首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
21S Dynein ATPase [EC 3.6.1.3] from axonemes of a Japanese sea urchin, Pseudocentrotus depressus, and its subunit fractions were studied to determine their kinetic properties in the steady state, using [gamma-32P]ATP at various concentrations, 5 mM divalent cations, and 20 mM imidazole at pH 7.0 and 0 degrees C. The following results were obtained. 1. 21S Dynein had a latent ATPase activity of about 0.63 mumol Pi/(mg . min) in 1 mM ATP, 100 mM KCl, 4 mM MgSO4, 0.5 mM EDTA, and 30 mM Tris-HCl at pH 8.0 and 25 degrees C. Its exposure to 0.1% Triton X-100 for 5 min at 25 degrees C induced an increase in the ATPase activity to about 3.75 mumol Pi/(mg . min) and treatment at 40 degrees C for 5 min also induced a similar activation. 2. The double-reciprocal plot for the ATPase activity of dynein activated by the treatment at 40 degrees C consisted of two straight lines, while that of nonactivated 21S dynein fitted a single straight line. 3. In low ionic strength solution, the Mg- and Mn-ATPase of 21S dynein showed substrate inhibition at ATP concentrations above 0.1 mM; the inhibition decreased with increasing ionic strength. Ca- and Sr-ATPase showed no substrate inhibition. 4. Both the Vmax and Km values of dynein ATPase decreased reversibly upon addition of about 40% (v/v) glycerol. In the presence of glycerol, the dynein ATPase showed an initial burst of Pi liberation. The apparent Pi-burst size was 1.0 mol/(10(6) g protein) and the true size was calculated to be 1.6 mol/1,250 K after correcting for the effect of Pi liberation in the steady state and the purity of our preparation. 5. One of the subunit fractions of 21S dynein which was obtained by the method of Tang et al. showed substrate inhibition and an initial burst of Pi liberation of 1.4 mol/(10(6) g protein) in the presence of 54% (v/v) glycerol.  相似文献   

2.
When 21S dynein ATPase [EC 3.6.1.3] from sea urchin sperm flagellar axonemes was mixed with the salt-extracted axonemes, the ATPase activity was much higher than the sum of ATPase activities in the two fractions, as reported previously (Gibbons, I.R. & Fronk, E. (1979) J. Biol. Chem. 254, 187-196). This high ATPase level was for the first time demonstrated to be due to the activation of the 21S dynein ATPase activity by the axonemes. The mode of the activation was studied to get an insight into the mechanism of dynein-microtubule interaction. The salt-extracted axonemes caused a 7- to 8-fold activation of the 21S dynein ATPase activity at an axoneme : dynein weight ratio of about 14 : 1. The activation was maximal at a low ionic strength (no KCl) at pH 7.9-8.3. Under these conditions, 21S dynein rebound to the salt-extracted axonemes. The maximal binding ratio of 21S dynein to the axonemes was the same as that observed in the maximal activation of 21S dynein ATPase. The sliding between the outer doublet microtubules in the trypsin-treated 21S dynein-rebound axonemes took place upon the addition of 0.05-0.1 mM ATP in the absence of KCl. During the sliding, the rate of ATP hydrolysis was at the same level as that of the 21S dynein activated by the salt-extracted axonemes. However, it decreased to the level of 21S dynein alone after the sliding. These results suggested that an interaction of the axoneme-rebound 21S dynein with B-subfibers of the adjacent outer doublet microtubules in the axoneme causes the activation of the ATPase activity.  相似文献   

3.
The presence of low concentrations of methanol or isopropyl alcohol (2-5%, v/v) in the assay medium stabilizes the latency of dynein 1 from sea urchin sperm flagella, with about a 50% decrease in ATPase level compared to that in the absence of solvent. Somewhat higher concentrations (10-20%, v/v) of these solvents in the assay give a 5-10-fold activation of ATPase activity. Dioxane, formamide, and dimethylformamide, on the other hand, always activate the ATPase activity, with a 5-10-fold increase observed at about 15% (v/v). The activation of latent ATPase activity by solvents is reversible for short exposures, especially in the presence of ATP and at low temperature, but the activation becomes irreversible upon more prolonged exposure. The rate constant for irreversible activation by 16% methanol at 21 degrees C is 0.08 min-1, compared to rates of 0.44 and 0.02 min-1 for activation by 0.05% Triton X-100 at 21 and 0 degree C, respectively. The slowness of this reversible activation induced by methanol and by Triton X-100 suggests that it is the result of large-scale conformational changes in the structure of the dynein. However, the activation by methanol occurs without the dissociation of the alpha and beta subunits of dynein that is observed with Triton X-100. The presence of 1 mM MgATP, or of 100 microM MgATP and 10 microM vanadate substantially protects latent dynein from activation by 0.05% Triton X-100.  相似文献   

4.
Outer dynein arm polypeptides that possess Mg+2-adenosine triphosphatase (ATPase) activity have been extracted from the flagellar axonemes of demembranated bovine sperm. Electron microscopy of intact and salt-extracted sperm demonstrates a relatively selective removal of the outer dynein arms. The salt extract contains a specific ATPase activity of 55 nmoles inorganic phosphate (Pi)/min/mg protein. Sucrose density gradient centrifugation of this extract results in a 6-fold increase in specific activity of ATPase (333 nmole/Pi/min/mg protein), which sediments as a single 13S peak. Concomitant with the increase in specific activity, there is enrichment of three high molecular weight polypeptides (Mr greater than 300,000) characteristic of dynein heavy chains. ATPase activities in the initial extract and in the 13S peak are inhibited by concentrations of vanadate and erythro-9-[3-2-(hydroxynonyl)]adenine similar to those that inhibit ATPase activity in sea urchin sperm dynein. These findings indicate that outer arm dynein ATPase can be extracted and partially purified from bovine sperm.  相似文献   

5.
Some properties of bound and soluble dynein from sea urchin sperm flagella   总被引:24,自引:19,他引:5  
Axonemes were isolated from sperm of Colobocentrotus by a procedure involving two extractions with 1% Triton X-100 and washing The isolated axonemes contained 7 x 1015 g protein per µm of their length. Treatment of the axonemes with 0 5 M KCl for 30 min extracted 50–70% of the flagellar ATPase protein, dynein, and removed preferentially the outer arms from the doublet tubules. Almost all of the dynein (85–95%) could be extracted from the axonemes by dialysis at low ionic strength. In both cases the extracted dynein sedimented through sucrose gradients at 12–14S, and no 30S form was observed The enzymic properties of dynein changed when it was extracted from the axonemes into solution. Solubilization had a particularly marked effect on the KCl- and pH-dependence of the ATPase activity. The pH-dependence of soluble dynein was fairly simple with a single peak extending from about pH 6 to pH 10. The pH-dependence of bound dynein was more complex. In 0.1 M KCl, the bound activity appeared to peak at about pH 9, and dropped off rapidly with decreasing pH, reaching almost zero at pH 7; an additional peak at pH 10 0 resulted from the breakdown of the axonemal structure and solubilization of dynein that occurred at about this pH. A similar curve was obtained in the absence of KCl, except for the presence of a further large peak at pH 8 Measurement of the kinetic parameters of soluble dynein showed that both Km and Vmax increased with increasing concentrations of KCl up to 0.5 M When bound dynein was assayed under conditions that would induce motility in reactivated sperm (0 15 M KCl with Mg++ activation), it did not obey Michaelis-Menten kinetics, although it did when assayed under other conditions. The complex enzyme-kinetic behavior of bound dynein, and the differences between its enzymic properties and those of soluble dynein, may result from its interactions with tubulin and other axonemal proteins  相似文献   

6.
The basal ATPase activity of 30S dynein, whether obtained by extraction of ciliary axonemes with a high (0.5 M NaCl) or low (1 mM Tris-0.1 mM EDTA) ionic strength buffer is increased by NaCl, NaNO3, and Na acetate, with NaNO3 causing the largest increase. The calmodulin-activated ATPase activity of 30S dynein is also increased by addition of NaCl, NaNO3, or Na acetate, but the effects are less pronounced than on basal activity, so that the calmodulin activation ratio (CAR) decreases to 1.0 as salt concentration increases to 0.2 M. These salts also reduce the CAR of 14S dynein ATPase to 1.0 but by strongly inhibiting the calmodulin-activated ATPase activity and only slightly inhibiting the basal activity. Sodium fluoride differs both quantitatively and qualitatively from the other three salts studied. It inhibits the ATPase activity of both 14S and 30S dyneins at concentrations below 5 mM and, by a stronger inhibition of the calmodulin-activated ATPase activities, reduces the CAR to 1.0. Na acetate does not inhibit axonemal ATPase, nor does it interfere with the drop in turbidity caused by ATP and extracts very little protein from the axonemes. NaCl and, especially, NaNO3, cause a slow decrease in A350 of an axonemal suspension and an inhibition of the turbidity response to ATP. NaF, at concentrations comparable to those that inhibit the ATPase activities of the solubilized dyneins, also inhibits axonemal ATPase activity and the turbidity response. Pretreatment of demembranated axonemes with a buffer containing 0.25 M sodium acetate for 5 min followed by extraction for 5 min with a buffer containing 0.5 M NaCl and resolution of the extracted dynein on a sucrose density gradient generally yields a 30S dynein that is activated by calmodulin in a heterogeneous manner, ie, the "light" 30S dynein ATPase fractions are more activated than the "heavy" 30S dynein fractions. These results demonstrate specific anion effects on the basal and calmodulin-activated dynein ATPase activities, on the extractability of proteins from the axoneme, and on the turbidity response of demembranated axonemes to ATP. They also provide a method that frequently yields 30S dynein fractions with ATPase activities that are activated over twofold by added calmodulin.  相似文献   

7.
1. Dynein was extracted with 0.5 M KCl from Tetrahymena axonemes. SDS-gel electrophoresis of the extract indicated that about 50% of the extracted protein had a molecular weight of about 3.5 X 10(5), and that 90% of the proteins with this weight had been extracted. 2. The ATPase [EC 3.6.1.3] reaction of the KCl-extracted dynein fraction was enhanced by 60-80% by addition of the outer doublet fraction. It showed an initial burst of Pi liberation of about 1 mol per mol of proteins with a molecular weight of 3.5 X 10(5). 3. We examined the interaction of the dynein-tubulin system from Tetrahymena cilia with ten ATP analogs [2'-dATP, 3'-dATP, epsilonATP, FTP, 8-NH(CH3)-ATP, 8,3'-S-cyclo-ATP, 8-Br-ATP, 8-OCH3-ATP, 8-SCH3-ATP, and AMPPNP]. Among them, 2'-dATP and 3'-dATP were good substrates for dynein ATPase, as they induced the dissociation of dynein arms from the B-tubule of outer doublets, the sliding movement between outer doublets, and the bending movement of axonemes. The other analogs did not induce the dissociation or the sliding movement. 4. Among the ATP analogs tested, only 2'-dATP and 3'-dATP induced the reorientation of cilia on the Triton model of Tetrahymena; the reorientation rates were smaller than that induced by ATP.  相似文献   

8.
A high-resolution sodium dodecyl sulfate polyacrylamide gel electrophoresis system has been used to show the presence, in both whole sperm and isolated flagellar axonemes, of eight polypeptides migrating in the 300,000–350,000 molecular weight range characteristic of the heavy chains of dynein ATPase. Previously, only five such chains have been discernible. Extraction of isolated axonemes for 10 min at 4°C with a solution containing 0.6 M NaCl, pH 7, releases a mixture of particles that separate, in sucrose density gradient centrifugation, into a major peak, dynein 1 ATPase, sedimenting at 21 S and a minor peak at 12–14S. The polypeptide compositions of these two peaks are different. The dynein 1 peak, which contains most of the protein on the gradient, contains approximately equal quantities of two closely migrating heavy chains, with a small amount of a third, more slowly migrating chain; no other heavy chains appear in this peak. Two groups of smaller polypeptides (three intermediate chains, within the apparent molecular weight range 76,000–122,000 and four newly discovered light chains, within the apparent molecular weight range 14,000–24,000) cosediment with the 21 S peak. The heavy chain composition of the 12–14S peak is more complex, all eight heavy chains occurring in approximately the same ratios as occur in intact axonemes.  相似文献   

9.
The microtubule-dynein complex consisting of 22S dynein from Tetrahymena cilia and MAP-free microtubules was subjected to treatment with various concentrations of 1-ethyl-3-[3-(dimethylamino)-propyl]carbodiimide (EDC), a zero-length cross-linker, at 28 degrees C for 1 h. Following cross-linking of the microtubule-dynein complex, nearly all of the ATPase activity cosedimented with the microtubules in the presence of ATP. Electron microscopic observation by negative staining revealed that, following treatment with 1 mM EDC, the complex did not dissociate in the presence of ATP, although the dynein decoration pattern was disordered. The complex treated with 3 mM EDC exhibited normal microtubule-dynein patterns even after the addition of ATP. The ATPase activity of the microtubule-dynein complex was enhanced about 30-fold by the treatment with 1-3 mM EDC. These results indicate that the ATPase activation was caused by the close proximity of the dynein ATPase sites to the microtubules and provide further support for the functional interaction of all three dynein heads with the microtubule. The maximal specific activity was 12 mumol min-1 (mg of dynein)-1, corresponding to a turnover rate of 150 s-1, which may be the rate-limiting step at infinite microtubule concentration and may represent the maximum rate of force production in the axoneme.  相似文献   

10.
Previous work has shown that the dynein from axonemes of sea urchin sperm consists of two distinct fractions which differ substantially in their extractability by salt. Upon gel electrophoresis of whole demembranated axonemes solubilized with sodium dodecyl sulfate, the dynein fraction shows two closely spaced bands with apparent molecular weights of 520,000 and 460,000; the proteins in these bands are termed the A and B components of the dynein. Similar electrophoresis of the soluble fraction obtained by extracting the axonemes with 0.5 M NaCl shows a single prominent band containing approximately half of the A component of the dynein (A1 component). The residue of extracted axonemes contain the other half of the A component of the dynein (A2 component) and all the B component. Densitometry of the bands indicates that the A1, A2 and B components of the dynein are present in approximately equal molar quantity. Electron microscopic studies show that the A1 component of the dynein constitutes the outer arms on the doublet tubules. Assay of ATPase activity in 0.05 M KCl and l mM ATP indicates about 65% of the total ATPase activity becomes soluble when the A1 component of the dynein is extracted with salt.  相似文献   

11.
The effects of five sulfhydryl (SH) reagents – N-ethylmaleimide (NEM), a spin-labeled maleimide (SLM), N-N′-phenylenedimaleimide (PPDM), bis(4-fluoro-3-nitrophenyl)sulfone (FNS), and carboxypyridine disulfide (CPDS) – on glycerol-treated, Triton X-100-demembranated ciliary axonemes of Tetrahymena, on the 30S and 14S dyneins extracted from such axonemes, and on the residual ATPase activity remaining associated with axonemes that have been extracted twice with Tris-EDTA have been examined as a function of pH in the range 6.9–8.6. Preincubation of axonemes and of solubilized 30S dynein with low concentrations of each of the five SH reagents, at 0°C and at 25°C, caused enhancement of the latent ATPase activity. PPDM was the most effective reagent, causing half-maximal enhancement (after 18 h at 0°C) at ~ 0.5 μM, corresponding to 0.19 moles/105 g axonemal protein. The rate constants, ka, for the enhancement reaction at 0°C depended on whether the 30S dynein was in situ or solubilized; the ratio ka (in situ) /ka (solubilized) was > 1 for NEM, ~ 1 for PPDM, and < 1 for FNS. For each SH reagent except CPDS, ka (at 0°C) increased markedly with increasing pH in the range pH 6.9–8.6; for CPDS ka increased only about fourfold. At long times of preincubation and high concentrations of NEM, SLM, PPDM, and CPDS, the enhancement of ATPase activity was followed by a loss of activity. The values of kL, the rate constants for loss of ATPase activity from the peak enhanced level, were much lower than the corresponding values for ka, and increased with increasing pH. With SLM and PPDM, inhibition continued until the ATPase activity was almost completely inhibited. With NEM, however, the initial rate of loss from the peak enhanced value decreased as the ATPase activity returned toward the control (unmodified) level, and further inhibition was very slow. The differences in degree of inhibition obtained with SLM as compared to NEM suggest that there are at least two classes of inhibitory SH groups on 30S dynein. The ATPase activity of 14S dynein was only inhibited by preincubation with NEM, SLM, PPDM, and, to a lesser extent, CPDS; kL increased with increasing pH. Preincubation of 14S dynein with FNS yielded conflicting results when the reaction was “stopped” by adding dithiothreitol. When 14S dynein was preincubated at 0 C with FNS and the ATPase activity was then assayed at 25°C, a biphasic pattern of enhancement followed by inhibition was obtained. The residual ATPase activity of twice-extracted axomenes was relatively insensitive to each of the SH reagents studied; an initial rapid loss of some 20–40% of the ATPase activity occurred, followed by a very slow further loss of activity. Increasing the pH increased this slow rate of inhibition. The residual ATPase activity of unmodified twice-extracted axonemes decreased slightly with increasing pH, in contrast to the slight increase observed with increasing pH for the ATPase activity of axonemes and of solubilized 30S and 14S dyneins. The presence of ATP during preincubation of axonemes with PPDM at O°C prevented the enhancement of ATPase activity; only a slow loss of ATPase activity was observed. This rate of loss of ATPase activity was slower than the rate of loss observed (after peak enhancement of activity was reached) when PPDM reacted with axonemes in the absence of ATP. In these properties the SH groups of 30s dynein responsible for the enhancement of latent ATPase activity and for the inhibition of ATPase activity do not resemble the SH1 and SH2 groups of myosin, respectively, since the presence of ATP increases the rates of reaction of SH1 and SH2 of myosin with SH reagents.  相似文献   

12.
Dynein arms and isolated dynein from Paramecium tetraurelia ciliary axonemes are comparable in structure, direction of force generation, and microtubule translocation ability to other dyneins. In situ arms have dimensions and substructure similar to those of Tetrahymena. Based on spoke arrangement in intact axonemes, arms translocate axonemal microtubules in sliding such that active dynein arms are (-) end directed motors and the doublet to which the body and cape of the arms binds (N) translocates the adjacent doublet (N + 1) tipward. After salt extraction, based on ATPase activity, paramecium dynein is found as a 22S and a 14S species. The 22S dynein is a three-headed molecule that has unfolded from the in situ dimensions; the 14S dynein is single headed. Both dyneins can be photocleaved by UV light (350 nm) in the presence of Mg2+, ATP and vanadate; the photocleavage pattern of 22S dynein differs from that seen with Tetrahymena. Both isolated dyneins translocate taxol-stabilized, bovine brain microtubules in vitro. Under standard conditions, 22S dynein, like comparable dyneins from other organisms, translocates at velocities that are about three times faster than 14S dynein.  相似文献   

13.
ABSTRACT Dynein arms and isolated dynein from Paramecium tetraurelia ciliary axonemes are comparable in structure, direction of force generation, and microtubule translocation ability to other dyneins. In situ arms have dimensions and substructure similar to those of Tetrahymena. Based on spoke arrangement in intact axonemes, arms translocate axonemal microtubules in sliding such that active dynein arms are (-) end directed motors and the doublet to which the body and cape of the arms binds (N) translocates the adjacent doublet (N+1) upward. After salt extraction, based on ATPase activity, paramecium dynein is found as a 22S and a 14S species. the 22S dynein is a three-headed molecule that has unfolded from the in situ dimensions; the 14S dynein is single headed. Both dyneins can be photocleaved by UV light (350 nm) in the presence of Mg2-, ATP and vanadate; the photocleavage pattern of 22S dynein differs from that seen with Tetrahymena. Both isolated dyneins translocate taxol-stabilized, bovine brain microtubules in vitro. Under standard conditions, 22S dynein, like comparable dyneins from other organisms, translocates at velocities that are about three times faster than 14S dynein.  相似文献   

14.
Inner dynein arms, but not outer dynein arms, require the activity of KHP1(FLA10) to reach the distal part of axonemes before binding to outer doublet microtubules. We have analyzed the rescue of inner or outer dynein arms in quadriflagellate dikaryons by immunofluorescence microscopy of p28(IDA4), an inner dynein arm light chain, or IC69(ODA6), an outer dynein arm intermediate chain. In dikaryons two strains with different genetic backgrounds share the cytoplasm. As a consequence, wild-type axonemal precursors are transported to and assembled in mutant axonemes to complement the defects. The rescue of inner dynein arms containing p28 in ida4-wild-type dikaryons progressively occurred from the distal part of the axonemes and with time was extended towards the proximal part. In contrast, the rescue of outer dynein arms in oda2-wild-type dikaryons progressively occurred along the entire length of the axoneme. Rescue of inner dynein arms containing p28 in ida4fla10-fla10 dikaryons was similar to the rescue observed in ida4-wild-type dikaryons at 21 degrees C, whereas it was inhibited at 32 degrees C, a nonpermissive temperature for KHP1(FLA10). In contrast, rescue of outer dynein arms in oda2fla10-fla10 dikaryons was similar to the rescue observed in oda2-wild-type dikaryons at both 21 degrees and 32 degrees C and was not inhibited at 32 degrees C. Positioning of substructures in the internal part of the axonemal shaft requires the activity of kinesin homologue protein 1.  相似文献   

15.
The effect of solution composition and enzymic proteolysis on axonemes prepared from the sperm of sea urchins, Tripneustes gratilla, has been investigated. Aliquots of axonemes, prepared by treatment of sperm with Triton X-100 and differential centrifugation, were transferred to solutions of different composition with and without intervening tryptic proteolysis, and the particle conformations observed by dark-field and electron microscopy. In most solutions particles in partially digested preparations underwent conformational transformations to coiled or helix-like forms. Proteolysis was accompanied by an increase in the ATPase activity of the digest: by centrifuging down the insoluble digestion products it was shown that digestion resulted in the appearance of ATPase activity in the soluble phase with a concomitant decrease in ATPase activity in the pellet fraction. Gel electrophoresis showed this corresponded to the appearance of dynein in the supernatant and a decrease in dynein associated with the insoluble fraction. Supernatant dynein had a greater specific ATPase activity than dynein extracted from axonemes. Observations on specimens prepared for electron microscopy by thin sectioning allowed a rough correlation to be made between the dark-field observations, chemical analyses, and morphological alterations attendant with the proteolysis and solution conditions. It is concluded that in the intact axoneme the doublet tubules are under considerable tension and that proteolytic destruction of physical restraining elements allows spontaneous conformational alterations of the digestion products. In addition, proteolysis increases the specific ATPase activity of dynein and removes a portion of it from the axonemal structure.  相似文献   

16.
Binding of 21 S dynein ATPase isolated from Tetrahymena cilia to B subfibers of microtubule doublets was used as a model system to study dynein-tubulin interactions and their relationship to the microtubule-based sliding filament mechanism. Binding of 21 S dynein to both A and B microtubule subfibers is supported by monovalent as well as divalent ions. Monovalent cation chlorides support dynein binding to B subfibers with the specificity Li greater than Na congruent to K congruent to Rb congruent to Cs congruent to choline. The corresponding sodium or potassium halides follow the order F greater than Cl greater than Br greater than I. However, an optimal binding concentration of 40 mM KCl supports only 55% of the protein binding which takes place in 3 mM MgSO4 and does not stabilize dynein cross-bridges when whole axonemes are fixed for electron microscopy. Divalent metal ion chlorides (MgCl2, CaCl2, SrCl2, and BaCl2) have nearly equivalent effects at a concentration of 6 mM; all support about 140% of the binding observed in 6 mM MgSO4. The binding data suggest negative cooperativity or the presence of more than one class of dynein binding sites on the microtubule lattice. Low concentrations of MgATP2- induce dissociation of dynein bound to B subfibers in either 6 mM MgSO4 or 40 mM KCl. ADP, Pi, PPi, and AMP-PCH2P are unable to induce dynein dissociation, while AMP-PNHP and ATP4- both cause dynein release from B subfiber sites. The half-maximal sensitivities of the tubulin-dynein complex to MgATP2-, ATP4-, and adenylyl-imidodiphosphate (AMP.PNP) are 1.3 X 10(-8) M, 3.6 X 10(-5) M, and 4.7 X 10(-4) M respectively. Incubation of doublets or 21 S dynein in N-ethylmaleimide (NEM), which can inhibit active sliding, has no effect on either association of dynein with the B subfiber or on dissociation of the resulting dynein-B subfiber complex by MgATP2-.  相似文献   

17.
Milligram amounts of mammalian ciliary axonemes were isolated from porcine tracheas. These were reactivated upon addition of ATP, indicating intact functional capability with a mean beat frequency at 37 degrees C of 8.2 Hz. Electron microscopy showed typical ultrastructure of the isolated demembranated axonemes. Electrophoresis into polyacrylamide gradient gels containing sodium dodecyl sulfate revealed reproducible protein profiles from ten different tracheal preparations. Four major protein bands were observed in the 300-330 K molecular weight region, as well as tubulin at 51-54K. Extraction of the isolated tracheal axonemes with 0.6M KCl removed the outer dynein arms seen in electron microscopic cross-section of axonemes, preferentially solubilized two of the high molecular weight proteins at 320 and 330 K, and resulted in a three- to four-fold increase in ATPase specific activity. Sedimentation of the dialyzed salt extract on a 5-30% sucrose density gradient and subsequent fractionation yielded two peaks of ATPase activity. The faster migrating, 19S major ATPase peak correlated with the 320 and 330 K proteins, and two other proteins at 81 and 67 K. The slower sedimenting, 12S minor ATPase peak corresponded to a 308 K protein and two smaller proteins at 33 and 48 K. Thus, the outer dynein arm of tracheal cilia appeared to be associated with at least two high molecular weight proteins. These results demonstrate that adequate quantities of functionally intact axonemes can be reproducibly isolated from porcine tracheas, allowing further fractionation and analysis of mammalian cilia.  相似文献   

18.
J J Blum  A Hayes  C C Whisnant  G Rosen 《Biochemistry》1977,16(9):1937-1943
The effects of N-1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)maleimide(SLM) on the pellet height response and ATPase activity of glycerinated Triton X-100 extracted cilia of Tetrahymena pyriformis have been studied. Preincubation of cilia with SLM caused complete inhibition of the pellet height response and an initial increase in ATPase activity followed upon longer exposure to SLM by inhibition of ATPase. The effect of SLM on extracted 30S dynein was the reverse of that for whole cilia: ATPase activity was increased when 30S dynein was added to a mixture of ATP and SLM and inhibited when the 30S dynein was preincubated with SLM. The activity of 14S dynein was only inhibited by SLM. Electron spin resonance spectra of ciliary axonemes that had reacted with SLM for various times showed that much of the covalently bound SLM was strongly immobilized even after 1 min of reaction, when ATPase activity increased twofold. The proportion of strongly immobilized label increased with longer times of reaction. Addition of ATP to SLM-labeled axonemes caused a small decrease in the height of the spectral peak corresponding to strongly immobilized label as compared with that of weakly immobilized label, indicating an increase in rotational freedom of some covalently bound label. The results suggest that ATP causes a conformation change affecting a sulfhydryl group(s) involved in the mechanochemical system. It was also shown that beta,gamma-methylene ATP(AMP-PCP) is an inhibitor of dynein ATPase. This analogue of ATP is not hydrolyzed by whole cilia or by the extracted dyneins and does not cause a pellet height response. With Mg2+ as divalent cation, AMP-PCP inhibits 30S dynein more than it inhibits 14S dynein; with Ca2+, the inhibition of 30S dynein is reduced, and there is no inhibition of 14S dynein. Under conditions where AMP-PCP inhibited 30S dynein ATPase it was much less effective than ATP in protecting against the loss of ATPase activity by SLM. Although SLM inhibited Mg2+-activated 14S and 30S dyneins in solution, it did not inhibit ciliary ATPase activity. These results support the view that at least 2 SH groups are involved in ciliary motility and that their reactivity to SH reagents depends on whether the dyneins are in situ or have been extracted.  相似文献   

19.
The regulation of dynein activity to produce microtubule sliding in flagella has not been well understood. To gain more insight into the roles of ATP and ADP in the regulation, we examined the effects of fluorescent ATP analogues and fluorescent ADP analogues on the ATPase activity and motile activity of dynein. 21S dynein purified from the outer arms of sea urchin sperm flagella hydrolyzed BODIPY(R) FL ATP (FL-ATP) at 78% of the rate for ATP hydrolysis. FL-ATP at 0.1-1 mM, however, induced neither microtubule translocation on a dynein-coated glass surface nor sliding disintegration of elastase-treated axonemes. Direct observation of single molecules of the fluorescent analogues showed that both the ATP and ADP analogues were stably bound to dynein over several minutes (dissociation rates = 0.0038-0.0082/s). When microtubule translocation on 21S dynein was induced by ATP, the initial increase of the mean velocity was accelerated by preincubation of the dynein with ADP. Similar increase was also induced by the preincubation with the ADP analogues. Even after preincubation with ADP, FL-ATP did not induce sliding disintegration of elastase-treated axonemes. After preincubation with a nonhydrolyzable ATP analogue, AMPPNP (adenosine 5'-(beta:gamma-imido)triphosphate), however, FL-ATP induced sliding disintegration in approximately 10% of the axonemes. These results indicate that both noncatalytic ATP binding and stable ADP binding, in addition to ATP hydrolysis, are involved in the regulation of the chemo-mechanical transduction in axonemal dynein.  相似文献   

20.
Dynein 1 was extracted from sperm flagella of the sea urchin Tripneustes gratilla with 0.6 M NaCl and dialyzed against 0.5 mM EDTA, 14 mM 2-mercaptoethanol, 5 mM imidazole/HCl buffer, pH 7.0, for 24-48 h. In some cases, fractions containing the alpha heavy chain and the beta/intermediate chain 1 complex (beta/IC1) were separated by density gradient centrifugation in the same solution. Treatment of the samples at a trypsin:protein ratio of 1:10 w/w for 32 min at room temperature yields a crude digest from which Fragment A is purified by density gradient centrifugation. The purified Fragment A consists of two principal peptides (Mr = 195,000 and 130,000) that cosediment with the peak of ATPase activity at 12.5 S, which is slightly faster than the 11 S of the original beta/IC1 complex. When digests of the separated alpha chain and of the beta/IC1 complex are followed as a function of time, the early cleavages of the two heavy chains (Mr = 428,000) resemble each other in that both lead to similarly sized peptides of Mr 316,000 and 296,000, but only in the beta/IC1 fraction does the digestion proceed to form Fragment A. The remainder of the beta chain, termed Fragment B, occurs as an Mr 110,000 peptide sedimenting at 5.7 S with no associated ATPase activity. Fragment A has a specific ATPase activity of 4.3 mumol Pi X min-1 X mg-1, with a Km of 29 microM in 0.1 M NaCl medium, and an apparent Ki for inhibition by vanadate of 1.2 microM in the absence of salt, and 22 microM in 0.6 M NaCl. Photoaffinity labeling with [alpha-32P]8-azidoadenosine 5'-triphosphate indicates that the ATP binding site on the beta chain of dynein 1 is located on the Mr 195,000 peptide of Fragment A. The possibility that Fragments A and B of the beta/IC1 complex may correspond to the head and tail regions of the tadpole-shaped particle seen by electron microscopy is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号