首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary NADH-specific and NAD(P)H bispecific nitrate reductases are present in barley (Hordeum vulgare L.). Wild-type leaves have only the NADH-specific enzyme while mutants with defects in the NADH nitrate reductase structural gene (nar1) have the NAD(P)H bispecific enzyme. A mutant deficient in the NAD(P)H nitrate reductase was isolated in a line (nar1a) deficient in the NADH nitrate reductase structural gene. The double mutant (nar1a;nar7w) lacks NAD(P)H nitrate reductase activity and has xanthine dehydrogenase and nitrite reductase activities similar to nar1a. NAD(P)H nitrate reductase activity in this mutant is controlled by a single codominant gene designated nar7. The nar7 locus appears to be the NAD(P)H nitrate reductase structural gene and is not closely linked to nar1. From segregating progeny of a cross between the wild type and nar1a;nar7w, a line was obtained which has the same NADH nitrate reductase activity as the wild type in both the roots and leaves but lacks NADPH nitrate reductase activity in the roots. This line is assumed to have the genotype Nar1Nar1nar7nar7. Roots of wild type seedlings have both nitrate reductases as shown by differential inactivation of the NADH and NAD(P)H nitrate reductases by a monospecific NADH-nitrate reductase antiserum. Thus, nar7 controls the NAD(P)H nitrate reductase in roots and in leaves of barley.Scientific Paper No. 7617, College of Agriculture Research Center and Home Economics, Washington State University, Pullman, WA, USA. Project Nos. 0233 and 0745  相似文献   

2.
Escherichia coli expresses two different membrane-bound respiratory nitrate reductases, nitrate reductase A (NRA) and nitrate reductase Z (NRZ). In this review, we compare the genetic control, biochemical properties and regulation of these two closely related enzyme systems. The two enzymes are encoded by distinct operons located within two different loci on theE. coli chromosome. ThenarGHJI operon, encoding nitrate reductaseA, is located in thechlC locus at 27 minutes, along with several functionally related genes:narK, encoding a nitrate/nitrite antiporter, and thenarXL operon, encoding a nitrate-activated, two component regulatory system. ThenarZYWV operon, encoding nitrate reductase Z, is located in thechlZ locus located at 32.5 minutes, a region which includes anarK homologue,narU, but no apparent homologue to thenarXL operon. The two membrane-bound enzymes have similar structures and biochemical properties and are capable of reducing nitrate using normal physiological substrates. The homology of the amino acid sequences of the peptides encoded by the two operons is extremely high but the intergenic regions share no related sequences. The expression of both thenarGHJI operon and thenarK gene are positively regulated by two transacting factors Fnr and NarL-Phosphate, activated respectively by anaerobiosis and nitrate, while thenarZYWV operon and thenarU gene are constitutively expressed. Nitrate reductase A, which accounts for 98% of the nitrate reductase activity when fully induced, is clearly the major respiratory nitrate reductase inE. coli while the physiological role of the constitutively expressed nitrate reductase Z remains to be defined.Abbreviations NR nitrate reductase On leave from Department of Biochemistry and Molecular Biology, The University of Texas Medical school at Houston, Houston, Texas, 77225, USA  相似文献   

3.
Corynebacterium glutamicum, a gram-positive soil bacterium, has been regarded as an aerobe because its growth by fermentative catabolism or by anaerobic respiration has, to this date, not been demonstrated. In this study, we report on the anaerobic growth of C. glutamicum in the presence of nitrate as a terminal electron acceptor. C. glutamicum strains R and ATCC13032 consumed nitrate and excreted nitrite during growth under anaerobic, but not aerobic, conditions. This was attributed to the presence of a narKGHJI gene cluster with high similarity to the Escherichia coli narK gene and narGHJI operon. The gene encodes a nitrate/nitrite transporter, whereas the operon encodes a respiratory nitrate reductase. Transposonal inactivation of C. glutamicum narG or narH resulted in mutants with impaired anaerobic growth on nitrate because of their inability to convert nitrate to nitrite. Further analysis revealed that in C. glutamicum, narK and narGHJI are cotranscribed as a single narKGHJI operon, the expression of which is activated under anaerobic conditions in the presence of nitrate. C. glutamicum is therefore a facultative anaerobe.  相似文献   

4.
Halomonas maura is a bacterium of great metabolic versatility. We summarise in this work some of the properties that make it a very interesting microorganism both from an ecological and biotechnological point of view. It plays an active role in the nitrogen cycle, is capable of anaerobic respiration in the presence of nitrate and has recently been identified as a diazotrophic bacterium. Of equal interest is mauran, the exopolysaccharide produced by H. maura, which contributes to the formation of biofilms and thus affords the bacterium advantages in the colonisation of its saline niches. Mauran is highly viscous, shows thixotropic and pseudoplastic behaviour, has the capacity to capture heavy metals and exerts a certain immunomodulator effect in medicine. All these attributes have prompted us to make further investigations into its molecular characteristics. To date we have described 15 open reading frames (ORF’s) related to exopolysaccharide production, nitrogen fixation and nitrate reductase activity among others.  相似文献   

5.
6.
7.
Summary The nar2 locus that codes for a protein involved in molybdenum cofactor function in nitrate reductase and other molybdoenzymes was mapped to barley chromosome 7. F2 genotypic data from F3 head rows indicated nar2 is located 8.4±2.1 and 23.0± 4.6 cm from the narrow leaf dwarf (nld) and mottled seedling (mt2) loci, respectively. This locates the nar2 locus at 54.7±3.1 cm from the short-haired rachilla (s) locus near the centromere of chromosome 7. Close linkage of nar2 with DDT resistance (ddt) and high lysine (lys3) loci was detected but could not be quantified due to deviations from the individual expected 121 segregations for the ddt and lys3 genes. Southern blots of wheat-barley addition lines probed with a nitrate reductase cDNA located the NADH : nitrate reductase structural gene, nar1, to chromosome 6.Scientific Paper No. 7762. College of Agriculture and Home Economics Research Center, Washington State University, Project No. 0745. This investigation was supported in part by United States Department of Agriculture Grant No. 86-CRCR-1-2004  相似文献   

8.
9.
Thenar promoter as an inducible promoter was characterized for the process development for the gene expression and the protein production under anaerobic condition. The LB medium was selected as a main culture medium showing the enzyme activity of 18,000 units/min/g cell in the flask cultivation. The optimum concentration of nitrate was 1%. Under anaerobic conditions, the gene expression was fully induced in the presence of nitrate.  相似文献   

10.
Anaerobic induction of nitrate reductase in subcellular fractions of Bradyrhizobium sp. strain USDA 3045 showed fivefold increase of the enzyme activity in spheroplasts, considered as the source of intact-membrane-bound nitrate reductase, within a 3 h time frame after nitrate addition. Such a dynamics was confirmed at the protein level, with antibodies specific to membrane-bound nitrate reductase. Nitrate reductase activity in the periplasm was one order of magnitude lower and significant only at initial 3 h of induction, within a narrow range of nitrate added. Nitrite induced the membrane-bound nitrate reductase at least 70% as effectively as nitrate, as judged from its activity pattern and Western blot analysis. The limited ability of Bradyrhizobium sp. to dissimilate ≥5 mM nitrate is not due to direct inhibition of respiratory nitrate reductase by accumulated nitrite. Moreover, a synergistic induction of membrane-bound nitrate reductase by nitrate and nitrite was indicated due to a twofold higher protein synthesis after simultaneous addition of these N oxyanions than when they were given separately.  相似文献   

11.
NO reductase synthesis was investigated immunochemically and by activity assays in cells of Pseudomonas stutzeri ZoBell grown in continuous culture at discrete aeration levels, or in O2-limited batch cultures supplemented with N oxides as respiratory substrate. Under aerobic conditions, NO reductase was not expressed in P. stutzeri. Oxygen limitation in combination with the presence of nitrate or nitrite derepressed NO reductase synthesis. On transition from aerobic to anaerobic conditions in continuous culture, NO reductase was synthesized below 3% air saturation and reached maximum expression under anaerobic conditions. By use of mutant strains defective in nitrate respiration or nitrite respiration, the inducing effect of individual N oxides on NO reductase synthesis could be discriminated. Nitrite caused definite, concentration-dependent induction, while nitrate promoted moderate enzyme synthesis or amplified effects of nitrite. Exogenous nitric oxide (NO) in concentrations 25 M induced trace amounts of NO reductase; in higher concentrations it arrested cell growth. Nitrite reductase or NO reductase were not detected immunochemically under these conditions. NO generated as an intermediate appeared not to induce NO reductase significantly. Antiserum raised against the P. stutzeri NO reductase showed crossreaction with cell extracts from P. stutzeri JM300, but not with several other denitrifying pseudomonads or Paracoccus denitrificans.  相似文献   

12.
Oxygen limitation is a crucial problem in amino acid fermentation by Corynebacterium glutamicum. Toward this subject, our study was initiated by analysis of the oxygen-requiring properties of C. glutamicum, generally regarded as a strict aerobe. This organism formed colonies on agar plates up to relatively low oxygen concentrations (0.5% O2), while no visible colonies were formed in the absence of O2. However, in the presence of nitrate (), the organism exhibited limited growth anaerobically with production of nitrite (), indicating that C. glutamicum can use nitrate as a final electron acceptor. Assays of cell extracts from aerobic and hypoxic cultures yielded comparable nitrate reductase activities, irrespective of nitrate levels. Genome analysis revealed a narK2GHJI cluster potentially relevant to nitrate reductase and transport. Disruptions of narG and narJ abolished the nitrate-dependent anaerobic growth with the loss of nitrate reductase activity. Disruption of the putative nitrate/nitrite antiporter gene narK2 did not affect the enzyme activity but impaired the anaerobic growth. These indicate that this locus is responsible for nitrate respiration. Agar piece assays using l-lysine- and l-arginine-producing strains showed that production of both amino acids occurred anaerobically by nitrate respiration, indicating the potential of C. glutamicum for anaerobic amino acid production.  相似文献   

13.
The diversity of the dissimilatory and respiratory nitrate-reducing communities was studied in two soils of the former lake Texcoco (Mexico). Genes encoding the membrane-bound nitrate reductase (narG) and the periplasmic nitrate reductase (napA) were used as functional markers. To investigate bacterial communities containing napA and narG in saline alkaline soils of the former lake Texcoco, libraries of the two sites were constructed (soil T3 with pH 11 and electrolytic conductivity in saturated extract (ECSE) 160 dS m−1 and soil T1 with pH 8.5 and ECSE 0.8 dS m−1). Phylogenetic analysis of napA sequences separated the clone families into two main groups: dependent or independent of NapB. Most of napA sequences from site T1 were grouped in the NapB-dependent clade, meanwhile most of the napA sequences from the extreme soil T3 were affiliated to the NapB-independent group. For both sites, partial narG sequences were associated with representatives of the Proteobacteria, Firmicutes and Actinobacteria phyla, but the proportions of the clones were different. Our results support the concept of a specific and complex nitrate-reducing community for each soil of the former lake Texcoco.  相似文献   

14.
Summary A nar-lac operon fusion was used to isolate a mutant in which the expression of the nar operon was no longer repressed by oxygen. The nar d mutation, located upstream of the nar structural genes, was found to be cis dominant; it led to independence from the Fnr protein which, in the wild-type strain, exerts a strict positive control on the nar operon. Both other known controls, nitrate induction and autoregulation, were unaffected. It is proposed that molecular oxygen controls the expression of nar via Fnr and that the nar d mutation affects the Fnr binding site of the narGHI control region.  相似文献   

15.
A barley (Hordeum vulgare L.) mutant, nar1a (formerly Az12), deficient in NADH nitrate reductase activity is, nevertheless, capable of growth with nitrate as the sole nitrogen source. In an attempt to identify the mechanism(s) of nitrate reduction in the mutant, nitrate reductase from nar1a was characterized to determine whether the residual activity is due to a leaky mutation or to the presence of a second nitrate reductase. The results obtained indicate that the nitrate reductase in nar1a differs from the wild-type enzyme in several important aspects. The pH optima for both the NADH and the NADPH nitrate reductase activities from nar1a were approximately pH 7.7, which is slightly greater than the pH 7.5 optimum for the NADH activity and considerably greater than the pH 6.0 to 6.5 optimum for the NADPH activity of the wild-type enzyme. The nitrate reductase from nar1a exhibits greater NADPH than NADH activity and has apparent Km values for nitrate and NADH that are approximately 10 times greater than those of the wild-type enzyme. The nar1a nitrate reductase has apparent Km values of 170 micromolar for NADPH and 110 micromolar for NADH. NADPH, but not NADH, inhibited the enzyme at concentrations greater than 50 micromolar.  相似文献   

16.
17.
Al-Sheboul S  Saffarini D 《Anaerobe》2011,17(6):501-505
Shewanella oneidenesis MR-1 is a facultative anaerobe that can use a large number of electron acceptors including metal oxides. During anaerobic respiration, S. oneidensis MR-1 synthesizes a large number of c cytochromes that give the organism its characteristic orange color. Using a modified mariner transposon, a number of S. oneidensis mutants deficient in anaerobic respiration were generated. One mutant, BG163, exhibited reduced pigmentation and was deficient in c cytochromes normally synthesized under anaerobic condition. The deficiencies in BG163 were due to insertional inactivation of hemN1, which exhibits a high degree of similarity to genes encoding anaerobic coproporphyrinogen III oxidases that are involved in heme biosynthesis. The ability of BG163 to synthesize c cytochromes under anaerobic conditions, and to grow anaerobically with different electron acceptors was restored by the introduction of hemN1 on a plasmid. Complementation of the mutant was also achieved by the addition of hemin to the growth medium. The genome sequence of S. oneidensis contains three putative anaerobic coproporphyrinogen III oxidase genes. The protein encoded by hemN1 appears to be the major enzyme that is involved in anaerobic heme synthesis of S. oneidensis. The other two putative anaerobic coproporphyrinogen III oxidase genes may play a minor role in this process.  相似文献   

18.
In Wolinella succinogenes ATP synthesis and consequently bacterial growth can be driven by the reduction of either nitrate (E0=+0.42 V), nitrite (E0=+0.36 V), fumarate (E0=+0.03 V) or sulphur (E0=-0.27 V) with formate as the electron donor. Bacteria growing in the presence of nitrate and fumarate were found to reduce both acceptors simultaneously, while the reduction of both nitrate and fumarate is blocked during growth with sulphur. These observations were paralleled by the presence and absence of the corresponding bacterial reductase activities. Using a specific antiserum, fumarate reductase was shown to be present in bacteria grown with fumarate and nitrate, and to be nearly absent from bacteria grown in the presence of sulphur. The contents of polysulphide reductase, too, corresponded to the enzyme activities found in the bacteria. This suggests that the activities of anaerobic respiration are regulated at the biosynthetic level in W. succinogenes. Thus nitrate and fumarate reduction are repressed by the most electronegative acceptor of anacrobic respiration, sulphur. By contrast, in Escherichia coli a similar effect is exerted by the most electropositive acceptor, O2. W. succinogenes also differs from E. coli in that fumarate reductase is not repressed by nitrate.Abbreviations BV benzyl viologen - DMN 2,3-dimethyl-1,4-naphthoquinone - DMSO dimethylsulfoxide - TMAO trimethylamine-N-oxide  相似文献   

19.
Periplasmic nitrate reductase (NapABC enzyme) has been characterized from a variety of proteobacteria, especially Paracoccus pantotrophus. Whole-genome sequencing of Escherichia coli revealed the structural genes napFDAGHBC, which encode NapABC enzyme and associated electron transfer components. E. coli also expresses two membrane-bound proton-translocating nitrate reductases, encoded by the narGHJI and narZYWV operons. We measured reduced viologen-dependent nitrate reductase activity in a series of strains with combinations of nar and nap null alleles. The napF operon-encoded nitrate reductase activity was not sensitive to azide, as shown previously for the P. pantotrophus NapA enzyme. A strain carrying null alleles of narG and narZ grew exponentially on glycerol with nitrate as the respiratory oxidant (anaerobic respiration), whereas a strain also carrying a null allele of napA did not. By contrast, the presence of napA+ had no influence on the more rapid growth of narG+ strains. These results indicate that periplasmic nitrate reductase, like fumarate reductase, can function in anaerobic respiration but does not constitute a site for generating proton motive force. The time course of phi(napF-lacZ) expression during growth in batch culture displayed a complex pattern in response to the dynamic nitrate/nitrite ratio. Our results are consistent with the observation that phi(napF-lacZ) is expressed preferentially at relatively low nitrate concentrations in continuous cultures (H. Wang, C.-P. Tseng, and R. P. Gunsalus, J. Bacteriol. 181:5303-5308, 1999). This finding and other considerations support the hypothesis that NapABC enzyme may function in E. coli when low nitrate concentrations limit the bioenergetic efficiency of nitrate respiration via NarGHI enzyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号