首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The penicillin-binding proteins (PBPs) of Bacillus subtilis were examined after incubation of vegetative and sporulating cultures with chloramphenicol, an inhibitor of protein synthesis. The results indicate that the sporulation-specific increases in vegetative PBPs 2B and 3 and the appearance of two new PBPs, 4* and 5*, depend on concurrent protein synthesis, which is most likely to be de novo synthesis of the PBPs rather than synthesis of an activator or processing enzyme. It was also learned that in vivo the PBPs differ in their individual stabilities, which helps to explain some of the quantitative changes that occur in the PBP profile during sporulation. All the membrane-bound PBPs, except possibly PBP 1, were found to be stable in the presence of crude extracts of sporulating cells that contained proteolytic activity.  相似文献   

2.
We used fluorescein-tagged β-lactam antibiotics to visualize penicillin-binding proteins (PBPs) in sporulating cultures of Streptomyces griseus. Six PBPs were identified in membranes prepared from growing and sporulating cultures. The binding activity of an 85-kDa PBP increased fourfold by 10 to 12 h of sporulation, at which time the sporulation septa were formed. Cefoxitin inhibited the interaction of the fluorescein-tagged antibiotics with the 85-kDa PBP and also prevented septum formation during sporulation but not during vegetative growth. The 85-kDa PBP, which was the predominant PBP in membranes of cells that were undergoing septation, preferentially bound fluorescein-6-aminopenicillanic acid (Flu-APA). Fluorescence microscopy showed that the sporulation septa were specifically labeled by Flu-APA; this interaction was blocked by prior exposure of the cells to cefoxitin at a concentration that interfered with septation. We hypothesize that the 85-kDa PBP is involved in septum formation during sporulation of S. griseus.  相似文献   

3.
The distribution of penicillin-binding proteins (PBPs) within different membranes of sporulating cells of Bacillus subtilis was examined in an effort to correlate the location of individual PBPs with their proposed involvement in either cortical or vegetative peptidoglycan synthesis. The PBP composition of forespores was determined by two methods: examination of isolated forespore membranes and assay of the in vivo accessibility of the PBPs to penicillin. In both cases, it was apparent that PBP 5*, the major PBP synthesized during sporulation, was present primarily, but not exclusively, in the forespore. The membranes from mature dormant spores were prepared by either chemically stripping the integument layers of the spores, followed by lysozyme digestion, or lysozyme digestion alone of coat-defective gerE spores. PBP 5* was detected in membranes from unstripped spores but was never found in stripped ones, which suggests that the primary location of this PBP is the outer forespore membrane. This is consistent with a role for PBP 5* exclusively in cortex synthesis. In contrast, vegetative PBPs 1 and 2A were only observed in stripped spore preparations that were greatly enriched for the inner forespore membrane, which supports the proposed requirement for these PBPs early in germination. The apparent presence of PBP 3 in both membranes of the spore reinforces the suggestion that it catalyzes a step common to both cortical and vegetative peptidoglycan synthesis.  相似文献   

4.
The order in which the vegetative penicillin-binding proteins (PBPs) are first synthesized and the rate of their return to normal levels during germination and outgrowth of Bacillus subtilis spores were determined. The rate of synthesis of most of the PBPs was much faster than that of the majority of other membrane proteins, which is consistent with the involvement of PBPs in biosynthesis of the rapidly expanding peptidoglycan. The pattern of PBP changes that occurred during the cell cycle, including sporulation, suggests a likely role for PBP 2A in cell elongation and a unique requirement for PBP 2B during both symmetric and asymmetric septum formation. PBP 3 is the only PBP that appears to be equally necessary for vegetative and cortical peptidoglycan synthesis.  相似文献   

5.
The ribonucleic acid (RNA) polymerase from log-phase and sporulating cells of Bacillus subtilis was analyzed to determine whether any structural changes occurred during sporulation. The elution pattern of RNA polymerase from a deoxyribonucleic acid (DNA)-cellulose column revealed that sporulating cells at stages III and IV contained a new RNA polymerase fraction in addition to the vegetative holoenzyme (alpha2betabeta'sigma). Stage III cells contained the vegetative holoenzyme and a new enzyme with the composition alpha2betabeta'delta1; the molecular weight of delta1 was 28,000. Stage IV cells contained the vegetative holoenzyme, the delta1-containing enzyme, and another enzyme with the composition alpha2betabeta'delta2. The delta2 factor had a molecular weight of around 20,000. The delta-containing enzymes have a higher affinity for the DNA-cellulose column and a higher specific activity on various templates than vegetative holoenzyme. The simultaneous appearance of these enzymes with vegetative holoenzymes in sporulating cells is consistent with the data found previously with DNA-RNA hybridization studies, which showed that sporulating cells contained both vegetative and sporulation messenger RNAs.  相似文献   

6.
Membrane-bound penicillin-binding proteins (PBPs) of two Streptomyces griseus strains that sporulate well in liquid and solid medium have been investigated during the course of their life-cycle. The PBP patterns were analyzed by sodium dodecylsulphate polyacrylamide-gel electrophoresis and fluorography. One strain (No. 45 H) has only a single band (mol wt: 27,000) in early log phase, and two additional PBPs of higher mol wt (69,000 and 80,000) in the late log phase. The other strain (No. 2682) possessed two bands with mol wts 27,000 and 38,000 which did not change during its vegetative phase. In strain No. 2682, a new PBP with a mol wt of 58,000 appeared in spore membranes while one of those (mol wt 38,000) present in mycelial membranes disappeared. Our results suggest that appearance of the new PBP in the spore may be associated with the sporulation process. The major PBP band (mol wt: 27,000) present in all stages of the life cycle of these strains, may be characteristic of S. griseus while the other PBPs reflect certain stages of the life cycle. A new method was developed for the production of spore protoplasts by consecutive enzymatic treatments.Abbreviation PBP penicillin-binding protein  相似文献   

7.
A novel penicillin-binding protein (PBP 5*) with D,D-carboxypeptidase activity is synthesized by Bacillus subtilis, beginning at about stage III of sporulation. The complete gene (dacB) for this protein was cloned by immunoscreening of an expression vector library and then sequenced. The identity of dacB was verified not only by the size and cross-reactivity of its product but also by the presence of the nucleotide sequence that coded for the independently determined NH2 terminus of PBP 5*. Analysis of its complete amino acid sequence confirmed the hypothesis that this PBP is related to other active-site serine D,D-peptidases involved in bacterial cell wall metabolism. PBP 5* had the active-site domains common to all PBPs, as well as a cleavable amino-terminal signal peptide and a carboxy-terminal membrane anchor that are typical features of low-molecular-weight PBPs. Mature PBP 5* was 355 amino acids long, and its mass was calculated to be 40,057 daltons. What is unique about this PBP is that it is developmentally regulated. Analysis of the sequence provided support for the hypothesis that the sporulation specificity and mother cell-specific expression of dacB can be attributed to recognition of the gene by a sporulation-specific sigma factor. There was a good match of the putative promoter of dacB with the sequence recognized by sigma factor E (sigma E), the subunit of RNA polymerase that is responsible for early mother cell-specific gene expression during sporulation. Analysis of PBP 5* production by various spo mutants also suggested that dacB expression is on a sigma E-dependent pathway.  相似文献   

8.
9.
Recently developed techniques for isolating forespores from bacilli at all stages of spore morphogenesis have been exploited to investigate the contribution of each of the two compartments of the sporulating cell to the overall pattern of protein synthesis and degradation during sporulation in Bacillus megaterium. These studies have shown: (1) that protein synthesis continues in both compartments throughout spore morphogenesis; (2) that the degradation of proteins made at all times during vegetative growth and sporulation is confined to the mother-cell compartment; (3) that proteins synthesized in the mother-cell compartment during sporulation are subsequently degraded more rapidly than proteins synthesized during vegetative growth. This rate of degradation increases the later the proteins are synthesized in the sporulation sequence. Mature spores were disrupted, and the percentage of the total protein in soluble and particulate fractions was determined. Pulse-labelling experiments were performed to investigate the extent to which the proteins of these two fractions are newly synthesized during sporulation. These data were used to calculate the extent of capture of vegetative cell protein at the time of formation of the forespore septum. The value obtained is consistent with evidence from electron micrographs and supports a model for the origin of spore protein in which there is no protein turnover in the developing forespore.  相似文献   

10.
The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram-positive rod-shaped bacterium. PBP4a (encoded by the dacC gene) is a low-molecular mass PBP clearly exhibiting in vitro DD-carboxypeptidase activity. We have solved the crystal structure of this protein alone and in complex with a peptide (D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine) that mimics the C-terminal end of the Bacillus peptidoglycan stem peptide. PBP4a is composed of three domains: the penicillin-binding domain with a fold similar to the class A beta-lactamase structure and two domains inserted between the conserved motifs 1 and 2 characteristic of the penicillin-recognizing enzymes. The soaking of PBP4a in a solution of D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine resulted in an adduct between PBP4a and a D-alpha-aminopimelyl-epsilon-D-alanine dipeptide and an unbound D-alanine, i.e. the products of acylation of PBP4a by D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine with the release of a D-alanine. The adduct also reveals a binding pocket specific to the diaminopimelic acid, the third residue of the peptidoglycan stem pentapeptide of B. subtilis. This pocket is specific for this class of PBPs.  相似文献   

11.
Proteins synthesized by Saccharomyces cerevisiae in presporulation and sporulation media were compared by using sporulating (a/alpha) and nonsporulating (a/a and alpha/alpha) yeast strains. Total cellular proteins were labeled with [35S]methionine and analyzed by two-dimensional polyacrylamide gel electrophoresis. Autoradiograms and/or fluorograms showed some 700 spots per gel. Nine proteins were synthesized by a/alpha cells which were specific to vegetative, log-phase conditions. During incubation in sporulation medium, sporulating (a/alpha) cells synthesized 11 proteins not present in vegetatively growing cell. These same 11 proteins, however, were synthesized by nonsporulating (a/a and alpha/alpha) cells on sporulation medium as well. Nonsporulating diploids (a/a and alpha/alpha) were also examined with the electron microscope at various times during their incubation in sporulation medium. Certain cellular responses found to be unique to meiotic yeast cells in previous studies were exhibited by the nonsporulating controls. The degree to which all cell types (a/alpha, a/a, and alpha/alpha) were committed to sporulation was also determined by shifting cells from sporulation medium to vegetative medium. Some commitment to the meiotic pathway was observed in both the a/alpha and the a/a, alpha/alpha cells.  相似文献   

12.
Penicillin-binding protein (PBP) 5* is produced by Bacillus subtilis only during sporulation and is believed to be required for synthesis of the peptidoglycan-like cortex layer of the spore. The structural gene (dacB) for PBP 5* was insertionally mutagenized by integration of a plasmid bearing an internal fragment of the gene, and the phenotype of the null mutant was characterized. The mutant had no apparent vegetative growth or germination defect, but it produced extremely heat-sensitive spores. This property is consistent with a defect in the amount or assembly of the cortex and supports the hypothesis that PBP 5* is required for synthesis of this structure. Analysis of the progeny after spontaneous excision of the integrated plasmid led to the conclusion that expression of the dacB gene was required only in the mother cell compartment during sporulation, which is also consistent with a role for PBP 5* in cortex synthesis and with its location in the outer forespore membrane. Genetic mapping located dacB midway between aroC (206 degrees) and lys (210 degrees) on the B. subtilis chromosome. This is a region where there are no other known spo, ger, or PBP genes. In related studies, we found that a null mutant of dacA, the structural gene for vegetative PBP 5, produced normal heat-resistant spores, which suggests that this PBP is not essential for cortex synthesis. In addition, a candidate for another sporulation-specific PBP was revealed on gels at approximately the same position as PBP 5*. The two PBPs could be distinguished by immunoassays.  相似文献   

13.
The turnover of nucleic acids and changes in ribonuclease activity during sporulation of Saccharomyces cerevisiae were studied. In the sporulating strains, 37–58% of vegetatively synthesized RNA were degraded during the sporulation process. The degree of degradation of vegetative RNA was proportional to the sporulation ability. In the non-sporulating strains, the degradation of vegetative RNA was less than 28% in the sporulation medium. Accompanied by the degradation of vegetative RNA, a ribonuclease activity increased several times during sporulation. We have found a close relation among the sporulation rate, the degree of the degradation of vegetative RNA and the increase in ribonuclease activity in the sporulation medium, using cells of which sporulation ability was repressed by changing the age or carbon source in various degrees.  相似文献   

14.
Bacillus subtilis mutants with altered penicillin-binding proteins (PBPs), or altered expression of PBPs, were isolated by screening for changes in susceptibility to beta-lactam antibiotics. Mutations affecting only PBPs 2a, 2b and 3 were isolated. Cell shape and peptidoglycan metabolism were examined in representative mutants. Cells of a PBP 2a mutant (UB8521) were usually twisted whereas PBP 2b (UB8524) and 3 (UB8525) mutants produced helices, particularly after growth at 41 degrees C. The PBP 2a mutant (UB8521) had a higher peptidoglycan synthetic activity than its parent strain whereas the opposite applied to the PBP 2b mutant UB8524. The PBP 3 mutant (UB8525) had a similar peptidoglycan synthetic activity to that of the parent strain when grown at 37 degrees C, but 40% higher activity after growth at 41 degrees C. The PBP 2a mutant (UB8521) exhibited the same wall thickening activity as the parent, but the PBP 2b and 3 mutants (UB8524 and UB8525) were partially defective in this respect. The changes in the susceptibility of PBP 2a, 2b and 3 mutants to beta-lactam antibiotics imply that these PBPs are killing targets, consistent with the fact that these PBPs are also important for shape determination and peptidoglycan synthesis.  相似文献   

15.
Bacterial cell shape is determined by a rigid external cell wall. In most non-coccoid bacteria, this shape is also determined by an internal cytoskeleton formed by the actin homologues MreB and/or Mbl. To gain further insights into the topological control of cell wall synthesis in bacteria, we have constructed green fluorescent protein (GFP) fusions to all 11 penicillin-binding proteins (PBPs) expressed during vegetative growth of Bacillus subtilis. The localization of these fusions was studied in a wild-type background as well as in strains deficient in FtsZ, MreB or Mbl. PBP3 and PBP4a localized specifically to the lateral wall, in distinct foci, whereas PBP1 and PBP2b localized specifically to the septum. All other PBPs localized to both the septum and the lateral cell wall, sometimes with irregular distribution along the lateral wall or a preference for the septum. This suggests that cell wall synthesis is not dispersed but occurs at specific places along the lateral cell wall. The results implicate PBP3, PBP5 and PBP4a, and possibly PBP4, in lateral wall growth. Localization of PBPs to the septum was found to be dependent on FtsZ, but the GFP-PBP fluorescence patterns were not detectably altered in the absence of MreB or Mbl.  相似文献   

16.
The time course of synthesis and breakdown of various macromolecules has been compared for sporulating (a/alpha) and nonsporulating (a/a and alpha/alpha) yeast cells transferred to potassium acetate sporulation medium. Both types of cells incorporate label into ribonucleic acid and protein. The gel electrophoresis patterns of proteins synthesized in sporulation medium are identical for sporulating and nonsporulating diploids; both are different from electropherograms of vegetative cells. Sporulating and nonsporulating strains differ with respect to deoxyribonucleic acid synthesis; no deoxyribonucleic acid is synthesized in the latter case, whereas the deoxyribonucleic acid complement is doubled in the former. Glycogen breakdown occurs only in sporulating strains. Breakdown of preexisting vegetative ribonucleic acid and protein molecules occurs much more extensively in sporulating than in nonsporulating cells. A timetable of these data is presented.  相似文献   

17.
Methicillin resistance in Staphylococcus aureus has been associated with alterations in the penicillin-binding proteins (PBPs). An intriguing property of all methicillin-resistant staphylococci is the dependence of resistance on the pH value of the growth medium. Growth of such bacteria at pH 5.2 completely suppressed the expression of methicillin resistance. We have examined the PBP patterns of methicillin-resistant staphylococci grown at pH 7.0. We detected a high-molecular-weight PBP (PBP-2a; approximate size, 78,000 daltons) that was only present in the resistant bacteria but not in the isogenic sensitive strain. In cultures grown at pH 5.2, the extra PBP was not detectable.  相似文献   

18.
Antisera raised against purified yeast ascospores caused agglutination of both ascospores and vegetative cells. A spore-specific activity was obtained by absorbing out anti-vegetative activity with vegetative cells. The anti-vegetative cell activity was directed against mannan, and was probably due to exposure of some spore coat mannan at the spore surface since concanavalin A and lentil lectin also caused agglutination of ascospores. The spore-specific activity was probably determined by a protein or proteins, since extraction of spores with a mixture of sodium dodecyl sulphate and dithiothreitol markedly affected their agglutination by the spore-specific serum. The spore-specific antigen was synthesized in a soluble form during sporulation several hours before the appearance of the spore surface and the pool of soluble antigen declined as the spore was assembled. Synthesis of the soluble antigen was inhibited by adding cycloheximide at all times up to its first appearance in the sporulating cell.  相似文献   

19.
20.
Pheromone-binding proteins (PBPs) of the gypsy moth, Lymantria dispar L., play an important role in olfaction. Here structures of PBPs were first built by Homology Modeling, and each model of PBPs had seven α-helices and a large hydrophobic cavity including 25 residues for PBP1 and 30 residues for PBP2. Three potential semiochemicals were first screened by CDOCKER program based on the PBP models and chemical database. These chemicals were Palmitic acid n-butyl ester (Pal), Bis(3,4-epoxycyclohexylmethyl) adipate (Bis), L-trans-epoxysuccinyl-isoleucyl-proline methyl ester propylamide (CA-074). The analysis of chemicals docking the proteins showed one hydrogen bond was established between the residues Lys94 and (+)-Disparlure ((+)-D), and л-л interactions were present between Phe36 of PBP1 and (+)-D. The Lys94 of PBP1 formed two and three hydrogen bonds with Bis and CA-074, respectively. There was no residue of PBP2 interacting with these four chemicals except Bis forming one hydrogen bond with Lys121. After simulating the conformational changes of LdisPBPs at pH7.3 and 5.5 by constant pH molecular dynamics simulation in implicit solvent, the N-terminal sequences of PBPs was unfolded, only having five α-helices, and PBP2 had larger binding pocket at 7.3 than PBP1. To investigate the changes of α-helices at different pH, far-UV and near-UV circular dichroism showed PBPs consist of α-helices, and the tertiary structures of PBP1 and PBP2 were influenced at pH7.3 and 5.5. The fluorescence binding assay indicated that PBP1 and PBP2 have similarly binding affinity to (+)-D at pH 5.5 and 7.3, respectively. At pH 5.5, the dissociation constant of the complex between PBP1 and 2-decyl-1-oxaspiro [2.2] pentane (OXP1) was 0.68 ± 0.01 μM, for (+)-D was 5.32 ± 0.11 μM, while PBP2 with OXP1 and (+)-D were 1.88 ± 0.02 μM and 5.54 ± 0.04 μM, respectively. Three chemicals screened had higher affinity to PBP1 than (+)-D except Pal at pH5.5, and had lower affinity than (+)-D at pH7.3. To PBP2, these chemicals had lower affinity than the sex pheromone except Bis at pH 5.5 and pH 7.3. Only PBP1 had higher affinity with Sal than the sex pheromone at pH 5.5. Therefore, the structures of PBP1 and PBP2 had different changes at pH5.5 and 7.3, showing different affinity to chemicals. This study helps understanding the role of PBPs as well as in developing more efficient chemicals for pest control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号