonin receptors. Such a differential suppression had been proposed based on findings using an in vitro preparation. We hypothesize that multiple neurotransmitters/neuromodulators influence medullary mechanisms underlying the neurogenesis of gasping. In greatly reduced in vitro preparations, the importance of any individual neuromodulator, such as serotonin, may be exaggerated compared with its role in more intact preparations.  相似文献   

8.
In severe hypoxia or ischemia, normal eupneic breathing fails and is replaced by gasping. Gasping serves as part of a process of autoresuscitation by which eupnea is reestablished. Medullary neurons, having a burster, pacemaker discharge, underlie gasping. Conductance through persistent sodium channels is essential for the burster discharge. This conductance is modulated by norepinephrine, acting on alpha 1-adrenergic receptors, and serotonin, acting on 5-HT2 receptors. We hypothesized that blockers of 5-HT2 receptors and alpha 1-adrenergic receptors would alter autoresuscitation. The in situ perfused preparation of the juvenile rat was used. Integrated phrenic discharge was switched from an incrementing pattern, akin to eupnea, to the decrementing pattern comparable to gasping in hypoxic hypercapnia. With a restoration of hyperoxic normocapnia, rhythmic, incrementing phrenic discharge returned within 10 s in most preparations. Following addition of blockers of alpha 1-adrenergic receptors (WB-4101, 0.0625-0.500 microM) and/or blockers of 5-HT2 (ketanserin, 1.25-10 microM) or multiple 5-HT receptors (methysergide, 3.0-10 microM) to the perfusate, incrementing phrenic discharge continued. Fictive gasping was still induced, although it ceased after significantly fewer decrementing bursts than in preparations than received no blockers. Moreover, the time for recovery of rhythmic activity was significantly prolonged. This prolongation was in excess of 100 s in all preparations that received both WB-4101 (above 0.125 microM) and methysergide (above 2.5 microM). We conclude that activation of adrenergic and 5-HT2 receptors is important to sustain gasping and to restore rhythmic respiratory activity after hypoxia-induced depression.  相似文献   

9.
Expiratory neural activities in gasping   总被引:3,自引:0,他引:3  
The purpose was to characterize expiratory-related neural activities in eupnea and gasping. In decerebrate and vagotomized cats, activities were recorded from the phrenic nerve, spinal intercostal and abdominal nerves, and recurrent laryngeal nerve and its branches. Neural inspiration was defined by phrenic discharge. The spinal and laryngeal nerves discharged in inspiration, expiration, or during both phases. Gasping was induced by freezing the brain stem at the pontomedullary junction, exposure to asphyxia or anoxia, or ligation of the basilar artery and its branches. In gasping, peak phrenic activity typically increased as did inspiratory-related activities of laryngeal and spinal nerves. Expiratory activities were greatly reduced in gasping, with some activities being completely eliminated. Reductions of expiratory activity were more prominent for spinal than laryngeal nerves. Similar results were obtained in cats having intact vagi that were ventilated with a servo-respirator so that lung inflation paralleled phrenic activity. The concept that gasping differs fundamentally form other ventilatory patterns is discussed.  相似文献   

10.
Respiratory motor outputs contain medium-(MFO) and high-frequency oscillations (HFO) that are much faster than the fundamental breathing rhythm. However, the associated changes in power spectral characteristics of the major respiratory outputs in unanesthetized animals during the transition from normal eupneic breathing to hypoxic gasping have not been well characterized. Experiments were performed on nine unanesthetized, chemo- and barodenervated, decerebrate adult rats, in which asphyxia elicited hyperpnea, followed by apnea and gasping. A gated fast Fourier transform (FFT) analysis and a novel time-frequency representation (TFR) analysis were developed and applied to whole phrenic and to medial branch hypoglossal nerve recordings. Our results revealed one MFO and one HFO peak in the phrenic output during eupnea, where HFO was prominent in the first two-thirds of the burst and MFO was prominent in the latter two-thirds of the burst. The hypoglossal activity contained broadband power distribution with several distinct peaks. During gasping, two high-amplitude MFO peaks were present in phrenic activity, and this state was characterized by a conspicuous loss in HFO power. Hypoglossal activity showed a significant reduction in power and a shift in its distribution toward lower frequencies during gasping. TFR analysis of phrenic activity revealed the increasing importance of an initial low-frequency "start-up" burst that grew in relative intensity as hypoxic conditions persisted. Significant changes in MFO and HFO rhythm generation during the transition from eupnea to gasping presumably reflect a reconfiguration of the respiratory network and/or alterations in signal processing by the circuitry associated with the two motor pools.  相似文献   

11.
Recovery of breathing pattern after 15 min of cerebral ischemia in rabbits   总被引:1,自引:0,他引:1  
The study was undertaken to ascertain the neural control of breathing and vagal reflexes during and after cerebral ischemia. The experiments were performed on anesthetized, paralyzed, and artificially ventilated rabbits. Cerebral ischemia was induced by reversible intrathoracic occlusion of the brachiocephalic trunk and the left subclavian and both internal thoracic arteries for 15 min. The effect of cerebral ischemia on breathing pattern was assessed by monitoring the integrated activities of phrenic and recurrent laryngeal nerves. Ischemia produced enhancement of breathing followed by apnea and gasping. During enhanced breathing as well as during gasping, the inspiratory-inhibiting effect of lung inflation (Breuer-Hering reflex) was abolished. When brain circulation was restored, respiratory activity started with gasps, which later were intermingled with eupneic type of inspirations. During the onset of a eupneic breath, lung inflation produced inspiratory facilitation but never an inhibition. However, after 30 min of recovery from cerebral ischemia, the Breuer-Hering reflex was restored. Results show that precise analysis of vagal reflexes and respiratory pattern during ischemia and resuscitation may be used as an indicator of resumption of autonomic activity in the brain stem.  相似文献   

12.
The aim of the present study was to determine characteristics of fast oscillations in the juvenile rat phrenic nerve (Ph) and to establish their temperature and state dependence. Two different age-matched decerebrate, baro- and chemodenervated rat preparations, in vivo and in situ arterially perfused models, were used to examine three systemic properties: 1) generation and dynamics of fast oscillations in Ph activity (both preparations), 2) responses to anoxia (both preparations), and 3) the effects of temperature on fast oscillations (in situ only). Both juvenile preparations generated power and coherence in two major bands analogous to adult medium- and high-frequency oscillations (HFO) at frequencies that increased with temperature but were lower than in adults. At < 28 degrees C, however, Ph oscillations were confined primarily to one low-frequency band (20-45 Hz). During sustained anoxia, both preparations produced stereotypical state changes from eupnea to hyperpnea to transition bursting (a behavior present only in vivo during incomplete ischemia) to gasping. Thus the juvenile rat produces a sequential pattern of responses to anoxia that are intermediate forms between those produced by neonates and those produced by adults. Time-frequency analysis determined that fast oscillations demonstrated dynamics over the course of the inspiratory burst and a state dependence similar to that of adults in vivo in which hyperpnea (and transition) bursts are associated with increases in HFO, while gasping contains no HFO. Our results confirm that both the fast oscillations in Ph activity and the coherence between Ph pairs produced by the juvenile rat are profoundly state- and temperature-dependent.  相似文献   

13.
Recovery from respiratory inhibition produced by the lung inflation reflex was studied in anesthetized dogs, paralyzed and ventilated with a respiratory pump. During constant ventilation the lungs were periodically inflated using positive end-expiratory pressure, while the respiratory motor output was monitored in the phrenic nerve. Inhibition of the phrenic discharge was followed by gradual recovery throughout 8-min inflation periods despite constant blood gases. Recording afferent potentials in a vagus nerve indicated that adaptation of pulmonary stretch receptors contributed to the initial recovery of the phrenic discharge, but this recovery continued after the receptor discharge had stabilized. The phrenic discharge also recovered after initial inhibition in two situations which avoided stretch receptor adaptation: a) when the stretch receptor discharge from the separate lungs was alternated in an overlapping manner by asynchronous pulmonary ventilation, and b) during continuous electrical stimulation of a vagus nerve. Phrenic activity was temporarily increased above its control value after periods of lung inflation, asynchronous ventilation and vagal stimulation. It is concluded that the lung inflation reflex gradually attenuates during prolonged stimulation due to both stretch receptor adaptation and changes within the central pathways.  相似文献   

14.
Phrenic afferents and their role in inspiratory control   总被引:4,自引:0,他引:4  
In anesthetized cats, with vagi cut and the spinal cord severed at the C8 level, phrenic motor and/or sensory discharge was recorded. Small afferent phrenic fibers were identified through their activation by lactic acid, hyperosmotic NaCl solution, or phenyl diguanide. They exhibited a spontaneous but irregular low-frequency discharge. Block of their conduction by procaine had no effect on eupneic motor phrenic activity. Large afferent phrenic fibers showed a spontaneous rhythmic discharge, and cold block (6 degrees C) of these fibers significantly prolonged the phrenic discharge time (Tphr) and total breath duration (TT) during eupnea. The stimulation of all afferent phrenic fibers lowered the impulse frequency of phrenic motoneurons (f impulses) and shortened both Tphr and TT. When the stimulation was performed during cold block all of the effects on phrenic output persisted, but changes in timing were less pronounced. Under procaine block, only the effects of phrenic nerve stimulation on Tphr persisted. These results suggest that both large and small afferent phrenic fibers control the inspiratory activity with a prominent role of small fibers on phrenic motoneuron impulse frequency.  相似文献   

15.
The respiratory pattern of gasping has been characterized on the phrenic nerve as rapidonset, rapid-rise, large-amplitude bursts of neural activity. Furthermore, medullary sites critical for the neurogenesis of gasping have been identified and are not the sites of identified respiratory neurons, such as the dorsal and ventral respiratory groups. I classified envelopes of phrenic nerve activity as eupneic breaths, or gasps based on the time-domain features of duration, shape, and amplitude. Gasps were elicited by hypoxia and low blood pressure in 9 of 12 decerebrate cats. Inspiratory times were 1.15 +/- 0.43 (SD) for eupneic breaths and 0.55 +/- 0.18s for gasps. The high-frequency peaks in the power spectra of phrenic nerve activity were at 80 +/- 13 Hz for eupneic breaths and at 120 +/- 21 Hz for gasps. Three of the 12 cats developed a breathing pattern that began as a normal breath and terminated in a gasp. Power spectra of the normal portion had eupneic spectral peaks (75 +/- 24 Hz); power spectra of the gasp portion had the high peaks at 110 +/- 23 Hz, a value 1.5 times higher than that for the normal peaks. Although this analysis of peripheral nerve activity cannot distinguish between two central pattern generators at two distinct anatomical sites or one pattern generator operating in two distinct modes, the fact that gasps were much shorter in duration and had markedly higher spectral peaks than control breaths supports the idea that the central pattern generator for gasping is not the central pattern generator for eupnea.  相似文献   

16.
Neurogenesis, control, and functional significance of gasping   总被引:6,自引:0,他引:6  
Gasps are frequently the first and last breaths of life. Gasping, which is generated by intrinsic medullary mechanisms, differs fundamentally from other automatic ventilatory patterns. A region of the lateral tegmental field of the medulla is critical for the neurogenesis of the gasp but has no role in eupnea. Neuronal mechanisms in separate brain stem regions may be responsible for the neurogenesis of different ventilatory patterns. This hypothesis is supported by the recording of independent respiratory rhythms simultaneously from isolated brain stem segments. Data from fetal and neonatal animals also support gasping and eupnea being generated by separate mechanisms. Gasping may represent the output of a simple but rugged pattern generator that functions as a backup system until the control system for eupnea is developed. Pacemaker elements are hypothesized as underlying the onset of inspiratory activity in gasping. Similar elements, in a different brain stem region, may be responsible for the onset of the eupneic inspiration with neural circuits involving the pons, the medulla, and the spinal cord serving to shape efferent respiratory-modulated neural discharges.  相似文献   

17.
In an unanesthetized decerebrate in situ arterially perfused brain stem preparation of mature rat, strychnine (0.05-0.2 microM) blockade of glycine receptors caused postinspiratory glottal constriction to occur earlier, shifting from early expiration to inspiration. This resulted in a paradoxical inspiratory-related narrowing of the upper airway. Stimulation of the trigeminal ethmoidal nerve (EN5; 20 Hz, 100 micros, 0.5-2 V) evoked a diving response, which included a reflex apnea, glottal constriction, and bradycardia. After strychnine administration, this pattern was converted to a maintained phrenic nerve discharge and a reduced glottal constriction that was interrupted intermittently by transient abductions. The onset of firing of postinspiratory neurons shifted from early expiration into neural inspiration in the presence of strychnine, but neurons maintained their tonic activation during EN5 stimulation, as observed during control. Inspiratory neurons that were hyperpolarized by EN5 stimulation in control conditions were powerfully excited after loss of glycinergic inhibition. Thus the integrity of glycinergic inhibition within the pontomedullary respiratory network is critical for the coordination of cranial and spinal motor outflows during eupnea but also for protective reflex regulation of the upper airway.  相似文献   

18.
The primaryhypothesis of this study was that the cough motor pattern is produced,at least in part, by the medullary respiratory neuronal network inresponse to inputs from "cough" and pulmonary stretch receptorrelay neurons in the nucleus tractus solitarii. Computer simulations ofa distributed network model with proposed connections from the nucleustractus solitarii to ventrolateral medullary respiratory neuronsproduced coughlike inspiratory and expiratory motor patterns. Predictedresponses of various "types" of neurons (I-DRIVER, I-AUG, I-DEC,E-AUG, and E-DEC) derived from the simulations were tested in vivo.Parallel and sequential responses of functionally characterizedrespiratory-modulated neurons were monitored during fictive cough indecerebrate, paralyzed, ventilated cats. Coughlike patterns in phrenicand lumbar nerves were elicited by mechanical stimulation of theintrathoracic trachea. Altered discharge patterns were measured in mosttypes of respiratory neurons during fictive cough. The resultssupported many of the specific predictions of our cough generationmodel and suggested several revisions. The two main conclusions were asfollows: 1) TheBötzinger/rostral ventral respiratory group neurons implicated inthe generation of the eupneic pattern of breathing also participate inthe configuration of the cough motor pattern.2) This altered activity ofBötzinger/rostral ventral respiratory group neurons istransmitted to phrenic, intercostal, and abdominal motoneurons via thesame bulbospinal neurons that provide descending drive during eupnea.

  相似文献   

19.
We recently identified a vagally mediated excitatory lung reflex by injecting hypertonic saline into the lung parenchyma (Yu J, Zhang JF, and Fletcher EC. J Appl Physiol 85: 1485-1492, 1998). This reflex increased amplitude and burst rate of phrenic (inspiratory) nerve activity and suppressed external oblique abdominal (expiratory) muscle activity. In the present study, we tested the hypothesis that bradykinin may activate extravagal pathways to stimulate breathing by assessing its reflex effects on respiratory drive. Bradykinin (1 microg/kg in 0.1 ml) was injected into the lung parenchyma of anesthetized, open-chest and artificially ventilated rabbits. In most cases, bradykinin increased phrenic amplitude, phrenic burst rate, and expiratory muscle activity. However, a variety of breathing patterns resulted, ranging from hyperpnea and tachypnea to rapid shallow breathing and apnea. Bradykinin acts like hypertonic saline in producing hyperpnea and tachypnea, yet the two agents clearly differ. Bradykinin produced a higher ratio of phrenic amplitude to inspiratory time and had longer latency than hypertonic saline. Although attenuated, bradykinin-induced respiratory responses persisted after vagotomy. We conclude that bradykinin activates multiple afferent pathways in the lung; portions of its respiratory reflexes are extravagal and arise from sympathetic afferents.  相似文献   

20.
The relationship between pulmonary volume-related feedback and inspiratory (CTI) and expiratory (CTE) phase durations during cough was determined. Cough was produced in anesthetized cats by mechanical stimulation of the intrathoracic tracheal lumen. During eupnea, the animals were exposed to single-breath inspiratory and expiratory resistive loads. Cough was associated with large increases in inspiratory volume (VI) and expiratory volume (VE) but no change in phase durations compared with eupnea. There was no relationship between VI and CTI during coughing. A linear relationship with a negative slope existed between VI and eupneic inspiratory time during control and inspiratory resistive loading trials. There was no relationship between VE and CTE during all coughs. However, when the first cough in a series or a single cough was analyzed, the VE/CTE relationship had a positive slope. A linear relationship with a negative slope existed between VE and eupneic expiratory time during control and expiratory resistive loading trials. These results support separate ventilatory pattern regulation during cough that does not include modulation of phase durations by pulmonary volume-related feedback.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号