首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Pollen grains from Betula pendula were fixed in a mixture of p-formaldehyde and cetylpyridinium chloride (CPC) for the precipitation of soluble pollen glycoproteins. After dehydration and embedding at low temperatures in the water-soluble resin, Lowicryl K4M, ultrathin sections of the pollen grains were incubated using specific antibodies against birch-pollen extract and protein-A/gold complexes. Antigen activity was found in the CPC-precipitated surface material and within the exine (bacular cavities) and the cytoplasm (except for starch grains and lipidic droplets). There was no labelling within the intine. The region of the germinal aperture also showed a very low degree of antigen activity. The control sections were almost completely free of background staining.  相似文献   

2.
Human type 1 immediate allergic response symptoms are caused by mediator release from basophils and mast cells. This event is triggered by allergens aggregating preformed IgE Abs bound to the high-affinity receptor (FcepsilonRI) on these cells. Thus, the allergen/IgE interaction is crucial for the cascade leading to the allergic and anaphylactic response. Two genetically engineered forms of the white birch pollen major allergen Bet v 1 with point mutations directed at molecular surfaces have been characterized. Four and nine point mutations led to a significant reduction of the binding to human serum IgE, suggesting a mutation-induced distortion of IgE-binding B cell epitopes. In addition, the mutated allergens showed a decrease in anaphylactic potential, because histamine release from human basophils was significantly reduced. Retained alpha-carbon backbone folding pattern of the mutated allergens was indicated by x-ray diffraction analysis and circular dichroism spectroscopy. The rBet v 1 mutants were able to induce proliferation of T cell lines derived from birch pollen allergic patients. The stimulation indices were similar to the indices of nonmutated rBet v 1 and natural Bet v 1 purified from birch pollen. The ability of anti-rBet v 1 mutant specific mouse IgG serum to block binding of human serum IgE to rBet v 1 demonstrates that the engineered rBet v 1 mutants are able to induce Abs reactive with nonmodified Bet v 1. rBet v 1 mutants may constitute vaccine candidates with improved efficacy/safety profiles for safer allergy vaccination.  相似文献   

3.
Using serum from human atopic individuals with a sufficiently high titre of IgE and IgG antibodies to birch- or hazel-pollen allergens and antigens, the localization of IgE binding sites in birch- and hazel-pollen grains was determined by pre- and post-embedding electron microscopic immunoautoradiography with 125I-anti-IgE, whereas the IgG binding sites were localized in ultrathin sections of birch-pollen grains by the protein-A/gold technique. Concerning the distribution patterns of both IgE/IgG binding sites within the pollen grains, no difference could be observed in the dormant pollen grain: Labelling was found in the exine part of the pollen wall and throughout the highly condensed cytoplasm except for starch grains and lipid droplets. The intine part and the germination pores were almost completely unlabelled. In pollen grains which had been soaked in a hypotonic buffer for 15 min, however, IgE binding sites were predominantly localized within the intine and the germination pores. The specificity of the labelling reactions and the observed differences in the localization patterns are discussed.  相似文献   

4.
M Grote  H G Fromme 《Histochemistry》1984,81(5):489-492
Pollen grains from Betula pendula were fixed in a mixture of p-formaldehyde and cetylpyridinium chloride (CPC) for the precipitation of soluble pollen glycoproteins. After dehydration and embedding at low temperatures in the water-soluble resin, Lowicryl K4M, ultrathin sections of the pollen grains were incubated using specific antibodies against birch-pollen extract and protein-A/gold complexes. Antigen activity was found in the CPC-precipitated surface material and within the exine (bacular cavities) and the cytoplasm (except for starch grains and lipidic droplets). There was no labelling within the intine. The region of the germinal aperture also showed a very low degree of antigen activity. The control sections were almost completely free of background staining.  相似文献   

5.
Type I allergy, an immunodisorder affecting almost 20% of the population worldwide, is based on the production of IgE antibodies against per se harmless allergens. We report the expression of hexahistidine-tagged antibody fragments (Fabs) with specificity for Bet v1, the major birch pollen allergen, in Escherichia coli. The cDNA coding for the heavy chain fragment of a mouse monoclonal anti-Bet v1 antibody, Bip 1, was engineered by PCR to contain a hexahistidine-encoding 3' end. The modified Bip1 heavy chain cDNA was co-expressed in E. coli XL-1 Blue with the Bip 1 light chain cDNA using the combinatorial plasmid pComb3H. His-tagged recombinant (r) Bip 1 Fabs were isolated by nickel affinity chromatography and rBip 1 Fabs without His-tag were purified via affinity to rBet v1. rBip 1 Fabs with and without His-tag bound specifically to rBet v1 and, like Bet v1 -specific human serum IgE and rabbit-anti rBet v1 antibodies, cross-reacted with Bet v1-related allergens in other plant-species (alder, oak, hazelnut). We demonstrate the usefulness of His-tagged rBip 1 Fabs (1) for the identification of pollen samples containing Bet v 1 by particle blotting, (2) forthe detection of Bet v1-specific IgE antibodies in human serum samples by sandwich ELISA and (3) for the quantification of Bet v1 in solution. Based on these examples we suggest to use rBip 1 Fabs for the detection of Bet v1 and Bet v1-related allergens in natural allergen sources for allergy prevention, as well as for the standardization of natural allergen extracts produced for diagnosis and immunotherapy of birch pollen allergy.  相似文献   

6.
 Profilins are structurally well conserved low molecular weight (12–15 kDa) eukaryotic proteins which interact with a variety of physiological ligands: (1) cytoskeletal components, e.g., actin; (2) polyphosphoinositides, e.g., phosphatidylinositol-4,5-bisphosphate; (3) proline-rich proteins, e.g., formin homology proteins and vasodilatator-stimulated phosphoprotein. Profilins may thus link the microfilament system with signal transduction pathways. Plant profilins have recently been shown to be highly crossreactive allergens which bind to IgE antibodies of allergic patients and thus cause symptoms of type I allergy. We expressed and purified from Escherichia coli profilins from birch pollen (Betula verrucosa), humans (Homo sapiens) and yeast (Schizosaccharomyces pombe) and demonstrated that each of these profilins is able to form stable homo- and heteropolymers via disulphide bonds in vitro. Circular dichroism analysis of oxidized (polymeric) and reduced (monomeric) birch pollen profilin indicates that the two states have similar secondary structures. Using 125I-labeled birch pollen, yeast and human profilin in overlay experiments, we showed that disulphide bond formation between profilins can be disrupted under reducing conditions, while reduced as well as oxidized profilin states bind to actin and profilin-specific antibodies. Exposure of profilin to oxidizing conditions, such as when pollen profilins are liberated on the surface of the mucosa of atopic patients, may lead to profilin polymerization and thus contribute to the sensitization capacity of profilin as an allergen. Received: 25 February 1998 / Revision accepted: 12 May 1998  相似文献   

7.
Pollen allergens interact with the human immune system and the resulting IgE antibodies provide specific probes for their identification and characterisation. In one case, grass allergenic proteins are expressed late in pollen development coincident with the laying down of reserves. Sequence similarity of allergens has indicated possible functions for some allergens. The major birch pollen allergen shows sequence similarity with pathogenesis-related proteins, which form a secondary response in plant host-pathogen interactions and show anti-microbial activity. Some allergens of unknown function are cysteine-rich proteins, while some others have cysteine-rich regions; for example, the major allergen from rye-grass pollen, Lol p 1, has a cysteine-rich N-terminal region, while at the C-terminal region four tryptophan residues together with tyrosine and phenylalanine residues resemble those of cellulose- or sugar-binding domains of other proteins. Several pollen allergens show sequence similarity to cell wall-associated enzymes, while others show hydrolytic enzyme activity often associated with cell walls.  相似文献   

8.
IgE antibodies against allergens of Japanese cedar (Cryptomeria japonica, CJ) pollen in the serum of seven Japanese monkeys (Macaca fuscata) with pollinosis were measured by fluorometric indirect enzyme-linked immunosorbent assay (ELISA). All of the monkeys were found to have specific IgE to the crude pollen antigen. The specific IgE levels were well correlated with those determined by the Pharmacia CAP system. IgE antibodies were then assayed with two kinds of purified allergens (Cry j I and Cry j II) by the ELISA. We found that five monkeys had specific IgE to both allergens, although the other two had IgE only to Cry j I or Cry j II; there is different immune responsiveness to the two major allergens in the monkeys.  相似文献   

9.
In many cases, patients allergic to birch pollen also show allergic reactions after ingestion of certain fruits or vegetables. This observation is explained at the molecular level by cross-reactivity of IgE antibodies induced by sensitization to the major birch pollen allergen Bet v 1 with homologous food allergens. As IgE antibodies recognize conformational epitopes, a precise structural characterization of the allergens involved is necessary to understand cross-reactivity and thus to develop new methods of allergen-specific immunotherapy for allergic patients. Here, we report the three-dimensional solution structure of the soybean allergen Gly m 4, a member of the superfamily of Bet v 1 homologous proteins and a cross-reactant with IgE antibodies originally raised against Bet v 1 as shown by immunoblot inhibition and histamine release assays. Although the overall fold of Gly m 4 is very similar to that of Bet v 1, the three-dimensional structures of these proteins differ in detail. The Gly m 4 local structures that display those differences are also found in proteins from yellow lupine with known physiological function. The three-dimensional structure of Gly m 4 may thus shed some light on the physiological function of this subgroup of PR10 proteins (class 10 of pathogenesis-related proteins) and, in combination with immunological data, allow us to propose surface patches that might represent cross-reactive epitopes.  相似文献   

10.
To localize the highly water-soluble major allergen Bet v I in ultra-thin sections of birch pollen, pollen grains were cracked, air-dried, and processed for electron microscopy using one of the following preparation techniques: fixation in aqueous p-formaldehyde + cetylpyridinium chloride; fixation in p-formaldehyde vapor; fixation in benzoquinone vapor; inert dehydration; or no fixation. Afterwards the pollen grains were embedded in Lowicryl K4M resin at low temperature. Ultra-thin sections were cut and incubated with a monoclonal antibody against Bet v I, followed by a gold-labeled secondary antibody. In some experiments, commercial rabbit IgG antibodies against birth pollen allergens were also used, followed by incubation with the protein A-gold complex. Bet v I could be localized only after vapor fixation and in the inert dehydrated specimens. Best preservation of ultrastructure and antigenicity was obtained after p-formaldehyde vapor fixation. Bet v I antibody binding sites were detected only in the cytoplasmic matrix of the pollen grain, never in the pollen wall. Commercial rabbit antibodies bound to cytoplasm and wall of all prepared specimens, even after aqueous fixation. This might be explained by the assumption that these antibodies recognize a variety of antigenic and allergenic structures, not all of which are so highly soluble as Bet v I.  相似文献   

11.
Pollen from birch trees (Betula pendula) was fixed in glutaraldehyde containing 0.5% cetylpyridinium chloride (CPC), incubated with concanavalin A (Con A)-ferritin, postfixed in osmium, dehydrated, and embedded in Epon. On ultrathin sections, ferritin particles were observed closely associated with the electron-dense material precipitated by CPC on the surface of the pollen grains. Controls for CPC, which were fixed in glutaraldehyde alone, showed no electron-dense material on the surface. In controls for Con A, which were incubated in Con A-ferritin in the presence of the inhibitory sugar (alpha-methyl-D-mannopyranoside), no ferritin particles were observed. The above-described procedure thus allows the localization of sugar residues in highly soluble pollen wall glycoproteins.  相似文献   

12.
The objectives of the present study were: (1) to localise, at the subcellular level, the allergens in pollen of Cupressaceae species, using a monoclonal antibody (mAb 5E6) that is specific for carbohydrate epitopes of allergenic components of Cupressus arizonica pollen extract; (2) to determine whether the glycidic epitope recognised by mAb 5E6 was present in pollen of allergenic species taxonomically unrelated to Cupressaceae; and (3) to determine whether human IgE purified from monosensitive patients recognises the same epitope as mAb 5E6 in Cupressaceae pollen. Immunogold labelling of mAb 5E6 showed a high density of gold particles on the orbicules, supporting the hypothesis that they are important vectors of allergens. A high density was also found on the exine and in the cytoplasm, with the latter finding confirming that fragments of pollen ruptured under humid conditions can represent a vector. The glycidic epitope recognised by mAb 5E6 was detected in all of the species taxonomically unrelated to Cupressaceae, although with varying density. Human IgE recognised the same epitope as mAb 5E6. These findings are consistent with observations of diffuse allergenic cross-reactivity among various allergens. The in situ localisation of a common epitope recognised by both a monoclonal antibody and human IgE could be of importance in immunotherapy.  相似文献   

13.
Grass pollen allergic patients are concomitantly exposed and sensitized to pollens from multiple Pooideae (i.e. common grass) species. As such, they are currently desensitized by allergen‐specific immunotherapy using extracts made from mixes of pollens from Anthoxanthum odoratum, Dactylis glomerata, Lolium perenne, Phleum pratense and Poa pratensis. Herein, we demonstrate that species‐specific glycoprotein patterns are documented by 1D and 2D electrophoresis and Western blotting analysis, which can be used as an identity test for such pollens. Most allergens are glycoproteins bearing complex N‐glycans encompassing β1,2 xylose and α1,3 fucose glycoepitopes. Glycoepitope destruction using periodate oxidation has no impact on seric IgE reactivity in 75% atopic patients (n = 24). The latter have thus no significant IgE responses to carbohydrate‐containing epitopes. In contrast, periodate treatment strongly impairs IgE recognition of glycoallergens in 25% of patients tested, demonstrating the presence of carbohydrate‐specific IgE in those patients. While the clinical impact of carbohydrate‐specific IgE is still a matter of controversy, the presence of these IgE in the serum of many allergic patients illustrates the need for cross‐reacting carbohydrate epitope‐free recombinant allergens to develop relevant diagnostic tests. These data also support the pertinence of mixing multiple grass pollens to desensitize atopic patients, with the aim to broaden the repertoire of glycoepitopes in the vaccine, thus mimicking natural exposure conditions.  相似文献   

14.
Proteins or glycoproteins bearing epitopes for human IgE antibodies are designated as allergens causing type I allergic diseases. In this study, recombinant allergens were compared with their natural counterparts either as part of extracts or as purified molecules with respect to several biochemical and immunological properties.Natural and recombinant Bet v 1 and Phl p 1, major allergens of birch pollen extracts and Phleum pratense pollen extracts, were analyzed by SDS-PAGE, immunoblotting, EAST inhibition and size exclusion chromatography (SEC).Differences of IgE-binding capacities between recombinant Bet v 1 as well as recombinant Phl p 1 variants were detected by EAST inhibition. These results were confirmed by size exclusion chromatography in that the recombinant proteins showed differences of their elution volumes being equivalent to the natural molecules only with the more active recombinant form. In contrast, SDS-PAGE and immunoblot analysis resulted in divergent characteristics, as either migrations of the variants were similar or no differences of IgE binding were detectable.In conclusion, size exclusion chromatography is the method of choice for quality control of well characterized recombinant allergens, comprising control of purity, protein content and conformation.  相似文献   

15.
Summary Although intact pollen grains are assumed to be the primary carrier of pollen allergens, specific immunoreactive components have been found in other aerosol fractions, e.g., starch grains and remains of tapetal cells Cryo-scanning-electron-microscopy results demonstrate the presence of a clear network of strands connecting the tapetum with the microspores. The distribution of protein in tapetal orbicules, pollen wall, and pollen cytoplasm was tested by histochemical stains for light microscopy and transmission electron microscopy. The protein is mainly localized at the apertures and starch grains in the cytoplasm of pollen and in the core and on the surface of tapetal orbicules. Monoclonal antibodies Bv-10, BIP3, and BIP4 have been used to locate the cellular sites of pollen and tapetal allergens inBetula pendula (syn.B. verrucosa). The application of rapid-freeze fixation prevented relocation of allergens from their native sites. The allergens are predominantly found in the starch grains and to lesser extent in the exine. We also tested interactions between mature birch pollen and human fluids: saliva, nostrils fluid, and eyes solution. The aim was to mimic more closely the in vivo situation during allergenic response. In all cases we observed several pollen grains that were burst and had released their cytoplasmic contents. In the nose the allergens are released from the pollen within minutes. In rhinitis, nasal pH is increased from the normal pH 6.0 to 8.0. When we used nasal fluid at pH 8.0, the number of ruptured pollen grains increased. The mechanism that might induce formation of small allergen-bearing particles from living plant cells is discussed.  相似文献   

16.
M Grote  H G Fromme 《Histochemistry》1984,81(2):171-176
In allergenic birch pollen grains, highly watersoluble surface substances were precipitated by the cationic detergent cetylpyridinium chloride (CPC) during aqueous fixation. After processing the pollen for electron microscopy, ultrathin sections of pollen grains were subjected to the periodic acid - thiocarbohydrazide - silver proteinate (PA-TCH-SP) procedure according to Thiery (1967) for the detection of vicinal glycol groups. It was found that the material precipitated by CPC on the surface and within the exine cavities of the pollen wall strongly reacted with the PA-TCH-SP reagent thus indicating the presence of polysaccharides on the surface of birch pollen grains. In samples which had not been treated with the cationic detergent, PA-TCH-SP reactivity was reduced to thin linings on the surface and within the exine cavities. In both cases the exine proper did not stain whereas the intine showed moderate staining. Within the aperture region of the intine, PA-TCH-SP reactivity is preferably associated with fibrillar or reticular structures. The results are discussed with special reference to biochemical findings on allergenic birch pollen proteins.  相似文献   

17.
Summary In allergenic birch pollen grains, highly watersoluble surface substances were precipitated by the cationic detergent cetylpyridinium chloride (CPC) during aqueous fixation. After processing the pollen for electron microscopy, ultrathin sections of pollen grains were subjected to the periodic acid — thiocarbohydrazide — silver proteinate (PA-TCH-SP) procedure according to Thiery (1967) for the detection of vicinal glycol groups. It was found that the material precipitated by CPC on the surface and within the exine cavities of the pollen wall strongly reacted with the PA-TCH-SP reagent thus indicating the presence of polysaccharides on the surface of birch pollen grains. In samples which had not been treated with the cationic detergent, PA-TCH-SP reactivity was reduced to thin linings on the surface and within the exine cavities. In both cases the exine proper did not stain whereas the intine showed moderate staining. Within the aperture region of the intine, PA-TCH-SP reactivity is preferably associated with fibrillar or reticular structures. The results are discussed with special reference to biochemical findings on allergenic birch pollen proteins.  相似文献   

18.
Two EF-hand calcium-binding allergens (polcalcins) occur in the pollen of a wide variety of unrelated plants as highly cross-reactive allergenic molecules. We report the expression, purification, immunological characterization, and the 1.75-A crystal structure of recombinant Che a 3 (rChe a 3), the polcalcin from the weed Chenopodium album. The three-dimensional structure of rChe a 3 resembles an alpha-helical fold that is essentially identical with that of the two EF-hand allergens from birch pollen, Bet v 4, and timothy grass pollen, Phl p 7. The extensive cross-reactivity between Che a 3 and Phl p 7 is demonstrated by competition experiments with IgE Abs from allergic patients as well as specific Ab probes. Amino acid residues that are conserved for the two EF-hand allergen family were identified in multiple sequence alignments of polcalcins from 15 different plants. Next, the three-dimensional structures of rChe a 3, rPhl p 7, and rBet v 4 were used to identify conserved amino acids with high surface exposition to visualize surface patches as potential targets for the polyclonal IgE Ab response of allergic patients. The essentially identical three-dimensional structures of rChe a 3, rPhl p 7, and rBet v 4 explain the extensive cross-reactivity of allergic patients IgE Abs with two EF-hand allergens from unrelated plants. In addition, analyzing the three-dimensional structures of cross-reactive Ags for conserved and surface exposed amino acids may be a first approach to mapping the conformational epitopes on disease-related Ags that are recognized by polyclonal patient Abs.  相似文献   

19.
Serum levels of specific IgE and IgG4 antibodies to Japanese cedar (Cryptomeria japonica) pollen and total IgE antibody in 75 lumbermen and in 53 male office workers at an urban establishment were measured by means of an enzyme linked immunosorbent assay (ELISA) and compared. No significant differences of specific IgE and IgG4 to cedar pollen and total IgE were found between the lumbermen and the office workers. There were no significant differences of incidence of cedar pollinosis and positive (greater than 100 FU/ml) rate of serum specific IgE between the two groups, though the lumbermen were exposed to dense concentrations of cedar pollen in their working area. In the lumbermen who showed positive values of specific IgE, the mean value of the specific antibody in Japanese cedar pollinosis lumbermen was significantly higher than that in symptom-free lumbermen, while no significant differences of serum level of specific IgG4 were found between the two groups.  相似文献   

20.
The exine of birch pollen was examined by scanning and transmission electron microscopy in the native state and after fixation in different aqueous fixatives: glutaraldehyde + OsO4; glutaraldehyde + cetylpyridinium chloride (CPC) + OsO4; glutaraldehyde + cuprolinic blue (CB); and periodate + lysine + paraformaldehyde (PLP). The native pollen exine showed a thin (3-5-nm) border of electron-dense material lining the tectum and electron-dense material within microchannels and bacula cavities. Fixation with the addition of CPC resulted in a voluminous surface coat surrounding the pollen grain, but empty microchannels and bacula cavities. After fixation with the addition of CB, there was a thin surface coat, whereas microchannels and bacula cavities were partially filled with electron-dense material. The other fixatives led to empty microchannels and bacula cavities. There was no surface coat on the pollen grain. However, after all fixation procedures, a thin electron-dense border of the tectum remained visible. Concerning the electron-dense material filling microchannels and bacula cavities in the native pollen grain, the results obtained in the present study suggest that it is either completely lost (after conventional and PLP fixation) or, after fixation with a precipitating additive, partially (CB) or completely (CPC) solubilized and precipitated on the surface of the pollen grain as a surface coat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号