首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BBK32 is a fibronectin-binding lipoprotein on Borrelia burgdorferi, the causative agent of Lyme disease. Analysis using secondary structure prediction programs suggested that BBK32 is composed of two domains, an N-terminal segment lacking well defined secondary structure and a C-terminal segment composed largely of alpha-helices. Analysis of purified recombinant forms of the two domains by circular dichroism spectroscopy, gel permeation chromatography, and intrinsic viscosity determination were consistent with an N-terminal-extended, unstructured segment and a C-terminal globular domain in BBK32. Solid phase binding experiments suggest that the unstructured N-terminal domain binds fibronectin. Analysis of changes in circular dichroism spectra of the N-terminal segment of BBK32 upon binding of the N-terminal domain of fibronectin revealed an increase in beta-sheet content in the complex. Hence, BBK32, which belongs to a different family of proteins and shows no overall sequence similarity with the fibronectin binding MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) of Gram-positive bacteria, binds fibronectin by a mechanism that is reminiscent of the "tandem beta-zipper" previously demonstrated for the fibronectin binding of streptococcal adhesins.  相似文献   

2.
The proto-oncogene c-myc governs the expression of a number of genes targeting cell growth and apoptosis, and its expression levels are distorted in many cancer forms. The current investigation presents an analysis by proteolysis, circular dichroism, fluorescence and Biacore of the folding and ligand-binding properties of the N-terminal transactivation domain (TAD) in the c-Myc protein. A c-Myc sub-region comprising residues 1-167 (Myc1-167) has been investigated that includes the unstructured c-Myc transactivation domain (TAD, residues 1-143) together with a C-terminal segment, which appears to promote increased folding. Myc1-167 is partly helical, binds both to the target proteins Myc modulator-1 (MM-1) and TATA box-binding protein (TBP), and displays the characteristics of a molten globule. Limited proteolysis divides Myc1-167 in two halves, by cleaving in a predicted linker region between two hotspot mutation regions: Myc box I (MBI) and Myc box II (MBII). The N-terminal half (Myc1-88) is unfolded and does not alone bind to target proteins, whereas the C-terminal half (Myc92-167) has a partly helical fold and specifically binds both MM-1 and TBP. Although this might suggest a bipartite organization in the c-Myc TAD, none of the N and C-terminal fragments bind target protein with as high affinity as the entire Myc1-167, or display molten globule properties. Furthermore, merely linking the MBI with the C-terminal region, in Myc38-167, is not sufficient to achieve binding and folding properties as in Myc1-167. Thus, the entire N and C-terminal regions of c-Myc TAD act in concert to achieve high specificity and affinity to two structurally and functionally orthogonal target proteins, TBP and MM-1, possibly through a mechanism involving molten globule formation. This hints towards understanding how binding of a range of targets can be accomplished to a single transactivation domain.  相似文献   

3.
The binding of alpha/beta-type small, acid-soluble spore proteins (SASP) to DNA of spores of Bacillus species is the major determinant of DNA resistance to a variety of damaging treatments. The primary sequence of alpha/beta-type SASP is highly conserved; however, the N-terminal third of these proteins is less well conserved than the C-terminal two-thirds. To determine the functional importance of residues in the N-terminal region of alpha/beta-type SASP, variants of SspC (a minor alpha/beta-type SASP from Bacillus subtilis) with modified N termini were generated and their structural and DNA binding properties studied in vitro and in vivo. SspC variants with deletions of up to 14 residues ( approximately 20% of SspC residues) were able to bind DNA in vitro and adopted similar conformations when bound to DNA, as determined by circular dichroism spectroscopy and protein-protein cross-linking. Progressive deletion of up to 11 N-terminal residues resulted in proteins with progressively lower DNA binding affinity. However, SspC(Delta)(14) (in which 14 N-terminal residues have been deleted) showed significantly higher affinity for DNA than the larger proteins, SspC(Delta)(10) and SspC(Delta)(11). The affinity of these proteins for DNA was shown to be largely dependent upon the charge of the first few N-terminal residues. These results are interpreted in the context of a model for DNA-dependent alpha/beta-type SASP protein-protein interaction involving the N-terminal regions of these proteins.  相似文献   

4.
Winger JA  Marletta MA 《Biochemistry》2005,44(10):4083-4090
The catalytic domains (alpha(cat) and beta(cat)) of alpha1beta1 soluble guanylate cyclase (sGC) were expressed in Escherichia coli and purified to homogeneity. alpha(cat), beta(cat), and the alpha(cat)beta(cat) heterodimeric complex were characterized by analytical gel filtration and circular dichroism spectroscopy, and activity was assessed in the absence and presence of two different N-terminal regulatory heme-binding domain constructs. Alpha(cat) and beta(cat) were inactive separately, but together the domains exhibited guanylate cyclase activity. Analysis by gel filtration chromatography demonstrated that each of the approximately 25-kDa domains form homodimers. Heterodimers were formed when alpha(cat) and beta(cat) were combined. Results from circular dichroism spectroscopy indicated that no major structural changes occur upon heterodimer formation. Like the full-length enzyme, the alpha(cat)beta(cat) complex was more active in the presence of Mn(2+) as compared to the physiological cofactor Mg(2+), although the magnitude of the difference was much larger for the catalytic domains than for the full-length enzyme. The K(M) for Mn(2+)-GTP was measured to be 85 +/- 18 microM, and in the presence of Mn(2+)-GTP, the K(D) for the alpha(cat)beta(cat) complex was 450 +/- 70 nM. The N-terminal heme-bound regulatory domain of the beta1 subunit of sGC inhibited the activity of the alpha(cat)beta(cat) complex in trans, suggesting a domain-scale mechanism of regulation by NO. A model in which binding of NO to sGC causes relief of an autoinhibitory interaction between the regulatory heme-binding domain and the catalytic domains of sGC is proposed.  相似文献   

5.
The preS1 of hepatitis B virus (HBV) is located at the outermost part of the envelope protein and possesses several functionally important regions such as hepatocyte receptor-binding site and virus-neutralizing epitopes. As the first step to understand the structure-function relationship for the preS1 antigen, we have purified the preS1 and performed its structural characterization by circular dichroism (CD) spectroscopy. The preS1 was purified to near homogeneity from bacterially expressed glutathione S-transferase (GST)-preS1 fusion protein by two-step purification, affinity chromatography on glutathione-agarose column, and cation-exchange chromatography on Mono S column. The CD analysis showed that the purified preS1, which was largely unstructured in aqueous solution, acquired a significant (16%) alpha-helical structure when analyzed in 50% trifluoroethanol or 20 mM SDS. The results suggest that the preS1 assumes a mainly unstructured conformation and may form induced secondary structures upon binding to target proteins or under hydrophobic environment.  相似文献   

6.
Colicins translocate across the Escherichia coli outer membrane and periplasm by interacting with several receptors. After first binding to outer membrane surface receptors via their central region, they interact with TolA or TonB proteins via their N-terminal regions. Finally, the toxic C-terminal region is inserted into or across the cytoplasmic membrane. We have measured the binding of colicin N to TolA by isothermal titration microcalorimetry (ITC) and tryptophan fluorescence. The isolated N-terminal domain exhibits a higher affinity for TolA ( K d = 1 μM) than does the whole colicin (18 μM), and similar behaviour has been observed when the N-terminal domain of the g3p protein of the bacteriophage fd, which also binds TolA, is examined in isolation and in situ . This may indicate a similar mechanism in which a cryptic TolA binding site is revealed after primary receptor binding. The isolated colicin N N-terminal domain appears to be unstructured in circular dichroism and fluorescence studies. We have used mutagenesis and ITC to characterize the TolA binding site and have shown it to be of a different sequence and much further from the N-terminus than previously thought.  相似文献   

7.
The N-terminal region of non-erythroid alpha spectrin (SpαII) is responsible for interacting with its binding partner, beta spectrin, to form functional spectrin tetramers. We used a yeast-two-hybrid system, with an N-terminal segment of alpha spectrin representing the functional tetramerization site, as a bait to screen human brain c-DNA library for proteins that interact with the alpha spectrin segment. In addition to several beta spectrin isoforms, we identified 14 proteins that interact with SpαII. Seven of the 14 were matched to 6 known proteins: Duo protein, Lysyl-tRNA synthetase, TBP associated factor 1, two isoforms (b and c) of a protein kinase A interacting protein and Zinc finger protein 333 (2 different segments). Four of the 6 proteins are located primarily in the nucleus, suggesting that spectrin plays important roles in nuclear functions. The remaining 7 proteins were unknown to the protein data base. Structural predictions show that many of the 14 proteins consist of a large portion of unstructured regions, suggesting that many of these proteins fold into a rather flexible conformation. It is interesting to note that all but 3 of the 14 proteins are predicted to consist of one to four coiled coils (amphiphilic helices). A mutation in SpαII, V22D, which interferes with the coiled coil bundling of SpαII with beta spectrin, also affects SpαII interaction with Duo protein, TBP associated factor 1 and Lysyl-tRNA synthetase, suggesting that they may compete with beta spectrin for interaction with SpαII. Future structural and functional studies of these proteins to provide interaction mechanisms will no doubt lead to a better understanding of brain physiology and pathophysiology.  相似文献   

8.
Estrogen receptor (ER) function is mediated by multi-domain co-regulator proteins. A fluorescently labelled fragment of the human PGC-1alpha co-regulator (residues 91-408) bearing the two motifs most strongly implicated in interactions with nuclear receptors (NR box2 and NR box3), was used to characterize in vitro binding of PGC-1alpha to ER. Anisotropy measurements revealed that the affinity of this PGC-1alpha fragment for human ERalpha and beta was fairly strong in the presence of estradiol (approximately 5 nM), and that unlike a similar fragment of SRC-1 (570-780), PGC-191-408 exhibited ligand-independent interactions with ER, particularly with ERbeta (Kd approximately 30 nM). Competition experiments of the complex between ERalpha and fluorescently labelled PGC-1 91-408 with unlabelled SRC-1 570-780 showed that PGC-1 91-408 was an efficient competitor of SRC-1 570-780, while the inverse was not true, underscoring their distinct modes of binding. The anisotropy data provide strong evidence for a ternary complex between ERalpha, SRC-1 570-780 and PGC-1 91-408. GST-pull-down experiments with deletion mutants of ERalpha revealed that the constitutive binding of PGC-1 91-408 requires the presence of the linker domain between the DNA binding and ligand binding domains (DBD and LBD). Homology modeling studies of the different regions of full length PGC-1alpha confirmed the lack of compact tertiary structure of the N-terminal region bearing the NR box motifs, and suggested a slightly different mode of interaction compared to the NR box motifs of SRC-1. They also provided reasonable structural models for the coiled-coil dimerization motif at residues 633-675, as well as the C-terminal putative RNA binding domain, raising important questions concerning the stoichiometry of its complex with the nuclear receptors.  相似文献   

9.
10.
Translocated in liposarcoma (TLS) is an important protein component of the heterogeneous nuclear ribonucleoprotein complex involved in the splicing of pre-mRNA and the export of fully processed mRNA to the cytoplasm. We examined the domain organization of human TLS by a combined approach using limited proteolysis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, circular dichroism, inductively coupled plasma atomic emission spectroscopy, and NMR spectroscopy. We found that the RNA recognition motif (RRM) and zinc finger-like domains exclusively form protease-resistant core structures within the isolated TLS protein fragments, while the remaining regions, including the Arg-Gly-Gly repeats, appear to be completely unstructured. Thus, TLS contains the unstructured N-terminal half followed by the RRM and zinc finger-like domains, which are connected to each other by a flexible linker. We also carried out NMR analyses to obtain more detailed insights into the individual RRM and zinc finger-like domains. The 113Cd NMR analysis of the zinc finger-like domain verified that zinc is coordinated with four cysteines in the C4 type scheme. We also investigated the interaction of each domain with an oligo-RNA containing the GGUG sequence, which appears to be critical for the TLS function in splicing. The backbone amide NMR chemical shift perturbation analyses indicated that the zinc finger domain binds GGUG-containing RNA with a dissociation constant of about 1.0 x 10(-5) m, whereas the RRM domain showed no observable interaction with this RNA. This surprising result implies that the zinc finger domain plays a more predominant role in RNA recognition than the RRM domain.  相似文献   

11.
12.
The tertiary structure of lipid-free apolipoprotein (apo) A-I in the monomeric state comprises two domains: a N-terminal alpha-helix bundle and a less organized C-terminal domain. This study examined how the N- and C-terminal segments of apoA-I (residues 1-43 and 223-243), which contain the most hydrophobic regions in the molecule and are located in opposite structural domains, contribute to the lipid-free conformation and lipid interaction. Measurements of circular dichroism in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that single (L230P) or triple (L230P/L233P/Y236P) proline insertions into the C-terminal alpha helix disrupted the organization of the C-terminal domain without affecting the stability of the N-terminal helix bundle. In contrast, proline insertion into the N terminus (Y18P) disrupted the bundle structure in the N-terminal domain, indicating that the alpha-helical segment in this region is part of the helix bundle. Calorimetric and gel-filtration measurements showed that disruption of the C-terminal alpha helix significantly reduced the enthalpy and free energy of binding of apoA-I to lipids, whereas disruption of the N-terminal alpha helix had only a small effect on lipid binding. Significantly, the presence of the Y18P mutation offset the negative effects of disruption/removal of the C-terminal helical domain on lipid binding, suggesting that the alpha helix around Y18 concealed a potential lipid-binding region in the N-terminal domain, which was exposed by the disruption of the helix-bundle structure. When these results are taken together, they indicate that the alpha-helical segment in the N terminus of apoA-I modulates the lipid-free structure and lipid interaction in concert with the C-terminal domain.  相似文献   

13.
14.
15.
The interaction of thiocyanate with human native and cross-linked oxyhemoglobin (oxyHb), and methemoglobin (metHb) has been investigated by optical spectroscopy, circular dichroism (CD) and nuclear spin lattice relaxation rate measurements. The interaction of thiocyanate anion with human hemoglobin has been investigated by NMR measurements of the nuclear spin lattice relaxation rate of N(15) labeled thiocyanate in the presence of cyanomethemoglobin and cross-linked cyanomethemoglobin. Results show that thiocyanate is located approximately 8.9 and 6.2 A away from the heme group in cyanomethemoglobin and cross-linked cyanomethemoblobin, respectively. These results are consistent with the binding of SCN(-) at the lys-alpha-99 in the unmodified hemoglobin. Since this site is blocked in the cross-linked hemoglobin, the binding site is different. Results show that one mole of SCN(-) is binding to one mole of oxyhemoglobin suggesting that binding at the lys-alpha-99 is linked to dissociation of the hemoglobin tetramer into dimers due to its location at the alpha(1)beta(2) interface. Circular dichroism studies show that the interaction of thiocyanate with oxyHb decreases the optical rotation at 240 nm indicating a conformational change of the protein, which influences the electronic transitions of a number of peptide bonds or (and) a few aromatic side chains.  相似文献   

16.
Assembly of clathrin lattices is mediated by assembly/adaptor proteins that contain domains that bind lipids or membrane-bound cargo proteins and clathrin binding domains (CBDs) that recruit clathrin. Here, we characterize the interaction between clathrin and a large fragment of the CBD of the clathrin assembly protein AP180. Mutational, NMR chemical shift, and analytical ultracentrifugation analyses allowed us to precisely define two clathrin binding sites within this fragment, each of which is found to bind weakly to the N-terminal domain of the clathrin heavy chain (TD). The locations of the two clathrin binding sites are consistent with predictions from sequence alignments of previously identified clathrin binding elements and, by extension, indicate that the complete AP180 CBD contains ∼ 12 degenerate repeats, each containing a single clathrin binding site. Sequence and circular dichroism analyses have indicated that the AP180 CBD is predominantly unstructured and our NMR analyses confirm that this is largely the case for the AP180 fragment characterized here. Unexpectedly, unlike the many proteins that undergo binding-coupled folding upon interaction with their binding partners, the AP180 fragment is similarly unstructured in its bound and free states. Instead, we find that this fragment exhibits localized β-turn-like structures at the two clathrin binding sites both when free and when bound to clathrin. These observations are incorporated into a model in which weak binding by multiple, pre-structured clathrin binding elements regularly dispersed throughout a largely unstructured CBD allows efficient recruitment of clathrin to endocytic sites and dynamic assembly of the clathrin lattice.  相似文献   

17.
S Kotani  G Kawai  S Yokoyama  H Murofushi 《Biochemistry》1990,29(43):10049-10054
An amino acid sequence essential for microtubule-associated proteins (MAPs) to bind to microtubules is presented [Aizawa et al. (1989) J. Biol. Chem. 264, 5885-5890]. A synthetic peptide of 23 amino acid residues which corresponded to the sequence [tubulin binding peptide (TBP)] was active in binding to tubulin and inducing its assembly. The TBP-tubulin interaction mechanism was analyzed by proton nuclear magnetic resonance spectroscopy as a simplified model for MAP-microtubule interactions. Intraresidue transferred nuclear Overhauser effects (TRNOEs) of TBP in TBP-tubulin mixtures were analyzed, and strong binding of two Val and two Lys residues of TBP to tubulin was detected. Among the sharply peaked signals from tubulin aromatic residues, those due to Tyr ring protons broadened upon mixing with TBP, suggesting the involvement of Tyr residue(s) in the binding with TBP. Irradiation of the tubulin Tyr protons resulted in an intermolecular TRNOE at TBP methyl proton resonances. Evidently, hydrophobic interactions between Val and Tyr residues are important for the binding of TBP to tubulin. Hydrophobic interactions have not been taken into account previously in the widely accepted electrostatic model for the binding of MAPs to microtubules.  相似文献   

18.
19.
20.
The nucleoprotein of measles virus consists of an N-terminal moiety, N(CORE), resistant to proteolysis and a C-terminal moiety, N(TAIL), hypersensitive to proteolysis and not visible as a distinct domain by electron microscopy. We report the bacterial expression, purification, and characterization of measles virus N(TAIL). Using nuclear magnetic resonance, circular dichroism, gel filtration, dynamic light scattering, and small angle x-ray scattering, we show that N(TAIL) is not structured in solution. Its sequence and spectroscopic and hydrodynamic properties indicate that N(TAIL) belongs to the premolten globule subfamily within the class of intrinsically disordered proteins. The same epitopes are exposed in N(TAIL) and within the nucleoprotein, which rules out dramatic conformational changes in the isolated N(TAIL) domain compared with the full-length nucleoprotein. Most unstructured proteins undergo some degree of folding upon binding to their partners, a process termed "induced folding." We show that N(TAIL) is able to bind its physiological partner, the phosphoprotein, and that it undergoes such an unstructured-to-structured transition upon binding to the C-terminal moiety of the phosphoprotein. The presence of flexible regions at the surface of the viral nucleocapsid would enable plastic interactions with several partners, whereas the gain of structure arising from induced folding would lead to modulation of these interactions. These results contribute to the study of the emerging field of natively unfolded proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号