首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATIC in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme.  相似文献   

2.
Within de novo purine biosynthesis, the AICAR transformylase and IMP cyclohydrolase activities of the bifunctional enzyme ATIC convert the intermediate AICAR to the final product of the pathway, IMP. Identification of the AICAR transformylase active site and a proposed formyl transfer mechanism have already resulted from analysis of crystal structures of avian ATIC in complex with substrate and/or inhibitors. Herein, we focus on the IMPCH active site and the cyclohydrolase mechanism through comparison of crystal structures of XMP inhibitor complexes of human ATIC at 1.9 A resolution with the previously determined avian enzyme. This first human ATIC structure was also determined to ascertain whether any subtle structural differences, compared to the homologous avian enzyme, should be taken into account for structure-based inhibitor design. These structural comparisons, as well as comparative analyses with other IMP and XMP binding proteins, have enabled a catalytic mechanism to be formulated. The primary role of the IMPCH active site appears to be to induce a reconfiguration of the substrate FAICAR to a less energetically favorable, but more reactive, conformer. Backbone (Arg64 and Lys66) and side chain interactions (Thr67) in the IMPCH active site reorient the 4-carboxamide from the preferred conformer that binds to the AICAR Tfase active site to one that promotes intramolecular cyclization. Other backbone amides (Ile126 and Gly127) create an oxyanion hole that helps orient the formyl group for nucleophilic attack by the 4-carboxamide amine and then stabilize the anionic intermediate. Several other residues, including Lys66, Tyr104, Asp125, and Lys137', provide substrate specificity and likely enhance the catalytic rate through contributions to acid-base catalysis.  相似文献   

3.
ATIC encompasses both AICAR transformylase and IMP cyclohydrolase activities that are responsible for the catalysis of the penultimate and final steps of the purine de novo synthesis pathway. The formyl transfer reaction catalyzed by the AICAR Tfase domain is substantially more demanding than that catalyzed by the other folate-dependent enzyme of the purine biosynthesis pathway, GAR transformylase. Identification of the AICAR Tfase active site and key catalytic residues is essential to elucidate how the non-nucleophilic AICAR amino group is activated for formyl transfer. Hence, the crystal structure of dimeric avian ATIC was determined as a complex with the AICAR Tfase substrate AICAR, as well as with an IMP cyclohydrolase inhibitor, XMP, to 1.93 A resolution. AICAR is bound at the dimer interface of the transformylase domains and forms an extensive hydrogen bonding network with a multitude of active site residues. The crystal structure suggests that the conformation of the 4-carboxamide of AICAR is poised to increase the nucleophilicity of the C5 amine, while proton abstraction occurs via His(268) concomitant with formyl transfer. Lys(267) is likely to be involved in the stabilization of the anionic formyl transfer transition state and in subsequent protonation of the THF leaving group.  相似文献   

4.
Aminoimidazolecarboxamide ribonucleotide formyl transferase (AICARFT): Inosine monophosphate cyclohydrolase (IMPCH, collectively called ATIC) is a bifunctional enzyme that catalyses the penultimate and final steps in the purine de novo biosynthesis pathway. The bifunctional protein is dimeric and each monomer contains two different active sites both of which are capable of binding nucleotide substrates, this means to a potential total of four distinct binding events might be observed. Within this work we used a combination of site-directed and truncation mutants of ATIC to independently investigate the binding at these two sites using calorimetry. A single S10W mutation is sufficient to block the IMPCH active site allowing investigation of the effects of mutation on ligand binding in the AICARFT active site. The majority of nucleotide ligands bind selectively at one of the two active sites with the exception of xanthosine monophosphate, XMP, which, in addition to binding in both AICARFT and IMPCH active sites, shows evidence for cooperative binding with communication between symmetrically-related active sites in the two IMPCH domains. The AICARFT site is capable of independently binding both nucleotide and folate substrates with high affinity however no evidence for positive cooperativity in binding could be detected using the model ligands employed in this study.  相似文献   

5.
The penultimate catalytic step of the purine de novo synthesis pathway is the conversion of aminoimidazole-4-carboxamide ribonucleotide (AICAR) to 5-formyl-AICAR that requires the cofactor N(10)-formyl-tetrahydrofolate as the formyl donor. This reaction is catalyzed by the AICAR transformylase domain of the bifunctional enzyme AICAR transformylase/inosine monophosphate cyclohydrolase (ATIC). Identification of the location of the AICAR transformylase active site was previously elucidated from the crystal structure of the avian ATIC with bound substrate AICAR; however, due to the absence of any bound folate, the folate binding region of the active site could not be identified. Here, we have determined the homodimeric crystal structure of avian ATIC in complex with the ATIC-specific multisubstrate adduct inhibitor beta-DADF to 2.5 A resolution. Beta-DADF encompasses both the AICAR and folate moieties into a single covalently linked entity, thereby allowing for the characterization of the folate binding pocket of the AICAR transformylase active site. Beta-DADF is intimately bound at the dimer interface of the transformylase domains with the majority of AICAR moiety interactions occurring within one subunit, whereas the primary interactions to the folate occur with the opposing subunit. The crystal structure suggests that a buried Lys(267) is transiently protonated during formyl transfer allowing for the stabilization of the oxyanion transition state and subsequent protonation of N10 on the tetrahydrofolate leaving group. Furthermore, the beta-DADF-bound structure provides a more optimal three-dimensional scaffold to improve the design of specific antineoplastic agents.  相似文献   

6.
Enzymes of the de novo purine biosynthetic pathway have been identified as essential for the growth and survival of Mycobacterium tuberculosis and thus have potential for the development of anti-tuberculosis drugs. The final two steps of this pathway are carried out by the bifunctional enzyme 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC), also known as PurH. This enzyme has already been the target of anti-cancer drug development. We have determined the crystal structures of the M. tuberculosis ATIC (Rv0957) both with and without the substrate 5-aminoimidazole-4-carboxamide ribonucleotide, at resolutions of 2.5 and 2.2 Å, respectively. As for other ATIC enzymes, the protein is folded into two domains, the N-terminal domain (residues 1–212) containing the cyclohydrolase active site and the C-terminal domain (residues 222–523) containing the formyltransferase active site. An adventitiously bound nucleotide was found in the cyclohydrolase active site in both structures and was identified by NMR and mass spectral analysis as a novel 5-formyl derivative of an earlier intermediate in the biosynthetic pathway 4-carboxy-5-aminoimidazole ribonucleotide. This result and other studies suggest that this novel nucleotide is a cyclohydrolase inhibitor. The dimer formed by M. tuberculosis ATIC is different from those seen for human and avian ATICs, but it has a similar ∼50-Å separation of the two active sites of the bifunctional enzyme. Evidence in M. tuberculosis ATIC for reactivity of half-the-sites in the cyclohydrolase domains can be attributed to ligand-induced movements that propagate across the dimer interface and may be a common feature of ATIC enzymes.  相似文献   

7.
The discovery of a new class of aminoimidazole carboxamide ribonucleotide transformylase (AICAR Tfase) inhibitors through screening peptidomimetic libraries (>40,000 compounds) that act by inhibiting requisite enzyme dimerization is disclosed. In addition to defining key structural features of the lead compounds responsible for the activity, kinetic analysis of the remarkably small inhibitors established that they act as noncompetitive, dissociative inhibitors of AICAR Tfase with the prototypical lead (A1B3, Cappsin 1) exhibiting a K(i) of 3.1 +/- 0.3 microM. Thus, the studies define a unique approach to selectively targeting AICAR Tfase over all other folate-dependent enzymes, and it represents only one of a few enzymes for which inhibition achieved by disrupting requisite enzyme dimerization has emerged from screening unbiased combinatorial libraries.  相似文献   

8.
The bifunctional enzyme aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) is responsible for catalysis of the last two steps in the de novo purine pathway. Gel filtration studies performed on human enzyme suggested that this enzyme is monomeric in solution. However, cross-linking studies performed on both yeast and avian ATIC indicated that this enzyme might be dimeric. To determine the oligomeric state of this protein in solution, we carried out sedimentation equilibrium analysis of ATIC over a broad concentration range. We find that ATIC participates in a monomer/dimer equilibrium with a dissociation constant of 240 +/- 50 nM at 4 degrees C. To determine whether the presence of substrates affects the monomer/dimer equilibrium, further ultracentrifugation studies were performed. These showed that the equilibrium is only significantly shifted in the presence of both AICAR and a folate analog, resulting in a 10-fold reduction in the dissociation constant. The enzyme concentration dependence on each of the catalytic activities was studied in steady state kinetic experiments. These indicated that the transformylase activity requires dimerization whereas the cyclohydrolase activity only slightly prefers the dimeric form over the monomeric form.  相似文献   

9.
The atomic structure of glycinamide ribonucleotide transformylase, an essential enzyme in purine biosynthesis, has been determined at 3.0 A resolution. The last three C-terminal residues and a sequence stretch of 18 residues (residues 113 to 130) are not visible in the electron density map. The enzyme forms a dimer in the crystal structure. Each monomer is divided into two domains, which are connected by a central mainly parallel seven-stranded beta-sheet. The N-terminal domain contains a Rossmann type mononucleotide fold with a phosphate ion bound to the C-terminal end of the first beta-strand. A long narrow cleft stretches from the phosphate to a conserved aspartic acid, Asp144, which has been suggested as an active-site residue. The cleft is lined by a cluster of residues, which are conserved between bacterial, yeast, avian and human enzymes, and likely represents the binding pocket and active site of the enzyme. GAR Tfase binds a reduced folate cofactor and glycinamide ribonucleotide for the catalysis of one of the initial steps in purine biosynthesis. Folate analogs and multi-substrate inhibitors of the enzyme have antineoplastic effects and the structure determination of the unliganded enzyme and enzyme-inhibitor complexes will aid the development of anti-cancer drugs.  相似文献   

10.
Aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase), one of the two folate-dependent enzymes in the de novo purine biosynthesis pathway, is a promising target for anti-neoplastic chemotherapy. Although classic antifolates, such as methotrexate, have been developed as anticancer agents, their general toxicity and drug resistance are major issues associated with their clinical use and future development. Identification of inhibitors with novel scaffolds could be an attractive alternative. We present here the crystal structure of avian AICAR Tfase complexed with the first non-folate based inhibitor identified through virtual ligand screening of the National Cancer Institute Diversity Set. The inhibitor 326203-A (2-[5-hydroxy-3-methyl-1-(2-methyl-4-sulfophenyl)-1H-pyrazol-4-ylazo]-4-sulfo-benzoic acid) displayed competitive inhibition against the natural cofactor, 10-formyl-tetrahydrofolate, with a K(i) of 7.1 mum. The crystal structure of AICAR Tfase with 326203-A at 1.8 A resolution revealed a unique binding mode compared with antifolate inhibitors. The inhibitor also accessed an additional binding pocket that is not occupied by antifolates. The sulfonate group of 326203-A appears to form the dominant interaction of the inhibitor with the proposed oxyanion hole through interaction with a helix dipole and Lys(267). An aromatic interaction with Phe(316) also likely contributes to favorable binding. Based on these structural insights, several inhibitors with improved potency were subsequently identified in the National Cancer Institute Compound Library and the Available Chemical Directory by similarity search and molecular modeling methods. These results provide further support for our combined virtual ligand screening rational design approach for the discovery of novel, non-folate-based inhibitors of AICAR Tfase.  相似文献   

11.
The synthesis of 10-formyl-DDACTHF (3) as a potential inhibitor of glycinamide ribonucleotide transformylase (GAR Tfase) and aminoimidazole carboxamide ribonucleotide transformylase (AICAR Tfase) is reported. Aldehyde 3, the corresponding gamma- and alpha-pentaglutamates 21 and 25 and related agents were evaluated for inhibition of folate-dependent enzymes including GAR Tfase and AICAR Tfase. The inhibitors were found to exhibit potent cytotoxic activity (CCRF-CEM IC(50) for 3=60nM) that exceeded their enzyme inhibition potency [K(i) (3)=6 and 1 microM for Escherichia coli GAR and human AICAR Tfase, respectively]. Cytotoxicity rescue by medium purines, but not pyrimidines, indicated that the potent cytotoxic activity is derived from selective purine biosynthesis inhibition and rescue by AICAR monophosphate established that the activity is derived preferentially from GAR versus AICAR Tfase inhibition. The potent cytotoxic compounds including aldehyde 3 lost activity against CCRF-CEM cell lines deficient in the reduced folate carrier (CCRF-CEM/MTX) or folylpolyglutamate synthase (CCRF-CEM/FPGS(-)) establishing that their potent activity requires both reduced folate carrier transport and polyglutamation. Unexpectedly, the pentaglutamates displayed surprisingly similar K(i)'s versus E. coli GAR Tfase and only modestly enhanced K(i)'s versus human AICAR Tfase. On the surface this initially suggested that the potent cytotoxic activity of 3 and related compounds might be due simply to preferential intracellular accumulation of the inhibitors derived from effective transport and polyglutamation (i.e., ca. 100-fold higher intracellular concentrations). However, a subsequent examination of the inhibitors against recombinant human GAR Tfase revealed they and the corresponding gamma-pentaglutamates were unexpectedly much more potent against the human versus E. coli enzyme (K(i) for 3, 14nM against rhGAR Tfase versus 6 microM against E. coli GAR Tfase) which also accounts for their exceptional cytotoxic potency.  相似文献   

12.
Wall M  Shim JH  Benkovic SJ 《Biochemistry》2000,39(37):11303-11311
We have prepared 4-substituted analogues of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to investigate the specificity and mechanism of AICAR transformylase (AICAR Tfase). Of the nine analogues of AICAR studied, only one analogue, 5-aminoimidazole-4-thiocarboxamide ribonucleotide, was a substrate, and it was converted to 6-mercaptopurine ribonucleotide. The other analogues either did not bind or were competitive inhibitors, the most potent being 5-amino-4-nitroimidazole ribonucleotide with a K(i) of 0.7 +/- 0.5 microM. The results show that the 4-carboxamide of AICAR is essential for catalysis, and it is proposed to assist in mediating proton transfer, catalyzing the reaction by trapping of the addition compound. AICAR analogues where the nitrogen of the 4-carboxamide was derivatized with a methyl or an allylic group did not bind AICAR Tfase, as determined by pre-steady-state burst kinetics; however, these compounds were potent inhibitors of IMP cyclohydrolase (IMP CHase), a second activity of the bifunctional mammalian enzyme (K(i) = 0.05 +/- 0.02 microM for 4-N-allyl-AlCAR). It is proposed that the conformation of the carboxamide moiety required for binding to AICAR Tfase is different than the conformation required for binding to IMP CHase, which is supported by inhibition studies of purine ribonucleotides. It is shown that 5-formyl-AICAR (FAICAR) is a product inhibitor of AICAR Tfase with K(i) of 0.4 +/- 0.1 microM. We have determined the equilibrium constant of the transformylase reaction to be 0.024 +/- 0.001, showing that the reaction strongly favors AICAR and the 10-formyl-folate cofactor. The coupling of the AICAR Tfase and IMP CHase activities on a single polypeptide allows the overall conversion of AICAR to IMP to be favorable by coupling the unfavorable formation of FAICAR with the highly favorable cyclization reaction. The current kinetic studies have also indicated that the release of FAICAR is the rate-limiting step, under steady-state conditions, in the bifunctional enzyme and channeling is not observed between AICAR Tfase and IMP CHase.  相似文献   

13.
We have solved the 2.5-A crystal structure of 1-deoxy-D-xylulose-5-phosphate reductoisomerase, an enzyme involved in the mevalonate-independent 2-C-methyl-D-erythritol-4-phosphate pathway of isoprenoid biosynthesis. The structure reveals that the enzyme is present as a homodimer. Each monomer displays a V-like shape and is composed of an amino-terminal dinucleotide binding domain, a connective domain, and a carboxyl-terminal four-helix bundle domain. The connective domain is responsible for dimerization and harbors most of the active site. The strictly conserved acidic residues Asp(150), Glu(152), Glu(231), and Glu(234) are clustered at the putative active site and are probably involved in the binding of divalent cations mandatory for enzyme activity. The connective and four-helix bundle domains show significant mobility upon superposition of the dinucleotide binding domains of the three conformational states present in the asymmetric unit of the crystal. A still more pronounced flexibility is observed for a loop spanning residues 186 to 216, which adopts two completely different conformations within the three protein conformers. A possible involvement of this loop in an induced fit during substrate binding is discussed.  相似文献   

14.
Aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/IMP cyclohydrolase (ATIC) is a bifunctional enzyme with folate-dependent AICAR transformylase and IMP cyclohydrolase activities that catalyzes the last two steps of purine biosynthesis. The AICAR transformylase inhibitors BW1540 and BW2315 are sulfamido-bridged 5,8-dideazafolate analogs with remarkably potent K(i) values of 8 and 6 nm, respectively, compared with most other antifolates. Crystal structures of ATIC at 2.55 and 2.60 A with each inhibitor, in the presence of substrate AICAR, revealed that the sulfonyl groups dominate inhibitor binding and orientation through interaction with the proposed oxyanion hole. These agents then appear to mimic the anionic transition state and now implicate Asn(431') in the reaction mechanism along with previously identified key catalytic residues Lys(266) and His(267). Potent and selective inhibition of the AICAR transformylase active site, compared with other folate-dependent enzymes, should therefore be pursued by further design of sulfonyl-containing antifolates.  相似文献   

15.
L-serine dehydratase (SDH), a member of the beta-family of pyridoxal phosphate-dependent (PLP) enzymes, catalyzes the deamination of L-serine and L-threonine to yield pyruvate or 2-oxobutyrate. The crystal structure of L-serine dehydratase from human liver (hSDH) has been solved at 2.5 A-resolution by molecular replacement. The structure is a homodimer and reveals a fold typical for beta-family PLP-dependent enzymes. Each monomer serves as an active unit and is subdivided into two distinct domains: a small domain and a PLP-binding domain that covalently anchors the cofactor. Both domains show the typical open alpha/beta architecture of PLP enzymes. Comparison with the rSDH-(PLP-OMS) holo-enzyme reveals a large structural difference in active sites caused by the artifical O-methylserine. Furthermore, the activity of hSDH-PLP was assayed and it proved to show catalytic activity. That suggests that the structure of hSDH-PLP is the first structure of the active natural holo-SDH.  相似文献   

16.
Phosphotransacetylase (Pta) [EC 2.3.1.8] is ubiquitous in the carbon assimilation and energy-yielding pathways in anaerobic prokaryotes where it catalyzes the reversible transfer of the acetyl group from acetyl phosphate to CoA forming acetyl CoA and inorganic phosphate. The crystal structure of Pta from the methane-producing archaeon Methanosarcina thermophila, representing the first crystal structure of any Pta, was determined by multiwavelength anomalous diffraction at 2.7 A resolution. In solution and in the crystal, the enzyme forms a homodimer. Each monomer consists of two alpha/beta domains with a cleft along the domain boundary, which presumably contains the substrate binding sites. Comparison of the four monomers present in the asymmetric unit indicates substantial variations in the relative orientation of the two domains and the structure of the putative active site cleft. A search for structural homologs revealed the NADP(+)-dependent isocitrate and isopropylmalate dehydrogenases as the only homologs with a similar two-domain architecture.  相似文献   

17.
The crystal structure at 2.6 A of the histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate has been determined. The enzyme is a homodimer with a molecular weight of 94 kDa and belongs to the class II of aminoacyl-tRNA synthetases (aaRS). The asymmetric unit is composed of two homodimers. Each monomer consists of two domains. The N-terminal catalytic core domain contains a six-stranded antiparallel beta-sheet sitting on two alpha-helices, which can be superposed with the catalytic domains of yeast AspRS, and GlyRS and SerRS from Thermus thermophilus with a root-mean-square difference on the C alpha atoms of 1.7-1.9 A. The active sites of all four monomers are occupied by histidyl-adenylate, which apparently forms during crystallization. The 100 residue C-terminal alpha/beta domain resembles half of a beta-barrel, and provides an independent domain oriented to contact the anticodon stem and part of the anticodon loop of tRNA(His). The modular domain organization of histidyl-tRNA synthetase reiterates a repeated theme in aaRS, and its structure should provide insight into the ability of certain aaRS to aminoacylate minihelices and other non-tRNA molecules.  相似文献   

18.
Glycinamide ribonucleotide transformylase (GAR Tfase) is a key folate-dependent enzyme in the de novo purine biosynthesis pathway and, as such, has been the target for antitumor drug design. Here, we describe the crystal structures of the human GAR Tfase (purN) component of the human trifunctional protein (purD-purM-purN) at various pH values and in complex with its substrate. Human GAR Tfase exhibits pH-dependent enzyme activity with its maximum around pH 7.5-8. Comparison of unliganded human GAR Tfase structures at pH 4.2 and pH 8.5 reveals conformational differences in the substrate binding loop, which at pH 4.2 occupies the binding cleft and prohibits substrate binding, while at pH 8.5 is permissive for substrate binding. The crystal structure of GAR Tfase with its natural substrate, beta-glycinamide ribonucleotide (beta-GAR), at pH 8.5 confirms this conformational isomerism. Surprisingly, several important structural differences are found between human GAR Tfase and previously reported E. coli GAR Tfase structures, which have been used as the primary template for drug design studies. While the E. coli structure gave valuable insights into the active site and formyl transfer mechanism, differences in structure and inhibition between the bacterial and mammalian enzymes suggest that the human GAR Tfase structure is now the appropriate template for the design of anti-cancer agents.  相似文献   

19.
The examination results of a novel series of potential inhibitors of glycinamide ribonucleotide transformylase (GAR Tfase) and aminoimidazole carboxamide transformylase (AICAR Tfase) are reported. These agents incorporate an electrophilic fluoronitrophenyl group that can potentially react with an active site nucleophile or the substrate GAR/AICAR amine via nucleophilic aromatic substitution.  相似文献   

20.
The crystal structure of Aspergillus niger pH 2.5 acid phosphatase (EC 3.1.3.2) has been determined at 2.4 A resolution. In the crystal, two dimers form a tetramer in which the active sites are easily accessible to substrates. The main contacts in the dimer come from the N termini, each lying on the surface of the neighbouring molecule. The monomer consists of two domains, with the active site located at their interface. The active site has a highly conserved catalytic center and a charge distribution, which explains the highly acidic pH optimum and the broad substrate specificity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号