首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex oligomeric assembly of the hemoglobin subunits may influence the autoxidation rate. To understand this relation, the rate of autoxidation was studied at pH 9.0, where the Glossoscolex paulistus Hemoglobin (GpHb) dissociates. At alkaline pH, this hemoglobin is dissociated into monomers, trimers and tetramers, allowing the study of the integral protein and monomer subunit autoxidation on independent experiments. The autoxidation rate was evaluated in the presence and absence of cyanide (CN(-)), a strong field ligand to the ferric ion. The oxidation kinetic was monitored using the UV-vis absorption at 415 nm, and resulted in: i) bi-exponential kinetics for the whole hemoglobin (indicating a fast and a slow oxidative process) and ii) mono-exponential for the monomer (indicating a single process). To understand the specific characteristics of each autoxidation process, Arrhenius plots allowed the determination of the activation energy. The experimental results indicate for the whole hemoglobin in the absence of CN(-) an activation energy of 150 +/- 10 kJ mol(-1) for the fast and the slow processes. Under the same conditions the monomer displayed an activation energy of 160 +/- 10 kJ mol(-1), very close to the value obtained for the integral protein. The pseudo-second order rate constant for the whole protein autoxidation by CN(-) showed two different behaviors characterized by a rate constant k(CN1)' = 0.11 +/- 0.02 s(-1) mol(-1) L for CN(-) concentrations lower than 0.012 mol L(-1); and k(CN1)" = 0.76 +/- 0.04 s(-1) mol(-1) L at higher concentrations for the fast process, while the slow process remain constant with k(CN2) = 0.033 +/- 0.002 s(-1) mol(-1) L. The monomer has a characteristic rate constant of 0.041 +/- 0.002 s(-1) mol(-1) L for all cyanide concentrations. Comparing the results for the slow process of the whole hemoglobin and the oxidation of the monomer, it is possible to infer that the slow process has a strong contribution of the monomer in the whole hemoglobin kinetic. Moreover, as disulfide linkers sustain the trimer assembly, cooperativity may explain the higher kinetic constant for this subunit.  相似文献   

2.
Frankia strain CcI3 grown in culture produced a hemoglobin which had optical absorption bands typical of a hemoglobin and a molecular mass of 14.1 kDa. Its equilibrium oxygen binding constant was 274 nM, the oxygen dissociation rate constant was 56 s−1, and the oxygen association rate constant was 206 μM−1 s−1.  相似文献   

3.
Hemoglobin I was isolated from nodules formed on the roots of Parasponia andersonii inoculated with Rhizobium strain CP 283. The rate of oxygen dissociation from Parasponia hemoglobin increases about 12-fold between pH 4 and 7, with apparent pK 6.4, to reach a limiting value of 14.8s-1. The optical spectrum of oxyhemoglobin in the visible region is also dependent on pH with pK near 6.4. The rate constant for oxygen combination with Parasponia hemoglobin increases about 7-8-fold between pH 4 and 7, with apparent pK 5.37, to reach a value of 1.67 X 10(8) M-1 s-1 at pH 7. The optical spectrum of deoxyhemoglobin in the visible region and the rate constant for carbon monoxide combination are also dependent on pH with apparent pK 5.65 and 5.75, respectively. The rate constant for carbon monoxide dissociation is independent of pH. The oxygen affinity of Parasponia hemoglobin, P50 = 0.049 torr at 20 degrees C, calculated from the kinetic constants at pH 7, is very great. At alkaline pH there is a prominent geminate reaction with oxygen and nitric oxide, with both subnanosecond and tens of nanosecond components. These reactions disappear at acid pH, with pK 6.4, and the effective quantum yield is reduced. In general, the reactions of Parasponia hemoglobin with oxygen and carbon monoxide resemble those of soybean leghemoglobin. In each, great oxygen affinity is achieved by unusually rapid oxygen combination together with a moderate rate of oxygen dissociation. We suggest that protonation of a heme-linked group with pK near 6.4 controls many properties of Parasponia oxyhemoglobin, and protonation of a group with pK near 5.5 controls many properties of Parasponia deoxyhemoglobin.  相似文献   

4.
Hemoglobin in five genetically diverse Frankia strains   总被引:1,自引:0,他引:1  
Five strains of Frankia were selected to represent a wide range of genetic diversity and examined for presence of hemoglobin. All five strains produced hemoglobin when grown on media without (-N) or with (+N) combined nitrogen. This indicates that hemoglobin is common in Frankia and is not directly associated with nitrogen fixation. Frankia strain EAN1(pec) was examined in more detail. It showed greater hemoglobin concentration when grown at 2% O2 than at 20% O2 in the -N treatment but no effect of oxygen on hemoglobin concentration in the +N treatment. At both oxygen levels, it produced substantially more biomass in +N than in -N culture. It also produced significantly more biomass when the medium contained 0.2% CO2 than in the absence of CO2. The molecular mass of the hemoglobin as determined by size exclusion chromatography was 13.4 +/- 0.2 kDa (mean +/- SE, n = 3) and is consistent with that of a truncated hemoglobin. The hemoglobin had absorption spectra that were typical of a hemoglobin. The oxygen dissociation rate constants for the hemoglobin were 131.2 +/- 5.8 s(-1) for -N culture and 166 +/- 8.2 s(-1) for +N culture. These rapid rates are consistent with a function in facilitated diffusion of oxygen.  相似文献   

5.
Hemoglobin Alberta has an amino acid substitution at position 101 (Glu----Gly), a residue involved in the alpha 1 beta 2 contact region of both the deoxy and oxy conformers of normal adult hemoglobin. Oxygen equilibrium measurements of stripped hemoglobin Alberta at 20 degrees C in the absence of phosphate revealed a high affinity (P50 = 0.75 mm Hg at pH 7), co-operative hemoglobin variant (n = 2.3 at pH 7) with a normal Bohr effect (- delta log P50/delta pH(7-8) = 0.65). The addition of inositol hexaphosphate resulted in a decrease in oxygen affinity (P50 = 8.2 mm Hg at pH 7), a slight increase in the value of n and an enhanced Bohr effect. Rapid mixing experiments reflected the equilibrium results. A rapid rate of carbon monoxide binding (l' = 7.0 X 10(5) M-1 S-1) and a slow rate of overall oxygen dissociation (k = 15 s-1) was seen at pH7 and 20 degrees C in the absence of phosphate. Under these experimental conditions the tetramer stability of liganded and unliganded hemoglobin Alberta was investigated by spectrophotometric kinetic techniques. The 4K4 value (the liganded tetramer-dimer equilibrium dissociation constant) for hemoglobin Alberta was found to be 0.83 X 10(-6) M compared to a 4K4 value for hemoglobin A of 2.3 X 10(-6) M, indicating that the Alberta tetramer was less dissociated into dimers than the tetramer of hemoglobin A. The values of 0K4 (the unliganded tetramer-dimer equilibrium dissociation constant) for hemoglobin Alberta and hemoglobin A were also measured and found to be 2.5 X 10(-8) M and 1.5 X 10(-10) M, respectively, demonstrating a greatly destabilized deoxyhemoglobin tetramer for hemoglobin Alberta compared to deoxyhemoglobin A. The functional and subunit dissociation properties of hemoglobin Alberta appear to be directly related to the dual role of the beta 101 residue in stabilizing the tetrameric form of the liganded structure, while concurrently destabilizing the unliganded tetramer molecule.  相似文献   

6.
The processes of reversible oxygen binding and nonreversible autoxidation of human hemoglobin were studied. The activation energy of the oxygen binding, as determined by the temperature dependence of the P50 parameter, was 26 +/- 4 kJ/mol, the activation energy of the autoxidation, as determined by the temperature dependence of the apparent rate constant of autoxidation, was 120 +/- 15 kJ/mol. Pyridoxal phosphate decreased the oxygen affinity of hemoglobin, slightly diminished the cooperativity of the oxygenation process and unaffected the activation energy of the oxygen binding. Pyridoxal phosphate slightly reduced the Bohr coefficient value from 0.70 to 0.65. Pyridoxal phosphate, but not pyridoxal, raised the apparent rate constant of autoxidation reaction. The rate of autoxidation significantly increased as the pH value of the medium decreased, reflecting, probably, protonation of the distal histidine of the hemoglobin. The activation energy of autoxidation was independent of pH. Aliphatic alcohols also increased the rate of the autoxidation process, probably, either by stabilization of the hemoglobin T-state, or by direct nucleophilic displacement of the oxygen molecule.  相似文献   

7.
Binding and dissociation rate constants of oxygen and carbon monoxide with the meso-tetra(α,α,α,α-(o-pivalamidophenyl))porphinato iron-mono(1-lauryl-2-methylimidazole) complex incorporated into the liposomes of dimyristoylphosphatidylcholine (liposomal heme) were measured with flash-photolysis method at pH 7.0 and 20 °C. Extra large quantum yield was observed for the photo-dissociation of the oxygen adduct, while that for the CO adduct was relatively small. Rate constants for the binding and the dissociation were comparable to those of hemoglobin except for the oxygen-binding rate constant.  相似文献   

8.
To investigate whether or not the mode of delivery produces differences in cerebral oxygenation, cerebral hemoglobin oxygen saturation was measured using full-spectrum near infrared spectroscopy in 26 healthy term newborn infants immediately after birth. Infants in group 1 (n=20) were delivered vaginally, and those in group 2 (n=6) by elective cesarean section. Arterial oxygen saturation in the right hand was also measured simultaneously using a pulse oximeter. Changes in arterial oxygen saturation showed no significant difference between the two groups. The mean+/-S.D. of cerebral hemoglobin oxygen saturation in group 1 increased rapidly after birth, from 29+/-17% at 2 min to 68+/-6% at 8.5 min, followed by an almost constant value (66+/-7% at 15 min). In comparison, cerebral hemoglobin oxygen saturation in group 2 also increased rapidly until 8.5 min, but after this time decreased significantly to 57+/-5% at 15 min after birth. This indicates that the mode of delivery has a marked influence on cerebral oxygenation immediately after birth.  相似文献   

9.
Oxygen and carbon monoxide kinetics of Glycera dibranchiata monomeric hemoglobin have been studied using laser photolysis, air flash, and stopped flow techniques. The reactions of this hemoglobin with both ligands were found to be more rapid than the corresponding reactions involving myoglobin and were also biphasic in nature, the rate constants being approximately an order of magnitude different for the fast and slow phases in each case. No pH or hemoglobin concentration dependence of the pseudo-first order rate constants was apparent between pH 6 and 9 and in the concentration range of 1.25 to 40 muM heme. Both fast and slow pseudo-first order oxygen combination rate constants varied linearly with oxygen concentration between 16 and 1300 muM. A first order slow relaxation was also noted which was linearly dependent on heme concentration and inversely dependent on oxygen concentration. This reaction has been shown to be due to a replacement of oxygen by carbon monoxide. The presence of this reaction is a result of the high affinity of Glycera monomer for carbon monoxide as shown by the partition coefficient Mr = approximately 20,000 ana an equilibrium dissociation constant of the order L = 1.1 X 10(-9) M.  相似文献   

10.
In the presence of inositol hexaphosphate (IHP), the rate of hemoglobin oxidation by nitrite was much inhibited; however, that of the hemoglobin oxidation by ferricyanide was much accelerated. The difference in the reaction mode was discussed in relation to the interaction of hemoglobin with IHP. The dissociation constant of IHP to oxyhemoglobin was estimated from the rate of the hemoglobin oxidation by ferricyanide in different concentrations of IHP under oxygen saturated conditions.  相似文献   

11.
Hemoglobin Köln, an unstable hemoglobin resulting from the substitution of normal valine by methionine at FG 5 (β98) is the most commonly encountered unstable hemoglobin. In Hb Köln from a hitherto undetected family, we confirmed earlier observations of heme depletion and high oxygen affinity, with the absence of co-operative interactions. In an effort to elucidate the basis of the altered oxygen equilibria, sedimentation velocity and the kinetics of the reactions of the abnormal hemoglobin with ligands were studied. The results of ultracentrifuge studies indicated that at pH 7 hemoglobin Köln, in the liganded as well as in the deoxy form, existed largely as dimers. The ratio of optical densities at 540 nm and 280 nm indicate that the abnormal β chains were heme depleted. Hb Köln reacted with
approximately 20 times faster than did hemoglobin A (Hb A). However, the corresponding rate constants for O2 dissociation
are similar for Hb Köln and Hb A. For Hb Köln the two rate constants, l′ and k show little pH or concentration dependence. Thus, the high oxygen affinity of Hb Köln (P1/2 = 0.2 mm Hg at 10 °C, pH 6.8) arises in part from a larger combination rate constant for the reaction with oxygen. Addition of a 20-fold excess of 2,3-diphosphoglyceric acid did not affect the kinetics of CO-combination. However, in the presence of a sixfold excess of heme, the fast monophasic CO-combination reaction was replaced by a biphasic one. The rate constant of the slow phase was approximately the same as the corresponding rate constant for Hb A. The fast and slow phases were presumably due to the reaction of CO with Hb Köln dimers (αhβo heme-saturated tetramers, respectively. The results of the preeent study are explained in terms of weakened α?β and heme-globin contacts in the mutant.  相似文献   

12.
Kruk NN  Zavodnik IB 《Biofizika》2001,46(4):601-606
The effect of ethanol on the oxygenation of hemoglobin was studied by kinetic absorption spectroscopy. It was found that the efficiency of oxygen geminate rebinding decreased upon ethanol addition. At ethanol concentrations up to 4.5 M, its influence on the structure and functional properties of the hemoglobin molecule is determined by changes in the bulk dielectric constant of solution. The decrease in the rate constant of the bimolecular stage of rebinding k'4 was caused by an increase in the viscosity of solution, with k'4 being approximately 1/eta 0.5. Upon oxidation of hemoglobin to hemichrome initiated by ethanol, dramatic conformational changes in the region of the heme pocket took place. They lead to a more than twofold increase in the efficiency of exit of oxygen molecules from the protein matrix to the solution after photodissociation.  相似文献   

13.
Myeloperoxidase (MPO), which is involved in host defence and inflammation, is a unique peroxidase in having a globin-like standard reduction potential of the ferric/ferrous couple. Intravacuolar and exogenous MPO released from stimulated neutrophils has been shown to exist in the oxyferrous form, called compound III. To investigate the reactivity of ferrous MPO with molecular oxygen, a stopped-flow kinetic analysis was performed. In the absence of dioxygen, ferrous MPO decays to ferric MPO (0.04 s(-1) at pH 8 versus 1.4 s(-1) at pH 5). At pH 7.0 and 25 degrees C, compound III formation (i.e., binding of dioxygen to ferrous MPO) occurs with a rate constant of (1.1+/-0.1) x 10(4)M(-1)s(-1). The rate doubles at pH 5.0 and oxygen binding is reversible. At pH 7.0, the dissociation equilibrium constant of the oxyferrous form is (173+/-12)microM. The rate constant of dioxygen dissociation from compound III is much higher than conversion of compound III to ferric MPO (which is not affected by the oxygen concentration). This allows an efficient transition of compound III to redox intermediates which actually participate in the peroxidase or halogenation cycle of MPO.  相似文献   

14.
Hemolysate from white stork displayed a single hemoglobin component, thus resulting into two bands and two globin peaks in dissociating PAGE and reversed phase-HPLC, respectively. Stripped hemoglobin showed an oxygen affinity higher than that of human HbA, a small Bohr effect, and a cooperative oxygen binding. A small decrease of oxygen affinity, of the same extent in all the pH range examined, was observed by addition of chloride, thus indicating an unusual chloride-independent Bohr effect (DeltalogP50/Deltalog pH=-0.24). Saturating amounts of inositol hexakisphosphate, largely decreased hemoglobin-oxygen affinity (DeltalogP(50)=1.17 at pH 7.0), and increased the extent of its Bohr effect (DeltalogP50/DeltalogpH=-0.45). The phosphate binding curve allowed to measure a very high overall binding constant (K=1.18 x 10(5) M(-1)). The effect of temperature on the oxygen affinity was measured, and the enthalpy change of oxygenation resulted almost independent on pH. Structural-functional relationships are discussed by considering some amino acid residues situated at alpha1/beta1 and alpha1/beta2 interfaces, such as alpha38 and alpha89 positions. The presence of only one hemoglobin component, a rare event among birds, and its functional properties have been related to the physiological oxygen requirements of this soaring migrant bird and to its technique of flight during migration.  相似文献   

15.
The effects of 2,3 diphosphoglyceric acid (2,3-DPG), adenosine triphosphate (ATP), and inositol hexaphosphate (IHP) on the oxygen affinity of whole “stripped” hemoglobin (WSH), hemoglobin H (Hb-H), hemoglobin A (Hb-A) and hemoglobin D (Hb-D) isolated from 18-day chick embryo blood have been determined. The effect of the three organic phosphates upon the oxygen dissociation curves is similar and the following order of decreasing oxygen affinity of the organic phosphates was observed for each hemoglobin: 2,3-DPG < ATP < IHP. 2,3-DPG appears to have a slightly greater effect upon the P50 of Hb-H than upon that of either of the two adult-type hemoglobins. However, this effect seems insufficient to suggest a preferential interaction of 2,3-DPG with Hb-H which would account for either the large amounts of 2,3-DPG in the erythrocytes of embryos or the higher oxygen affinity of the whole blood. The effects of the organic phosphates upon the Hill constant of the purified hemoglobins are variable. It is concluded that since the distribution of hemoglobins H, A, and D in the erythrocytes during the developmental period from 18-day embryos to 6-day chicks remains fairly constant, the previously described progressive decrease in oxygen affinity of the whole blood during this period results from changes in the total amount and distribution of the intraerythrocytic organic phosphates.2  相似文献   

16.
Kinetics of blood deoxygenation was studied during acute hypoxia induced by subcutaneous administration of sodium nitrite using polarographic method. Plasma oxygen tension remained unaltered as the dose of sodium nitrite increased, while the dynamics of oxygen release was dose-dependent. The constant of oxyhemoglobin deoxygenation rate proved to vary with blood deoxygenation. The nitrite-induced deceleration of oxyhemoglobin deoxygenation was due to the inactivation of a fraction of hemoglobin as well as to the increased hemoglobin oxygen affinity and possible changes in the oxygen permeability of erythrocyte membranes during acute methemoglobinemia.  相似文献   

17.
1. The steady-state kinetics of ascorbate oxidation as a function of oxygen concentration was measured with a solubilized cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) preparation. 2. Linear double reciprocal plots were obtained at various fixed concentrations of ascrobate, cytochrome c and cytochrome aa3. 3. The results are interpreted in terms of an oxidase model similar to that put forward by Minnaert in 1961 (Minnaert, K. (1961) Biochim. Biophys. Acta 50, 23-34). 4. The Km for oxygen at infinite cytochrome c concentration is 0.95 muM and the intramolecular rate constant for the transfer of electrons from cytochrome c to cytochome aa3 is 400 s(-1). According to the model, this implies that the second order rate constant for the reaction between oxygen and the oxidase is 9.5 X 10(7)M(-1)-s(-1).  相似文献   

18.
The process of oxygen-dependent hemoglobin induction in Daphnia magna was studied over an 11-day period of hypoxia (ambient oxygen partial pressure: 3 kPa). Along with the increase of hemoglobin concentration in the hemolymph, hemoglobin became the dominant protein fraction in gel filtration experiments using extracts of whole animals. The size of the native aggregates was constant. However, subunit composition depended on the duration of hypoxia: the pattern of predominantly expressed subunits under hypoxia deviated from that of normoxic individuals. The varying degree of hypoxic induction for different hemoglobin subunits was confirmed by autoradiography. Along with changes in hemoglobin subunit composition, oxygen affinity of the respiratory protein increased. The dynamics of the hemoglobin induction process was analysed. Newly synthesized hemoglobin can be detected within 18 h after the onset of hypoxia. A marked increase in hemoglobin concentration is evident from the third day of hypoxia, and a steady state of hemoglobin concentration is reached within 11 days. The changes of hemoglobin subunit expression in response to hypoxia form the structural basis for the observed adjustments of hemoglobin function leading to enhanced oxygen transport at low ambient oxygen concentrations.  相似文献   

19.
Red blood cell (RBC) encapsulated hemoglobin in the blood scavenges nitric oxide (NO) much more slowly than cell-free hemoglobin would. Part of this reduced NO scavenging has been attributed to an intrinsic membrane barrier to diffusion of NO through the RBC membrane. Published values for the permeability of RBCs to NO vary over several orders of magnitude. Recently, the rate that RBCs scavenge NO has been shown to depend on the hematocrit (percentage volume of RBCs) and oxygen tension. The difference in rate constants was hypothesized to be due to oxygen modulation of the RBC membrane permeability, but also could have been due to the difference in bimolecular rate constants for the reaction of NO and oxygenated vs deoxygenated hemoglobin. Here, we model NO scavenging by RBCs under previously published experimental conditions. A finite-element based computer program model is constrained by published values for the reaction rates of NO with oxygenated and deoxygenated hemoglobin as well as RBC NO scavenging rates. We find that the permeability of RBCs to NO under oxygenated conditions is between 4400 and 5100 microm s(-1) while the permeability under deoxygenated conditions is greater than 64,000 microm s(-1). The permeability changes by a factor of 10 or more upon oxygenation of anoxic RBCs. These results may have important implications with respect to NO import or export in physiology.  相似文献   

20.
The binding of various alkanes by proteins was recognized years ago. We have studied the effect of butene (C4H8), a short-chain aliphatic hydrocarbon, on the functional properties of human adult hemoglobin. Under 1 atm pressure (100 kPa) butene decreased the affinity of hemoglobin (Hb) for oxygen (p50) by 45% without altering the cooperativity of ligand binding. This effect was independent of pH (from 7.0 to 8.0) and of ionic strength. The changes in the affinity of hemoglobin for oxygen were dependent upon the partial pressure of butene and evoked a saturating mechanism of the binding site(s). Mathematical simulation of the curve relating p50 to the concentration of dissolved butene allowed us to calculate the apparent association constants for one single binding site KHb = 10.4 mmol-1 and KHbO2 = 1.53 mmol-1 to Hb and HbO2 respectively. The larger binding of butene by Hb was confirmed by a 25% decrease in K1, the first association constant of oxygen to the tetrameric hemoglobin. It is concluded that butene is an allosteric effector of human Hb which acts most likely through hydrophobic interactions. It is postulated that the oxygen-linked binding site may be located at the alpha 1 beta 2 interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号