首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The peroxisome biogenesis disorders (PBDs) are currently difficult-to-treat multiple-organ dysfunction disorders that result from the defective biogenesis of peroxisomes. Genes encoding Peroxins, which are required for peroxisome biogenesis or functions, are known causative genes of PBDs. The human peroxin genes PEX3 or PEX16 are required for peroxisomal membrane protein targeting, and their mutations cause Zellweger syndrome, a class of PBDs. Lack of understanding about the pathogenesis of Zellweger syndrome has hindered the development of effective treatments. Here, we developed potential Drosophila models for Zellweger syndrome, in which the Drosophila pex3 or pex16 gene was disrupted. As found in Zellweger syndrome patients, peroxisomes were not observed in the homozygous Drosophila pex3 mutant, which was larval lethal. However, the pex16 homozygote lacking its maternal contribution was viable and still maintained a small number of peroxisome-like granules, even though PEX16 is essential for the biosynthesis of peroxisomes in humans. These results suggest that the requirements for pex3 and pex16 in peroxisome biosynthesis in Drosophila are different, and the role of PEX16 orthologs may have diverged between mammals and Drosophila. The phenotypes of our Zellweger syndrome model flies, such as larval lethality in pex3, and reduced size, shortened longevity, locomotion defects, and abnormal lipid metabolisms in pex16, were reminiscent of symptoms of this disorder, although the Drosophila pex16 mutant does not recapitulate the infant death of Zellweger syndrome. Furthermore, pex16 mutants showed male-specific sterility that resulted from the arrest of spermatocyte maturation. pex16 expressed in somatic cyst cells but not germline cells had an essential role in the maturation of male germline cells, suggesting that peroxisome-dependent signals in somatic cyst cells could contribute to the progression of male germ-cell maturation. These potential Drosophila models for Zellweger syndrome should contribute to our understanding of its pathology.  相似文献   

2.
Certain enzymes normally associated with peroxisomes, such as the dihydroxyacetone phosphate (DHAP) acyltransferase involved in plasmalogen biosynthesis, are present at low levels in peroxisome-deficient mutants of Chinese hamster ovary (CHO) cells. We now show that the aminoglycoside G418 increases the residual DHAP acyltransferase in mutant ZR-82 by 60-fold. This is accompanied by a dose- and time-dependent restoration of the plasmalogen content. G418 treatment of ZR-82 also increases residual peroxisomal beta-oxidation activity by 3.8-fold. G418 does not affect wild-type CHO cells (CHO-K1) or a different peroxisome-deficient mutant, ZR-78.1. The effects of G418 on ZR-82 are transient, since plasmalogens and DHAP-acyltransferase decline to basal levels 5 days after G418 withdrawal. Other aminoglycosides and lysosomotropic agents do not alter plasmalogen levels in ZR-82. The subcellular distribution of catalase (an enzyme of the peroxisomal matrix which is present in normal amounts in peroxisome-deficient mutants but is mislocalized in the cytosol) is unaffected by G418 treatment of ZR-82, demonstrating that G418 does not restore peroxisomes. Localization of catalase by immunofluorescence microscopy confirms a total absence of intact peroxisomes in ZR-82, either before or after exposure to G418. This study is the first to demonstrate that some peroxisome-deficient mutants can be induced to accumulate functional DHAP acyltransferase and other peroxisomal enzymes, usually missing in the absence of peroxisomes. G418 may have some therapeutic value in selected patients with inborn errors of peroxisome assembly, such as Zellweger syndrome.  相似文献   

3.
In the present study we investigated peroxisomal functions in cultured human muscle cells from control subjects and from a patient with the Zellweger syndrome, a genetic disease characterized by the absence of morphologically distinguishable peroxisomes in liver and kidney. In homogenates of cultured muscle cells from control subjects, catalase is contained within subcellular particles, acyl-CoA:dihydroxyacetonephosphate acyltransferase activity is present and palmitoyl-CoA can be oxidized by a peroxisomal beta-oxidative pathway; these findings are indicative of the presence of peroxisomes in the cells. In homogenates of cultured muscle cells from the patient with the Zellweger syndrome, acyl-CoA:dihydroxyacetonephosphate acyltransferase activity was deficient, peroxisomal beta-oxidation of palmitoyl-CoA was impaired and catalase was not particle-bound. These findings indicate that functional peroxisomes are absent in muscle from patients with the Zellweger syndrome. We conclude that cultured human muscle cells can be used as a model system to study peroxisomal functions in muscle and the consequences for this tissue of a generalized dysfunction of peroxisomes.  相似文献   

4.
《The Journal of cell biology》1993,123(5):1133-1147
The goal of this research is to identify and characterize the protein machinery that functions in the intracellular translocation and assembly of peroxisomal proteins in Saccharomyces cerevisiae. Several genes encoding proteins that are essential for this process have been identified previously by Kunau and collaborators, but the mutant collection was incomplete. We have devised a positive selection procedure that identifies new mutants lacking peroxisomes or peroxisomal function. Immunofluorescence procedures for yeast were simplified so that these mutants could be rapidly and efficiently screened for those in which peroxisome biogenesis is impaired. With these tools, we have identified four complementation groups of peroxisome biogenesis mutants, and one group that appears to express reduced amounts of peroxisomal proteins. Two of our mutants lack recognizable peroxisomes, although they might contain peroxisomal membrane ghosts like those found in Zellweger syndrome. Two are selectively defective in packaging peroxisomal proteins and moreover show striking intracellular clustering of the peroxisomes. The distribution of mutants among complementation groups implies that the collection of peroxisome biogenesis mutants is still incomplete. With the procedures described, it should prove straightforward to isolate mutants from additional complementation groups.  相似文献   

5.
Many cell surface proteins in mammalian cells are anchored to the plasma membrane via glycosylphosphatidylinositol (GPI). The predominant form of mammalian GPI contains 1-alkyl-2-acyl phosphatidylinositol (PI), which is generated by lipid remodeling from diacyl PI. The conversion of diacyl PI to 1-alkyl-2-acyl PI occurs in the ER at the third intermediate in the GPI biosynthetic pathway. This lipid remodeling requires the alkyl-phospholipid biosynthetic pathway in peroxisome. Indeed, cells defective in dihydroxyacetone phosphate acyltransferase (DHAP-AT) or alkyl-DHAP synthase express only the diacyl form of GPI-anchored proteins. A defect in the alkyl-phospholipid biosynthetic pathway causes a peroxisomal disorder, rhizomelic chondrodysplasia punctata (RCDP), and defective biogenesis of peroxisomes causes Zellweger syndrome, both of which are lethal genetic diseases with multiple clinical phenotypes such as psychomotor defects, mental retardation, and skeletal abnormalities. Here, we report that GPI lipid remodeling is defective in cells from patients with Zellweger syndrome having mutations in the peroxisomal biogenesis factors PEX5, PEX16, and PEX19 and in cells from patients with RCDP types 1, 2, and 3 caused by mutations in PEX7, DHAP-AT, and alkyl-DHAP synthase, respectively. Absence of the 1-alkyl-2-acyl form of GPI-anchored proteins might account for some of the complex phenotypes of these two major peroxisomal disorders.  相似文献   

6.
Zellweger cerebro-hepato-renal syndrome is a severe congenital disorder associated with defective peroxisomal biogenesis. At least 23 PEX genes have been reported to be essential for peroxisome biogenesis in various species, indicating the complexity of peroxisomal assembly. Cells from patients with peroxisomal biogenesis disorders have previously been shown to segregate into >/=12 complementation groups. Two patients assigned to complementation group G who had not been linked previously to a specific gene defect were confirmed as displaying a cellular phenotype characterized by a lack of even residual peroxisomal membrane structures. Here we demonstrate that this complementation group is associated with mutations in the PEX3 gene, encoding an integral peroxisomal membrane protein. Homozygous PEX3 mutations, each leading to C-terminal truncation of PEX3, were identified in the two patients, who both suffered from a severe Zellweger syndrome phenotype. One of the mutations involved a single-nucleotide insertion in exon 7, whereas the other was a single-nucleotide substitution eight nucleotides from the normal splice site in the 3' acceptor site of intron 10. Expression of wild-type PEX3 in the mutant cell lines restored peroxisomal biogenesis, whereas transfection of mutated PEX3 cDNA did not. This confirmed that the causative gene had been identified. The observation of peroxisomal formation in the absence of morphologically recognizable peroxisomal membranes challenges the theory that peroxisomes arise exclusively by growth and division from preexisting peroxisomes and establishes PEX3 as a key factor in early human peroxisome synthesis.  相似文献   

7.
We made use of autoradiographic screening to isolate two Chinese hamster ovary (CHO) cell mutants deficient in peroxisomal dihydroxyacetonephosphate acyltransferase, a key enzyme for the biosynthesis of ether glycerolipids such as plasmalogens. Morphological analysis revealed no evidence of peroxisome in these mutants. Catalase was as active as in the normal cells but was not sedimentable. Pulse-chase radiolabeling experiments and cell-free translation of RNA demonstrated that acyl-CoA oxidase, the first enzyme of the peroxisomal beta-oxidation system, was synthesized as the 75-kD form but was not converted to 53- and 22-kD mature components that were present in the wild-type CHO cells; rather, degradation was apparent. Peroxisomal thiolase was synthesized as in normal cells but remained as a larger, 44-kD precursor, whereas maturation to the 41-kD enzyme was detected in the wild-type cells. The peroxisomal 70-kD integral membrane protein was also equally synthesized, as in the wild-type cells, and was not degraded. These results suggest that assembly of the peroxisomes is defective in the mutants, whereas the synthesis of peroxisomal proteins appears to be normal. Cell-fusion studies revealed that the two mutants are recessive to the wild-type CHO cells and belong to different complementation groups. Thus, these mutants presumably contain different lesions in gene(s) encoding factor(s) required for peroxisome assembly.  相似文献   

8.
Zellweger syndrome is the archetypical peroxisome biogenesis disorder and is characterized by defective import of proteins into the peroxisome, leading to peroxisomal metabolic dysfunction and widespread tissue pathology. In humans, mutations in the PEX13 gene, which encodes a peroxisomal membrane protein necessary for peroxisomal protein import, can lead to a Zellweger phenotype. To develop mouse models for this disorder, we have generated a targeted mouse with a loxP-modified Pex13 gene to enable conditional Cre recombinase-mediated inactivation of Pex13. In the studies reported here, we crossed these mice with transgenic mice that express Cre recombinase in all cells to generate progeny with ubiquitous disruption of Pex13. The mutant pups exhibited many of the clinical features of Zellweger syndrome patients, including intrauterine growth retardation, severe hypotonia, failure to feed, and neonatal death. These animals lacked morphologically intact peroxisomes and showed deficient import of matrix proteins containing either type 1 or type 2 targeting signals. Biochemical analyses of tissue and cultured skin fibroblasts from these animals indicated severe impairment of peroxisomal fatty acid oxidation and plasmalogen synthesis. The brains of these animals showed disordered lamination in the cerebral cortex, consistent with a neuronal migration defect. Thus, Pex13(-/-) mice reproduce many of the features of Zellweger syndrome and PEX13 deficiency in humans.  相似文献   

9.
We isolated peroxisome biogenesis-defective mutants from rat PEX2-transformed Chinese hamster ovary (CHO) cells, using the 9-(1'-pyrene)nonanol/ultraviolet method. A total of 18 mutant cell clones showing cytosolic localization of catalase were isolated. By complementation group (CG) analysis by means of PEX cDNA transfection and cell fusion, cell mutants, ZP124 and ZP126, were found to belong to two novel CGs of CHO mutants. Mutants, ZP135 and ZP167, were also classified to the same CG as ZP124. Further cell fusion analysis using 12 CGs fibroblasts from patients with peroxisome deficiency disorders such as Zellweger syndrome revealed that ZP124 belonged to human CG-A, the same group as CG-VIII in the United States. ZP126 could not be classified to any of human and CHO CGs. These mutants also showed typical peroxisome assembly-defective phenotypes such as severe loss of catalase latency and impaired biogenesis of peroxisomal enzymes. Collectively, ZP124 represents CG-A, and ZP126 is in a newly identified CG distinct from the 14 mammalian CGs previously characterized.  相似文献   

10.
To delineate the role of peroxisomes in the pathophysiology of hypoxia-reoxygenation we examined the functions of peroxisomes and mitochondria in cultured skin fibroblasts from controls and from patients with cells lacking peroxisomes (Zellweger cells). The loss of peroxisomal functions (lignoceric acid oxidation and dihydroxyacetonephosphate acyltransferase [DHAP-AT] activities) in control cells following hypoxia and hypoxia followed by reoxygenation, suggests that peroxisomes are sensitive to oxidative injury. The sensitivity of peroxisomes to oxidative stress was compared to that of mitochondria by examining the oxidation of palmitic acid (a function of both mitochondria and peroxisomes) in control and Zellweger cell lines, following hypoxia-reoxygenation. The greater loss of activity of palmitic acid oxidation observed in control cells as compared to that seen in Zellweger cells suggests that the peroxisomal β-oxidation system is relatively more labile to hypoxia- reoxygenation induced oxidative stress. This data clearly demonstrates the difference in the response of mitochondria and peroxisomes to oxidative stress.  相似文献   

11.
We report the cloning of PER6, a gene essential for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. The PER6 sequence predicts that its product Per6p is a 52-kDa polypeptide with the cysteine-rich C3HC4 motif. Per6p has significant overall sequence similarity with the human peroxisome assembly factor PAF-1, a protein that is defective in certain patients suffering from the peroxisomal disorder Zellweger syndrome, and with car1, a protein required for peroxisome biogenesis and caryogamy in the filamentous fungus Podospora anserina. In addition, the C3HC4 motif and two of the three membrane-spanning segments predicted for Per6p align with the C3HC4 motifs and the two membrane-spanning segments predicted for PAF-1 and car1. Like PAF-1, Per6p is a peroxisomal integral membrane protein. In methanol- or oleic acid-induced cells of per6 mutants, morphologically recognizable peroxisomes are absent. Instead, peroxisomal remnants are observed. In addition, peroxisomal matrix proteins are synthesized but located in the cytosol. The similarities between Per6p and PAF-1 in amino acid sequence and biochemical properties, and between mutants defective in their respective genes, suggest that Per6p is the putative yeast homolog of PAF-1.  相似文献   

12.
Human skin fibroblasts deficient in peroxisome biogenesis were transformed by transfecting SV40 ori- DNA with the use of an electroporator, and the biochemical, immunocytochemical, and cytogenetic properties of the transformants were analyzed. Cells (1 x 10(6)) from a patient with Zellweger syndrome and one with neonatal adrenoleukodystrophy were suspended with 2 micrograms of SV40 ori- DNA in PBS; then a high-voltage pulse (2000 V, 30 microseconds) was generated two times. Several colonies expressing large T-antigen were picked up 4 weeks after transfection. Doubling time of the transformants was about half of that and the saturation density was 5 to 10 times greater than that of the parental cells. Biochemical abnormalities including defective lignoceric acid oxidation, dihydroxyacetone phosphate acyltransferase deficiency, and disturbed biosynthesis of peroxisomal beta-oxidation enzymes were preserved in the transformants. Peroxisomes were defective in all colonies, as determined by immunofluorescence staining using anti-catalase IgG. Cell fusion studies confirmed that the transformants belong to the same complementation groups as those of the parental cells. These transformed mutant cell lines are expected to be useful tools for investigating the pathogenesis of inherited diseases related to defects in peroxisome biogenesis.  相似文献   

13.
We have developed a positive selection system for the isolation of Saccharomyces cerevisiae mutants with disturbed peroxisomal functions. The selection is based on the lethality of hydrogen peroxide (H2O2) that is produced in wild type cells during the peroxisomal beta-oxidation of fatty acids. In total, 17 mutants having a general impairment of peroxisome biogenesis were isolated, as revealed by their inability to grow on oleic acid as the sole carbon source and their aberrant cell fractionation pattern of peroxisomal enzymes. The mutants were shown to have monogenetic defects and to fall into 12 complementation groups. Representative members of each complementation group were morphologically examined by immunocytochemistry using EM. In one mutant the induction and morphology of peroxisomes is normal but import of thiolase is abrogated, while in another the morphology differs from the wild type: stacked peroxisomal membranes are present that are able to import thiolase but not catalase. These mutants suggest the existence of multiple components involved in peroxisomal protein import. Some mutants show the phenotype characteristic of glucose-repressed cells, an indication for the interruption of a signal transduction pathway resulting in organelle proliferation. In the remaining mutants morphologically detectable peroxisomes are absent: this phenotype is also known from fibroblasts of patients suffering from Zellweger syndrome, a disorder resulting from impairment of peroxisomes.  相似文献   

14.
Empty membrane ghosts of peroxisomes were found in fibroblasts from a patient with Zellweger's syndrome, a genetic disease of humans (Santos et al: Science 239:1536-1538, 1988). Import of soluble matrix proteins into the organelle was defective. We have now studied fibroblasts from seven patients representing five complementation groups of the syndrome (defined by complementation for peroxisome enzyme function). We find that empty peroxisome ghosts are present in all seven cell samples. Three patients, representing three complementation groups, give the same membrane pattern by immunofluorescence: few large ghosts. Three other patients, representing two complementation groups, give a second pattern: many large ghosts. The seventh patient's pattern is distinct. Thus, all seven of these patients exhibit Peroxisome IMport (PIM) mutations. Since membrane assembly occurs in these cells, the results indicate that biogenesis of organelle content and membrane proteins proceed by different mechanisms. Growth and division of the empty peroxisomal membrane must occur, but are modified by the mutations (ghost size and abundance vary). Cell fusion and immunofluorescence analyses of peroxisome size and catalase packaging formally demonstrate genetic complementation groups for peroxisome assembly in Zellweger syndrome.  相似文献   

15.
PEX13 is an integral membrane protein on the peroxisome that regulates peroxisomal matrix protein import during peroxisome biogenesis. Mutations in PEX13 and other peroxin proteins are associated with Zellweger syndrome spectrum (ZSS) disorders, a subtype of peroxisome biogenesis disorder characterized by prominent neurological, hepatic, and renal abnormalities leading to neonatal death. The lack of functional peroxisomes in ZSS patients is widely accepted as the underlying cause of disease; however, our understanding of disease pathogenesis is still incomplete. Here, we demonstrate that PEX13 is required for selective autophagy of Sindbis virus (virophagy) and of damaged mitochondria (mitophagy) and that disease‐associated PEX13 mutants I326T and W313G are defective in mitophagy. The mitophagy function of PEX13 is shared with another peroxin family member PEX3, but not with two other peroxins, PEX14 and PEX19, which are required for general autophagy. Together, our results demonstrate that PEX13 is required for selective autophagy, and suggest that dysregulation of PEX13‐mediated mitophagy may contribute to ZSS pathogenesis.  相似文献   

16.
We isolated and characterized CHO mutants deficient in peroxisome assembly using green fluorescent protein (GFP) and blue fluorescent protein (BFP) as the fluorescent probes to study the molecular mechanism of peroxisome biogenesis. We used stable transformants of CHO cells expressing GFP appending peroxisome targeting signal-1 (PTS1) and/or peroxisome targeting signal-2 (PTS2) as the parent strains for rapid isolation of the mutants. We have obtained six peroxisome-deficient mutants by visual screening of the mislocalizations of the peroxisomal GFPs. Mutual cell fusion experiments indicated that the six mutants isolated were divided into four complementation groups. Several of the mutants obtained possessed defective genes: the PEX2 gene was defective in SK24 and PT54; the PEX5 gene in SK32 and the PEX7 gene in PT13 and PT32. BE41, which belonged to the fourth complementation group, was not determined. When peroxisomal forms of BFP were transiently expressed in mutant cells, the peroxisomal BFPs appending both PTS1 and PTS2 appeared to bypass either the PTS1 or PTS2 pathway for localization in SK32. This observation suggested that other important machinery, in addition to the PTS1 or PTS2 pathway, could be involved in peroxisome biogenesis. Thus, our approach using peroxisomal fluorescent proteins could facilitate the isolation and analysis of peroxisome-deficient CHO mutants and benefit studies on the identification and role of the genes responsible for peroxisome biogenesis.  相似文献   

17.
酵母过氧化物体生物合成缺陷突变株的诱变、筛选和鉴定   总被引:2,自引:0,他引:2  
过氧化物体对生物的生长和发育非常重要,人类很多疾病就是由于过氧化物体生物合成缺陷引起。以解脂耶氏酵母E122为出发菌,采用硫酸二乙酯诱变,获得了两株过氧化物体生物合成缺陷突变株,其中一株为温度敏感的突变株。在正常生长条件下,突变株的免疫荧光分析显示弥散的染色模式,且在电镜下观察不到过氧化物体的形态结构。将克隆于表达载体pINA445上的目前所发现的与过氧化物体生物合成有关的基因转化这两株突变株,发现它们均不能恢复其在含油酸的培养基上的生长,表明这两个突变株是由与过氧化物体生物合成相关的新基因的突变引起。这两个突变株的获得为参与过氧化物体生物合成的新基因的发现奠定了基础。  相似文献   

18.
The Zellweger syndrome is characterized by a defect which results in the abnormal biogenesis of peroxisomes. As a consequence, metabolic activities associated with peroxisomes such as the oxidation of very long chain fatty acids, the synthesis of plasmalogens, and the catabolism of phytanic and pipecolic acids are impaired. Since this disorder is genetically heterogeneous and several complementation groups are known, we were able to study the normalization of peroxisomal activity during the process of complementation. The restoration of catalase and dihydroxyacetone phosphate acyltransferase activities peaked within 3-4 days postfusion while the oxidation of lignoceric acid was much delayed (7-8 days). Electron microscopy indicated that by 6 days following hybridization, peroxisome structure and density in heterokaryons was comparable to normal control cells. The heterogenous biochemical response during peroxisome normalization could be due to several factors including a possible requirement for restoration of peroxisomal structural integrity for maximum activation of certain metabolic pathways.  相似文献   

19.
Peroxisome assembly in mammals requires more than 14 genes. So far, we have isolated seven complementation groups (CGs) of peroxisome biogenesis-defective Chinese hamster ovary (CHO) cell mutants, Z65, Z24/ZP107, ZP92, ZP105/ZP139, ZP109, ZP110, ZP114. Two peroxin cDNAs, PEX2 and PEX6, were first cloned by genetic phenotype-complementation assay using Z65 and ZP92, respectively, and were shown to be responsible for peroxisome biogenesis disorders (PBD) such as Zellweger syndrome, of CG-F (the same as CG-X in U.S.A.) and CG-C (the same as CG-IV), respectively. Pex2p is a RING zinc finger membrane protein of peroxisomes and Pex6p is a member of the AAA ATPase family. We likewise isolated PEX12 encoding a peroxisomal integral membrane protein in the RING family, by functional complementation of ZP109, demonstrating PEX12 to be responsible for CG-III PBD. We also cloned PEX1 by screening of human liver cDNA library, using ZP107. PEX1 mutation was delineated to be the genetic cause of PBD in the most highest incidence group, CG-E (the same a CG-I). Moreover, we recently found that Pex5p, using PEX5-defective ZP105 and ZP139. Thus, CHO cell mutants defective in peroxisome biogenesis are indeed shown to be very useful for the studies of peroxisome assembly and delineating pathogenic genes in PBD. Furthermore, we have isolated novel CGs of CHO mutants, ZP119 and ZP126.  相似文献   

20.
Summary Genetic heterogeneity in peroxisome-deficient disorders, including Zellweger's cerebrohepatorenal syndrome, neonatal adrenoleukodystrophy and infantile Refsum disease, was investigated. Fibroblasts from 17 patients were fused using polyethylene glycol, cultivated on cover slips, and the formation of peroxisomes in the fused cells was visualized by immunofluorescence staining, using anti-human catalase IgG. Two distinct staining patterns were observed: (1) peroxisomes appeared in the majority of multinucleated cells, and (2) practically no peroxisomes were identified. Single step 12-(1-pyrene) dodecanoic acid/ultraviolet (P12/UV)-selection confirmed that the former groups were resistant to this selection, most of the surviving cells contained abundant peroxisomes, and the latter cells died. In the complementary matching, [1-14C]lignoceric acid oxidation and the biosynthesis of peroxisomal proteins were also normalized. Five complementation groups were identified. Group A: Zellweger syndrome and infantile Refsum disease; Groups B, C and D: Zellweger syndrome; Group E: Zellweger syndrome, neonatal adrenoleukodystrophy and infantile Refsum disease. We compared these groupings with those of Roscher and identified eight complementation groups. There was no obvious relation between complementation groups and clinical phenotypes. These results indicate that the transport, intracellular processing and function of peroxisomal proteins were normalized in the complementary matching and that at least eight different genes are involved in the formation of normal peroxisomes and in the transport of peroxisomal enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号