首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

In normal adult skeletal muscle, cell turnover is very slow. However, after an acute lesion or in chronic pathological conditions, such as primary myopathies, muscle stem cells, called satellite cells, are induced to proliferate, then withdraw definitively from the cell cycle and fuse to reconstitute functional myofibers.  相似文献   

2.
骨骼肌良好的再生能力是由于肌卫星细胞的存在,然而肌卫星细胞的数量仅占骨骼肌细胞数量的1%~ 5%,当肌肉损伤时,仅依靠这些卫星细胞还不足以促进骨骼肌修复与再生,并且这种再生能力会随着年龄的增大而衰减,并不能修复损伤严重的骨骼肌。骨髓间充质干细胞(BMSC)因其多向分化潜能,旁分泌潜能,免疫调节能力及容易获取等特点广泛用于损伤骨骼肌的修复与再生。但在某种程度上,仅仅采用BMSC治疗损伤的骨骼肌仍不能达到满意的效果。因此,大量研究采用药物、生物材料、细胞及细胞因子对BMSC进行预处理不仅可改善它的移植率,还可显著促进其向骨骼肌分化,从而最大限度的发掘骨骼肌间充质干细胞的成肌分化潜能以促进骨骼肌的修复。因此,本篇综述旨在概括BMSC成肌分化在骨骼肌再生中的应用。  相似文献   

3.
ShcA proteins mediate Erk1/Erk2 activation by integrins and epidermal growth factor (EGF), and are expressed as p46ShcA, p52ShcA, and p66ShcA. Although p52ShcA and p46ShcA mediate Erk1/Erk2 activation, p66ShcA antagonizes Erk activation. p66ShcA is spatially regulated during lung development, leading us to hypothesize that integrin signaling regulates p66ShcA expression and, consequently, EGF signaling. Fetal lung mesenchymal cells were isolated from E16 Swiss-Webster mice, stimulated with oligopeptide extracellular matrix analogs or anti-integrin antibodies, and subjected to ShcA Western analyses and EGF-stimulated Erk1/Erk2 kinase assays. p66ShcA expression was decreased by anti-alpha1 integrin antibody and DGEA collagen analog, and increased by anti-beta1, anti-alpha4, and anti-alpha5 integrin antibodies and RGDS fibronectin analog. Paradoxically, beta1 integrin stimulation increased EGF-induced Erk activation while increasing expression of the inhibitory p66ShcA isoform. This paradox was resolved by demonstrating that Erk inhibition attenuates integrin-mediated p66ShcA induction. These results suggest that p66ShcA is up-regulated as inhibitory feedback on integrin-mediated Erk activation.  相似文献   

4.
Infrequent exercise, typically involving eccentric actions, has been shown to cause oxidative stress and to damage muscle tissue. High taurine levels are present in skeletal muscle and may play a role in cellular defences against free radical‐mediated damage. This study investigates the effects of taurine supplementation on oxidative stress biomarkers after eccentric exercise (EE). Twenty‐four male rats were divided into the following groups (n = 6): control; EE; EE plus taurine (EE + Taurine); EE plus saline (EE + Saline). Taurine was administered as a 1‐ml 300 mg kg?1 per body weight (BW) day?1 solution in water by gavage, for 15 consecutive days. Starting on the 14th day of supplementation, the animals were submitted to one 90‐min downhill run session and constant velocity of 1·0 km h?1. Forty‐eight hours after the exercise session, the animals were killed and the quadriceps muscles were surgically removed. Production of superoxide anion, creatine kinase (CK) levels, lipoperoxidation, carbonylation, total thiol content and antioxidant enzyme were analysed. Taurine supplementation was found to decrease superoxide radical production, CK, lipoperoxidation and carbonylation levels and increased total thiol content in skeletal muscle, but it did not affect antioxidant enzyme activity after EE. The present study suggests that taurine affects skeletal muscle contraction by decreasing oxidative stress, in association with decreased superoxide radical production. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
6.
7.
Regeneration of muscle fibers that are lost during pathological muscle degeneration or after injuries is sustained by the production of new myofibers. An important cell type involved in muscle regeneration is the satellite cell. Necdin is a protein expressed in satellite cell-derived myogenic precursors during perinatal growth. However, its function in myogenesis is not known. We compare transgenic mice that overexpress necdin in skeletal muscle with both wild-type and necdin null mice. After muscle injury the necdin null mice show a considerable defect in muscle healing, whereas mice that overexpress necdin show a substantial increase in myofiber regeneration. We also find that in muscle, necdin increases myogenin expression, accelerates differentiation, and counteracts myoblast apoptosis. Collectively, these data clarify the function and mechanism of necdin in skeletal muscle and show the importance of necdin in muscle regeneration.  相似文献   

8.
Long noncoding RNAs (lncRNAs) play important roles in the spatial and temporal regulation of muscle development and regeneration. Nevertheless, the determination of their biological functions and mechanisms underlying muscle regeneration remains challenging. Here, we identified a lncRNA named lncMREF (lncRNA muscle regeneration enhancement factor) as a conserved positive regulator of muscle regeneration among mice, pigs and humans. Functional studies demonstrated that lncMREF, which is mainly expressed in differentiated muscle satellite cells, promotes myogenic differentiation and muscle regeneration. Mechanistically, lncMREF interacts with Smarca5 to promote chromatin accessibility when muscle satellite cells are activated and start to differentiate, thereby facilitating genomic binding of p300/CBP/H3K27ac to upregulate the expression of myogenic regulators, such as MyoD and cell differentiation. Our results unravel a novel temporal-specific epigenetic regulation during muscle regeneration and reveal that lncMREF/Smarca5-mediated epigenetic programming is responsible for muscle cell differentiation, which provides new insights into the regulatory mechanism of muscle regeneration.  相似文献   

9.
Essentially employed for the treatment of airway obstructions in humans, β-agonists are also known to have an anabolic effect in animals’ skeletal muscle. In vivo and in vitro studies have attested the increase in animal body mass and the hypertrophy of muscle cells following the administration of specific β-agonists. However, the contribution of β-agonists to C2C12 myoblasts growth remains obscure. We therefore aimed to investigate the impact of β1-and β2-agonist drugs on the proliferation and differentiation of skeletal muscle cells. Direct observations and cytotoxicity assay showed that clenbuterol, salbutamol, cimaterol and ractopamine enhanced muscle cell growth and viability during the proliferation stage. Structural examinations coupled to Western blot analysis indicated that salbutamol and cimaterol triggered a decrease in myotube formation. A better comprehension of the effect of β-agonists on myogenic regulatory genes in the muscle cells is crucial to establish a specific role of β-agonists in muscle development, growth, and regeneration.  相似文献   

10.
P66(ShcA) interacts with MAPKAP kinase 2 and regulates its activity   总被引:2,自引:0,他引:2  
Yannoni YM  Gaestel M  Lin LL 《FEBS letters》2004,564(1-2):205-211
  相似文献   

11.
12.
Doxorubicin (Dox) is a potent antitumor agent used in cancer treatment. Unfortunately, Dox is myotoxic and results in significant reductions in skeletal muscle mass and function. Complete knowledge of the mechanism(s) by which Dox induces toxicity in skeletal muscle is incomplete, but it is established that Dox-induced toxicity is associated with increased generation of reactive oxygen species and oxidative damage within muscle fibers. Since muscular exercise promotes the expression of numerous cytoprotective proteins (e.g., antioxidant enzymes, heat shock protein 72), we hypothesized that muscular exercise will attenuate Dox-induced damage in exercise-trained muscle fibers. To test this postulate, Sprague-Dawley rats were randomly assigned to the following groups: sedentary, exercise, sedentary with Dox, or exercise with Dox. Our results show increased oxidative stress and activation of cellular proteases (calpain and caspase-3) in skeletal muscle of animals treated with Dox. Importantly, our findings reveal that exercise can prevent the Dox-induced oxidative damage and protease activation in the trained muscle. This exercise-induced protection against Dox-induced toxicity may be due, at least in part, to an exercise-induced increase in muscle levels of antioxidant enzymes and heat shock protein 72. Together, these novel results demonstrate that muscular exercise is a useful countermeasure that can protect skeletal muscle against Dox treatment-induced oxidative stress and protease activation in skeletal muscles.  相似文献   

13.
Contusion injuries are a very common form of both athletic and non-athletic injury, that effect muscle function. Treatments to augment the normal repair and regeneration processes are important for a wide variety of patients. Therapeutic ultrasound has been claimed to promote tissue repair, especially by enhancing cell proliferation and protein synthesis. The present study aimed to investigate the effect of therapeutic pulsed ultrasound (TPU) on parameters of oxidative stress, namely thiobarbituric acid-reactive substances (TBARS), protein carbonyl content and the activities of antioxidant enzymes, catalase and superoxide dismutase (SOD), in skeletal muscle after injury. Wistar rats were submitted to an animal model of muscle (gastrocnemius) laceration. TPU was used once a day. One, three or five days after muscle laceration, the animals were killed by decapitation and oxidative stress parameters were evaluated. Serum CK levels were increased in muscle-injured animals, indicating that the laceration animal model was successful. TBARS were not altered after muscle injury, when compared to the sham group. Protein carbonyl content was increased after muscle laceration. Catalase and SOD activities were increased 1 day after muscle injury and not altered at days 3 and 5. TPU decreased TBARS levels after muscle laceration when compared to injured muscle animals without treatment. Protein carbonyl content evaluation presented similar results. It is tempting to speculate that TPU seems to protect the tissue from oxidative injury. TPU diminished catalase and SOD activities, especially on the first day following muscle laceration.  相似文献   

14.
15.
The dogma that a cell is rigidly committed to one tissue type has been heavily challenged over the past few years with numerous reports of transdifferentiation of cells between different lineages. Cells capable of entering lineages other than that of their tissue of origin have been identified in several diverse tissues. Recently we have focussed on a non-committed myogenic cell within the dermis that is capable, under certain conditions, of expressing muscle specific markers and even fusing to the terminally differentiated stage of muscle cell development. We have identified galectin-1 as being a potent factor implicated in this process. In this review we discuss our findings and consider the involvement of galectin-1 in muscle determination, differentiation and regeneration. Published in 2004.  相似文献   

16.
The dogma that a cell is rigidly committed to one tissue type has been heavily challenged over the past few years with numerous reports of transdifferentiation of cells between different lineages. Cells capable of entering lineages other than that of their tissue of origin have been identified in several diverse tissues. Recently we have focussed on a non-committed myogenic cell within the dermis that is capable, under certain conditions, of expressing muscle specific markers and even fusing to the terminally differentiated stage of muscle cell development. We have identified galectin-1 as being a potent factor implicated in this process. In this review we discuss our findings and consider the involvement of galectin-1 in muscle determination, differentiation and regeneration.  相似文献   

17.
18.
Limb girdle muscular dystrophy type 2H (LGMD2H) is an inherited autosomal recessive disease of skeletal muscle caused by a mutation in the TRIM32 gene. Currently its pathogenesis is entirely unclear. Typically the regeneration process of adult skeletal muscle during growth or following injury is controlled by a tissue specific stem cell population termed satellite cells. Given that TRIM32 regulates the fate of mammalian neural progenitor cells through controlling their differentiation, we asked whether TRIM32 could also be essential for the regulation of myogenic stem cells. Here we demonstrate for the first time that TRIM32 is expressed in the skeletal muscle stem cell lineage of adult mice, and that in the absence of TRIM32, myogenic differentiation is disrupted. Moreover, we show that the ubiquitin ligase TRIM32 controls this process through the regulation of c-Myc, a similar mechanism to that previously observed in neural progenitors. Importantly we show that loss of TRIM32 function induces a LGMD2H-like phenotype and strongly affects muscle regeneration in vivo. Our studies implicate that the loss of TRIM32 results in dysfunctional muscle stem cells which could contribute to the development of LGMD2H.  相似文献   

19.
We describe the expression and distribution patterns of nestin, desmin and vimentin in intact and regenerating muscle spindles of the rat hind limb skeletal muscles. Regeneration was induced by intramuscular isotransplantation of extensor digitorum longus (EDL) or soleus muscles from 15-day-old rats into the EDL muscle of adult female inbred Lewis rats. The host muscles with grafts were excised after 7-, 16-, 21- and 29-day survival and immunohistochemically stained. Nestin expression in intact spindles in host muscles was restricted to Schwann cells of sensory and motor nerves. In transplanted muscles, however, nestin expression was also found in regenerating “spindle fibers”, 7 and 16 days after grafting. From the 21st day onwards, the regenerated spindle fibers were devoid of nestin immunoreactivity. Desmin was detected in spindle fibers at all developmental stages in regenerating as well as in intact spindles. Vimentin was expressed in cells of the outer and inner capsules of all muscle spindles and in newly formed myoblasts and myotubes of regenerating spindles 7 days after grafting. Our results show that the expression pattern of these intermediate filaments in regenerating spindle fibers corresponds to that found in regenerating extrafusal fibers, which supports our earlier suggestion that they resemble small-diameter extrafusal fibers.  相似文献   

20.
Skeletal muscle disuse with space-flight and ground-based models (e.g., hindlimb unloading) results in dramatic skeletal muscle atrophy and weakness. Pathological conditions that cause muscle wasting (i.e., heart failure, muscular dystrophy, sepsis, COPD, cancer) are characterized by elevated "oxidative stress," where antioxidant defenses are overwhelmed by oxidant production. However, the existence, cellular mechanisms, and ramifications of oxidative stress in skeletal muscle subjected to hindlimb unloading are poorly understood. Thus we examined the effects of hindlimb unloading on hindlimb muscle antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione peroxidase), nonenzymatic antioxidant scavenging capacity (ASC), total hydroperoxides, and dichlorohydrofluorescein diacetate (DCFH-DA) oxidation, a direct indicator of oxidative stress. Twelve 6 month old Sprague Dawley rats were divided into two groups: 28 d of hindlimb unloading (n = 6) and controls (n = 6). Hindlimb unloading resulted in a small decrease in Mn-superoxide dismutase activity (10.1%) in the soleus muscle, while Cu,Zn-superoxide dismutase increased 71.2%. In contrast, catalase and glutathione peroxidase, antioxidant enzymes that remove hydroperoxides, were significantly reduced in the soleus with hindlimb unloading by 54.5 and 16.1%, respectively. Hindlimb unloading also significantly reduced ASC. Hindlimb unloading increased soleus lipid hydroperoxide levels by 21.6% and hindlimb muscle DCFH-DA oxidation by 162.1%. These results indicate that hindlimb unloading results in a disruption of antioxidant status, elevation of hydroperoxides, and an increase in oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号