首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This protocol describes a new and rapid isothermal reaction process designed to amplify and detect a specific DNA sequence in purified DNA extracted from cultured cells. The protocol uses a DNA nanomachine that comprises two molecular switches that function in concert to isothermally amplify and detect a DNA target. First, a molecular beacon detection switch is 'activated' only if a DNA target sequence is present. A DNA primer and DNA polymerase are used to lock the beacon in an activated conformation. Second, an amplification and signal-transduction switch is initiated following successful activation. A nicking endonuclease and the DNA polymerase are used to replicate the DNA target. Both switches operate simultaneously at 40 °C in a single reaction to rapidly generate multiple copies of the DNA target in a cyclic polymerization reaction. This protocol enables femtomole amounts of a DNA target to be reproducibly amplified and detected in <40 min. We demonstrate the successful use of this protocol in assays containing synthetic DNA components and purified DNA extracted from biological samples.  相似文献   

2.
KB cells productively infected with human adenovirus type 2 contain an alkalistable class of viral DNA sedimenting in a broad zone between 50 and 90S as compared to 34S for virion DNA. This type of DNA is characterized as viral by DNA-DNA hybridization. It is extremely sensitive to shear fragmentation. Extensive control experiments demonstrate that the fast-sedimenting viral DNA is not due to artifactual drag of viral DNA mechanically trapped in cellular DNA or to association of viral DNA with protein or RNA. Furthermore, the fast-sedimenting DNA is found after infection with multiplicities between 1 and 1,000 PFU/cell and from 6 to 8 h postinfection until very late in infection (24 h). Analysis in dye-buoyant density gradients eliminates the possibility that the fast-sedimenting viral DNA represents supercoiled circular molecules. Upon equilibrium centrifugation in alkaline CsCl density gradients, the fast-sedimenting viral DNA bands in a density stratum intermediate between that of cellular and viral DNA. In contrast, the 34S virion DNA isolated and treated in the same manner as the fast-sedimenting DNA cobands with viral marker DNA. After ultrasonic treatment of the fast-sedimenting viral DNA, it shifts to the density positions of viral DNA and to a lesser extent to that of cellular DNA. The evidence presented here demonstrates that the 50 to 90S viral DNA represents adenovirus DNA covalently integrated into cell DNA.  相似文献   

3.
Patrick SM  Tillison K  Horn JM 《Biochemistry》2008,47(38):10188-10196
Replication protein A (RPA) is a heterotrimeric protein that is required for DNA replication and most DNA repair pathways. RPA has previously been shown to play a role in recognizing and binding damaged DNA during nucleotide excision repair (NER). RPA has also been suggested to play a role in psoralen DNA interstrand cross-link (ICL) repair, but a clear biochemical activity has yet to be identified in the ICL DNA repair pathways. Using HeLa cell extracts and DNA affinity chromatography, we demonstrate that RPA is preferentially retained on a cisplatin interstrand cross-link (ICL) DNA column compared with undamaged DNA. The retention of RPA on cisplatin intrastrand and ICL containing DNA affinity columns is comparable. In vitro electrophoretic mobility shift assays (EMSAs) using synthetic DNA substrates and purified RPA demonstrate higher affinity for cisplatin ICL DNA binding compared with undamaged DNA. The enhanced binding of RPA to the cisplatin ICL is dependent on the DNA length. As the DNA flanking the cisplatin ICL is increased from 7 to 21 bases, preferential RPA binding is observed. Fluorescence anisotropy reveals greater than 200-fold higher affinity to a cisplatin ICL containing 42-mer DNA compared with an undamaged DNA and a 3-4-fold higher affinity when compared with a cisplatin intrastrand damaged DNA. As the DNA length and stringency of the binding reaction increase, greater preferential binding of RPA to cisplatin ICL DNA is observed. These data are consistent with a role for RPA in the initial recognition and initiation of cisplatin ICL DNA repair.  相似文献   

4.
A highly sensitive electrochemical DNA sensor that requires no probe immobilization has been developed based on a target recycling mechanism utilizing a DNA polymerase with a strand displacement activity. The electrochemical detection is realized by taking advantage of the difference in diffusivity between a free ferrocene-labeled peptide nucleic acid (Fc-PNA) and a Fc-PNA hybridized with a complementary DNA, while the DNA polymerase-assisted target recycling leads to signal generation and amplification. The hybridization of the target DNA opens up a stem-loop template DNA with the Fc-PNA hybridized to its extruded 5' end and allows a DNA primer to anneal and be extended by the DNA polymerase, which results in sequential displacement of the target DNA and the Fc-PNA from the template DNA. The displaced target DNA will hybridize with another template DNA, triggering another round of primer extension and strand displacement. The released Fc-PNA, due to its neutral backbone, has much higher diffusivity towards a negatively charged electrode, compared to that when it is hybridized with a negatively charged DNA. Therefore, a significantly enhanced signal of Fc can be observed. The outstanding sensitivity and simplicity make this approach a promising candidate for next-generation electrochemical DNA sensing technologies.  相似文献   

5.
6.
Replication protein A phosphorylation and the cellular response to DNA damage   总被引:12,自引:0,他引:12  
Binz SK  Sheehan AM  Wold MS 《DNA Repair》2004,3(8-9):1015-1024
Defects in cellular DNA metabolism have a direct role in many human disease processes. Impaired responses to DNA damage and basal DNA repair have been implicated as causal factors in diseases with DNA instability like cancer, Fragile X and Huntington's. Replication protein A (RPA) is essential for multiple processes in DNA metabolism including DNA replication, recombination and DNA repair pathways (including nucleotide excision, base excision and double-strand break repair). RPA is a single-stranded DNA-binding protein composed of subunits of 70-, 32- and 14-kDa. RPA binds ssDNA with high affinity and interacts specifically with multiple proteins. Cellular DNA damage causes the N-terminus of the 32-kDa subunit of human RPA to become hyper-phosphorylated. Current data indicates that hyper-phosphorylation causes a change in RPA conformation that down-regulates activity in DNA replication but does not affect DNA repair processes. This suggests that the role of RPA phosphorylation in the cellular response to DNA damage is to help regulate DNA metabolism and promote DNA repair.  相似文献   

7.
A new method is described for detecting DNA double-strand breaks (DSBs) that utilizes asymmetric field inversion gel electrophoresis (AFIGE). DNA purified from cells in agarose plugs is subjected to AFIGE and DNA breakage quantitated by the fraction of DNA released from the plug. To test the specificity of the method for DNA DSBs, purified DNA in agarose plugs was treated for increasing times with restriction endonuclease, XhoI. After an initial time period, the fraction of DNA released increased in direct proportion to time. This correlates with the expected response for a randomly broken DNA molecule. In contrast, treatment with the single-strand breaking agent, hydrogen peroxide, over a 1000-fold range produced no release of DNA from the plug. Thus the assay appears to be specific for DNA DSBs and was used to measure DNA breaks induced by gamma radiation. Purified DNA, irradiated in agarose plugs, exhibited a log-linear dose response up to doses that release greater than 90% DNA from the plug. When live cells were irradiated in agarose, a similar linear dose response was observed up to 40 Gy and a significant signal as low as 2.5 Gy. Also in live cells, a threefold lower percentage of DNA was released from the plug over the same dose range. However, less DNA per gray is released at doses above 40 Gy and may reflect a crosslinking effect produced by the irradiation of DNA in live cells. DNA which was "pulse-labeled" was used to test the effect of DNA replication on the ability of AFIGE to detect DNA DSBs. Replicating DNA irradiated in the cell or after purification exhibited a reduced rate of release from the plug per dose of irradiation. Overall, the above results indicate that AFIGE is a sensitive method for detecting DSBs in DNA.  相似文献   

8.
Determinations were made of the percentage of chloroplast DNA (ct DNA) in total cell DNA isolated from shoots of pea at different stages of development. Labeled pea ct DNA was reassociated with a high concentration of total DNA; the percentage of ct DNA was estimated by comparing the rate of reassociation of this reaction with that of a model reaction containing a known concentration of unlabeled ct DNA. The maximum change in ct DNA content was from 1.3% of total DNA in young shoots to 7.3% in fully greened shoots. Analyses were also performed on DNA from embryos, etiolated tissue, roots, and leaves. The first leaf set to develop in pea was excised over a growth period of 8 days during which leaf length increased from 4 to 12 millimeters. Young leaves contained about 8% ct DNA; in fully greened leaves the level of ct DNA approached 12%, equivalent to as many as 9,575 copies of ct DNA per cell. Root tissue contained only 0.4% ct DNA.  相似文献   

9.
Amiloride intercalates into DNA and inhibits DNA topoisomerase II   总被引:1,自引:0,他引:1  
Amiloride is capable of inhibiting DNA synthesis in mammalian cells in culture. Recent evidence indicates that the enzyme, DNA topoisomerase II, is probably required for DNA synthesis to occur in situ. In experiments to determine the mechanism of inhibition of DNA synthesis by amiloride, we observed that amiloride inhibited both the catalytic activity of purified DNA topoisomerase II in vitro and DNA topoisomerase II-dependent cell functions in vivo. Many compounds capable of inhibiting DNA topoisomerase II are DNA intercalators. Thus, we performed studies to determine if and how amiloride bound to DNA. Results indicated that amiloride 1) shifted the thermal denaturation profile of DNA, 2) increased the viscosity of linear DNA, and 3) unwound circular DNA, all behavior consistent with a DNA intercalation mechanism. Furthermore, quantitative and qualitative measurements of amiloride fluorescence indicated that amiloride (a) bound reversibly to purified DNA under conditions of physiologic ionic strength, and (b) bound to purified nuclei in a highly cooperative manner. Lastly, amiloride did not promote the cleavage of DNA in the presence of DNA topoisomerase II, indicating that the mechanism by which amiloride inhibited DNA topoisomerase II was not through the stabilization of a "cleavable complex" formed between DNA topoisomerase II, DNA, and amiloride. The ability of amiloride to intercalate with DNA and inhibit topoisomerase II is consistent with the proposed planar, hydrogen-bonded, tricyclic nature of amiloride's most stable conformation. Thus, DNA and DNA topoisomerase II must be considered as new cellular targets of amiloride action.  相似文献   

10.
Induction of DNA damage triggers a complex biological response concerning not only repair systems but also virtually every cell function. DNA topoisomerases regulate the level of DNA supercoiling in all DNA transactions. Reverse gyrase is a peculiar DNA topoisomerase, specific to hyperthermophilic microorganisms, which contains a helicase and a topoisomerase IA domain that has the unique ability to introduce positive supercoiling into DNA molecules. We show here that reverse gyrase of the archaean Sulfolobus solfataricus is mobilized to DNA in vivo after UV irradiation. The enzyme, either purified or in cell extracts, forms stable covalent complexes with UV-damaged DNA in vitro. We also show that the reverse gyrase translocation to DNA in vivo and the stabilization of covalent complexes in vitro are specific effects of UV light irradiation and do not occur with the intercalating agent actinomycin D. Our results suggest that reverse gyrase might participate, directly or indirectly, in the cell response to UV light-induced DNA damage. This is the first direct evidence of the recruitment of a topoisomerase IA enzyme to DNA after the induction of DNA damage. The interaction between helicase and topoisomerase activities has been previously proposed to facilitate aspects of DNA replication or recombination in both Bacteria and Eukarya. Our results suggest a general role of the association of such activities in maintaining genome integrity and a mutual effect of DNA topology and repair.  相似文献   

11.
Herpesvirus saimiri DNA in continuous lymphoblastoid cell lines obtained from viral induced tumors in marmosets has been analyzed by gel electrophoresis of restricted DNA. Southern transfer to nitrocellulose filters, and hybridization to 32P-labeled viral DNA or DNA fragments. The viral DNA fragments EcoRI-G, -H, -D, and -I, KpnI-A, and BamHI-D and -E were not detected in Southern transfers of DNA from the nonproducing 1670 cell line. For each restriction endonuclease, a new fragment appeared, consistent with a 13.0-megadalton deletion of viral DNA sequences. This deletion encompassed 35 to 48 +/- 0.6 megadaltons from the left end of the unique DNA region. A sequence arrangement map is presented for the major population of H. saimiri DNA sequences in the 1670 cell line. Although H. saimiri DNA in the nonproducing 70N2 cell line can be distinguished from viral DNA in the 1670 cell line by several criteria, the same sequences were found to be deleted in the major population of viral DNA molecules. Unlike 1670 and 70N2 cells, restricted DNA from the virus-producing cell lines 77/5 and 1926 contained all of the DNA fragments present in the parental virion DNA. DNA from 1670, 70N2, and 77/5 cells contained additional viral DNA fragments that did not comigrate with any virion DNA fragments. Most of these unexplained fragments were confined to or highly enriched in partially purified circular or linear DNA fractions. DNA from tumor cells taken directly from a tumor-bearing animal contained viral DNA indistinguishable from the parental virion DNA by the assay conditions used. These results indicate that viral DNA sequence rearrangements can occur upon cultivation of tumor cells in vitro and that excision of DNA sequences from the viral genome may play a role in establishing the nonproducing state of some tumor cell lines.  相似文献   

12.
Rolf Menzel  Martin Gellert 《Cell》1983,34(1):105-113
DNA gyrase is the bacterial enzyme responsible for converting circular DNA to a negatively supercoiled form. We show that the synthesis of DNA gyrase is itself controlled by DNA supercoiling; synthesis is highest when the DNA template is relaxed. The rates of synthesis in vivo of both the A and B subunits of DNA gyase are increased up to 10-fold by treatments that block DNA gyrase activity and decrease the supercoiling of intracellular DNA. Similarly, efficient synthesis of both gyrase subunits in a cell-free S-30 extract depends on keeping the closed circular DNA template in a relaxed conformation. The results suggest that DNA supercoiling in E. coli is controlled by a homeostatic mechanism. Synthesis of the RecA protein and several other proteins is also increased by treatments that relax intracellular DNA.  相似文献   

13.
Helicase-dependent isothermal DNA amplification   总被引:6,自引:0,他引:6       下载免费PDF全文
Vincent M  Xu Y  Kong H 《EMBO reports》2004,5(8):795-800
Polymerase chain reaction is the most widely used method for in vitro DNA amplification. However, it requires thermocycling to separate two DNA strands. In vivo, DNA is replicated by DNA polymerases with various accessory proteins, including a DNA helicase that acts to separate duplex DNA. We have devised a new in vitro isothermal DNA amplification method by mimicking this in vivo mechanism. Helicase-dependent amplification (HDA) utilizes a DNA helicase to generate single-stranded templates for primer hybridization and subsequent primer extension by a DNA polymerase. HDA does not require thermocycling. In addition, it offers several advantages over other isothermal DNA amplification methods by having a simple reaction scheme and being a true isothermal reaction that can be performed at one temperature for the entire process. These properties offer a great potential for the development of simple portable DNA diagnostic devices to be used in the field and at the point-of-care.  相似文献   

14.
The interaction of contractile proteins (myosin, actin, tropomyosin and troponin) with DNA was studied in vitro using a nitrocellulose filter binding technique. The data indicate a high affinity of myosin and troponin for DNA, a lesser interaction between DNA and tropomyosin and the absence of binding of actin to DNA. When binding to DNA was detected, the interaction was higher with single-stranded DNA than with RNA or double-stranded DNA, although in some conditions myosin binds equally as well to native as to denatured eukaryotic DNA. Myosin binds better to eukaryotic than to phage native DNA.  相似文献   

15.
The mechanism by which X rays inhibit DNA replication has been investigated in three distinct populations of DNA molecules in human cells: (a) large chromosomal DNA, (b) a population of 50-100 10.3-kb nuclear episomal plasmids per cell, and (c) a population of about 500 16-kb cytoplasmic mitochondrial DNA molecules per cell. DNA replication was inhibited by X rays in nuclear chromosomal and plasmid DNA, but not in mitochondrial DNA. The mechanism by which ionizing radiation inhibits DNA replication must therefore be nuclear-specific and is unlikely to involve diffusible low-molecular-weight substances. Since mitochondrial DNA exists in the cell as independent 16-kb circular molecules and responds to radiation as would be expected for small targets, the implication for nuclear plasmids is that their replication is regulated by a large target. A current model for DNA replication involves the movement of DNA through replication centers made up of polymerases, helicases, and associated replication enzymes that are attached to a matrix. The difference in the response to X rays between mitochondrial DNA and nuclear plasmid DNA can be explained if nuclear plasmids are tightly associated with chromosomal DNA and attached to the matrix, and are coordinately replicated.  相似文献   

16.
Phage phi W-14 DNA (in which one-half of the thymine residues are replaced by alpha-putrescinyl thymine) was taken up by competent Bacillus subtilis cells at a rate threefold higher than the rate of homologous DNA uptake. In contrast to other types of heterologous DNA, the amount of phi W-14 DNA taken up in 15 min exceeded the amount of homologous DNA taken up by a factor of two to three, as measured in terms of acid-precipitable material. The amount of phi W-14 DNA taken up was even greater than this analysis indicated if allowance was made for the fact that phi W-14 DNA was degraded more rapidly after uptake than homologous DNA. Competition experiments showed that the affinity of phi W-14 DNA for homologous DNA receptors was lower than the affinity of homologous DNA and was similar to the affinities of other types of heterologous DNA. The more rapid and more extensive uptake of phi W-14 DNA appeared to occur via receptors other than the receptors for homologous DNA, and these receptors (like those for homologous DNA) were an intrinsic property of competent cells. Uptake of phi W-14 DNA was affected by temperature, azide, EDTA, and chloramphenicol, as was uptake of homologous DNA. This was consistent with entry of both DNAs by means of active transport. After uptake, undegraded phi W-14 [3H]DNA was found in the cells in a single-stranded form, whereas a portion of the label was associated with recipient DNA, presumably as a result of incorporation of monomers resulting from degradation. Acetylation of the amino groups of the putrescine side chains in phi W-14 DNA decreased the affinity of this DNA for its receptors without affecting its ability to compete with homologous DNA.  相似文献   

17.
Yilmaz S  Sancar A  Kemp MG 《PloS one》2011,6(7):e22986
The ATR-Chk1 DNA damage checkpoint pathway is a critical regulator of the cellular response to DNA damage and replication stress in human cells. The variety of environmental, chemotherapeutic, and carcinogenic agents that activate this signal transduction pathway do so primarily through the formation of bulky adducts in DNA and subsequent effects on DNA replication fork progression. Because there are many protein-protein and protein-DNA interactions proposed to be involved in activation and/or maintenance of ATR-Chk1 signaling in vivo, we systematically analyzed the association of a number of ATR-Chk1 pathway proteins with relevant checkpoint-inducing DNA structures in vitro. These DNA substrates included single-stranded DNA, branched DNA, and bulky adduct-containing DNA. We found that many checkpoint proteins show a preference for single-stranded, branched, and bulky adduct-containing DNA in comparison to undamaged, double-stranded DNA. We additionally found that the association of checkpoint proteins with bulky DNA damage relative to undamaged DNA was strongly influenced by the ionic strength of the binding reaction. Interestingly, among the checkpoint proteins analyzed the checkpoint mediator proteins Tipin and Claspin showed the greatest differential affinity for checkpoint-inducing DNA structures. We conclude that the association and accumulation of multiple checkpoint proteins with DNA structures indicative of DNA damage and replication stress likely contribute to optimal ATR-Chk1 DNA damage checkpoint responses.  相似文献   

18.
To determine the contribution that DNA polymerase alpha makes to the overall DNA replication fidelity in mammalian systems, we measured the fidelity of replication of the SV40-based shuttle vector, pZ189, in a reconstituted in vitro DNA replication system which contained purified HeLa DNA polymerase alpha (in addition to single-stranded DNA binding protein, topoisomerase II, DNA ligase, 5'----3' exonuclease, ribonuclease H, and SV40 T-antigen). We found that DNA polymerase alpha is highly accurate when carrying out bidirectional replication in this system. This high fidelity of replication by DNA polymerase alpha in the reconstituted replication system contrasts with a relatively low fidelity of gap-filling DNA synthesis on the same target gene by purified HeLa cell DNA polymerase alpha in the absence of other replication factors. The fidelity of DNA replication by DNA polymerase alpha, although relatively high in the reconstituted system, is about 4-fold lower than DNA replication in a crude HeLa cell extract which contains additional replication factors including DNA polymerase delta. These results demonstrate that DNA polymerase alpha has the capacity to replicate DNA with high fidelity when carrying out semiconservative DNA replication in a minimal reconstituted replication system, but additional cellular factors not present in the reconstituted system may contribute to the higher replication fidelity of the crude system.  相似文献   

19.
20.
Bacterial DNA containing unmethylated CpG motifs is a pathogen-associated molecular pattern (PAMP) that interacts with host immune cells via a toll-like receptor (TLR) to induce immune responses. DNA binding and internalization into cells is independent of TLR expression, receptor-mediated, and required for cell activation. The objective of this study was to determine whether exposure of immune cells to bacterial DNA affects DNA binding and internalization. Treatment of RAW264.7 cells with CpG oligodeoxynucleotide (ODN) for both 18 and 42 h resulted in a significant increase in DNA binding, whereas non-CpG ODN had no effect on DNA binding. Enhanced DNA binding was non-sequence-specific, inhibited by unlabeled DNA, showed saturation, was consistent with increased cell surface DNA receptors, and resulted in enhanced internalization of DNA. Treatment with Escherichia coli DNA or lipopolysaccharide (LPS) also resulted in a significant increase in DNA binding, but treatment with interleukin-1alpha, tumor necrosis factor-alpha, or phorbol 12-myristate 13-acetate had no effect on DNA binding. Soluble factors produced in response to treatment with CpG ODN or LPS did not affect DNA binding. These studies demonstrate that one consequence of activating the host innate immune response by bacterial infection is enhanced binding and internalization of DNA. During this period of increased DNA internalization, RAW264.7 cells were hypo-responsive to continued stimulation by CpG ODN, as assessed by tumor necrosis factor-alpha activity. We speculate the biological significance of increasing DNA binding and internalization following interaction with bacterial PAMPs may provide a mechanism to limit an ongoing immune inflammatory response by enhancing clearance of bacterial DNA from the extracellular environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号