首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aromatase complex has a key role in regulating oestrogen formation in normal and malignant breast tissues. Using dexamethasone-treated fibroblasts, derived from breast tumours, breast tumour cytosol and breast tumour-derived conditioned medium (CM) markedly stimulate aromatase activity. The cytokine, interleukin-6 (IL-6) has been identified as a factor present in CM which is capable of stimulating aromatase activity. To examine whether IL-6 may have a role in vivo in regulating breast tissue aromatase activity, IL-6 production and aromatase activity in breast tumour and adipose tissue from breast quadrants were examined. In 5/6 breasts examined so far, aromatase activity was highest in adipose tissue in the breast quadrant containing the tumour or on which the tumour impinged. There was a significant correlation (P < 0.05, Kendall's rank correlation) between IL-6 production and aromatase activity in these breast tissues. It is concluded that IL-6 may have an important role in regulating aromatase activity in breast tissues.  相似文献   

2.
Synthesis of oestrone from androstenedione within tumours, by the aromatase enzyme complex, is an important source of oestrogen that is available to support the growth of hormone-dependent breast tumours. In view of the central role that the aromatase enzyme has in oestrogen synthesis there has been considerable interest in understanding its regulation and developing inhibitors to block its action. In the present study we have derived fibroblasts from breast tumours (TFs), tissue proximal to tumours (PFs) and reduction mammoplasty tissue (RMFs) and used them to investigate the regulation of aromatase activity by PGE(2), IL-6 plus its soluble receptor (SR) or TNFalpha. In addition we have examined the ability of 2-methoxyoestrone sulphamate (2-MeOEMATE), a compound which alters microtubule stability, to block the stimulation of aromatase activity by these factors. Basal aromatase activity in PFs was significantly higher (p<0.001) than in TFs or RMFs. The combination of IL-6 plus SR or TNFalpha produced the greatest stimulation of aromatase activity in TFs (up to 61-fold) while having a much lower stimulatory effects on aromatase activity in PFs (up to 60% increase) or RMFs (up to 192% increase). 2-MeOEMATE reduced basal aromatase activity in TFs by 87% and completely abrogated the ability of PGE(2), IL-6 plus SR or TNFalpha to stimulate aromatase activity in these fibroblasts. Results from these studies indicate that while PFs have the highest level of non-stimulated aromatase activity, aromatase activity in TFs shows the greatest response to cytokines. These findings suggest that intrinsic difference may exist for the different types of fibroblasts in the way in which they respond to regulatory factors. The ability of 2-MeOEMATE to block cytokine stimulated aromatase activity suggests that, in addition to its other anti-cancer properties, this compound may also act to inhibit cytokine-stimulated aromatase activity in breast tumours.  相似文献   

3.
The cytokine interleukin-6 (IL-6) and its soluble receptor (IL-6sR) can act synergistically to stimulate aromatase activity in cultured stromal fibroblasts derived from breast tissues. In this study, a 16 amino acid peptide, AROHIB, has been used in an attempt to block the ability of IL-6 plus IL-6sR to stimulate aromatase activity in stromal fibroblasts. Pre-incubation of cells with AROHIB for a 3-h period before the addition of IL-6 and IL-6sR resulted in a marked (67%) reduction in the ability of these factors to stimulate aromatase activity. AROHIB was found to be rapidly degraded when exposed to MCF-7 breast cancer cells or fibroblasts. Analysis by FAB-MS was used to identify the site of peptide cleavage. Subsequently, a series of 10 amino acid peptides, DP1-DP4, were designed, synthesised and tested for their ability to resist proteolytic degradation and to inhibit IL-6 plus IL-6sR-stimulated aromatase activity. Peptide DP2, a modified version of the active fragment of AROHIB, had N-acetyl and C-amino terminal protection and an internal D-amino acid (instead of L form) at the site of proteolytic cleavage. Using cells cultured in the presence of 2% stripped foetal calf serum, peptide DP2 resulted in a 74% reduction in cytokine-stimulated aromatase activity. Under serum-free conditions, peptides DP1-DP3 showed modest inhibitory properties. Results from this study suggest that it may be possible to develop small peptides to inhibit cytokine-stimulated aromatase activity in a tissue-specific manner.  相似文献   

4.
5.
6.
Estrogen is a major mitogenic stimulus to established breast cancer. Estrogen sources include ovarian, extraglandular sites and breast tissue. Which source primarily maintains benign and breast cancer tissue estrogen concentrations remains unclear. While macrophages may comprise up to 50% of the mass of breast carcinomas, previous studies neglected to study them as possible sources of estrogen. We present evidence that breast macrophages constitute an in situ source of estradiol and that the amount produced is sufficient to mediate cellular proliferation. We utilized immunohistochemistry and RT-PCR to study cell-specific aromatase expression in (i) 29 breast biopsies, (ii) human monocytes/macrophages and (iii) a myeloid cell line (THP-1) capable of differentiating into macrophages. Use of a breast cancer cell line (MCF-7) provided biologic confirmation of the role of aromatization in cell proliferation. We demonstrated considerable amounts of immunoreactive-aromatase (irARO) in breast tissue macrophages and a positive correlation between the proportion of irARO present in macrophages and lesion severity. Using in vitro techniques, we demonstrated that monocytes and THP-1 cells require differentiation into macrophages to produce aromatase in amounts approaching placental levels. The amount of estrogen produced by THP-1 cells stimulated MCF-7 cells to proliferate, an effect blocked by aromatase inhibitors. Estrogen production by macrophages in breast tissue appears sufficient to stimulate the proliferation of adjacent epithelial cells and to autoregulate cytokine production. These findings represent a new dimension of cellular regulation in breast tissue with major biologic implications, amenable to pharmacological manipulation.  相似文献   

7.
Synthesis of the biologically active oestrogen, oestradiol, within breast tumours makes an important contribution to the high concentrations of oestrogens which are present in malignant breast tissues. In breast tumours, oestrone is preferentially converted to oestradiol by the Type I oestradiol 17β-hydroxysteroid dehydrogenase (E2DH). Several growth factors, such as insulin-like growth factor Type I, and cytokines, such as Tumour Necrosis Factor (TNF), have been shown to stimulate E2DH activity in MCF-7 breast cancer cells. As little is known about the regulation of Type I E2DH expression and activity in other breast cancer cell lines, the expression and activity of this enzyme was examined in other oestrogen receptor positive and also oestrogen receptor negative breast cancer cell lines. As it is possible that E2DH activity may be limited by co-factor availability, the effects of exogenous co-factors on enzyme activity in these cell lines was also investigated. For T47D and BT20 breast cancer cells, the addition of exogenous co-factors was found to enhance enzyme activity. TNF, in addition to stimulating E2DH activity in MCF-7 cells, also increased activity in T47D and MDA-MB-231 cells, although to a lesser extent than in MCF-7 cells. An investigation of signalling pathways involved in the regulation of E2DH activity revealed that stimulation of both the protein kinase C (PKC) and PKA pathways may be involved in regulation of E2DH activity. As several growth factors and cytokines have now been found to be involved in regulating E2DH activity, the role that macrophages and lymphocytes have in supplying these factors and the mechanism by which these factors may stimulate tumour growth, is also reviewed.  相似文献   

8.
Synthesis of oestrogens within breast tissues makes an important contribution to the high concentrations of oestradiol which are found in breast tumours. The activities of the enzymes involved in oestrogen synthesis, i.e. the aromatase, oestradiol dehydrogenase (E2DH) and oestrone sulphatase (E1-STS), can be stimulated by several growth factors and cytokines. As it is possible that some of these factors may be derived from cells of the immune system (macrophages and lymphocytes), the effects of basic fibroblast growth factor (bFGF) and interleukin-2 (IL-2), which are produced by these cells, on E2DH activity was examined in MCF-7 cells. Treatment of these cells with bFGF resulted in a dose-dependent increase in E2DH reductive activity whereas IL-2 was inactive at the concentration tested. To obtain further evidence that factors produced by macrophages and lymphocytes can modulate the activities of enzymes involved in oestrogen synthesis, conditioned medium was collected from these cells and found to stimulate both E1-STS and E2DH activities. In addition to understanding the control of oestrogen synthesis in breast tumours an inhibitor to block the synthesis of oestrone via the oestrone sulphatase pathway was developed. Oestrone-3-O-sulphamate (EMATE) is a potent, irreversible, inhibitor of E1-STS. A single dose of EMATE (10 mg/kg) inhibited tissue E1-STS activity in rats by more than 95% for up to 7 days, indicating that this compound may have considerable therapeutic potential for the treatment of breast cancer. Evidence is also reviewed that another steroid sulphatase, dehydroepiandrosterone sulphate sulphatase, may have a crucial role in regulating cytokine production and that this may indirectly control tumour oestrogen synthesis.  相似文献   

9.
Particularly in postmenopausal women, peripheral aromatase appears to be the major source of oestrogens which may encourage the growth of hormone-dependent tumours. Studies have therefore been undertaken to determine factors which influence biosynthesis of oestrogens within breast tissues. Aromatase activity was measured in (i) breast cancers by incubating tumour homogenates with [73H]testosterone and characterizing the production of radioactively-labelled oestradiol and (ii) breast fat by incubation of sub-cellular fractions of fibroblast cell lines with [1ß3H]androstenedione and monitoring the formation of 3H2O. Evidence has been presented that (i) certain treatment regimes for cancer profoundly influence aromatase activity in breast tumours, (ii) aromatase activity is elevated in breast fat associated with malignancy and (iii) breast-derived fluids and extracts can markedly affect aromatase activity in cultured fibroblasts of breast fat.  相似文献   

10.
Regulation of estrogen synthesis in postmenopausal women   总被引:12,自引:0,他引:12  
Purohit A  Reed MJ 《Steroids》2002,67(12):979-983
The decrease in ovarian estrogen production that occurs at the menopause may lead to an increase in peripheral aromatase activity. While estrogens can have beneficial effects on some body tissues, such as bone and the cardiovascular system, they also have a crucial role in supporting the growth and development of breast tumors. A number of factors, including interleukin-6 (IL-6), tumor necrosis factor alpha (TNFalpha), and prostaglandin E(2) (PGE(2)), which can stimulate aromatase activity, have now been identified. As plasma concentrations of some cytokines increase at the menopause, this may account for the increased peripheral aromatase activity that is detected in older women. Macrophages and lymphocytes which infiltrate breast tissue are now thought to be an important source of cytokines that can stimulate aromatase activity in this tissue. Studies, we have recently carried out, have suggested that the endogenous estrogen metabolite, 2-methoxy-estradiol, may be able to modulate the ability of cytokines and PGE(2) to stimulate aromatase activity. Understanding the role of endogenous estrogen metabolites in regulating estrogen synthesis may give rise to new strategies for the prevention or treatment of breast cancer.  相似文献   

11.
P48 induces tumor necrosis factor and IL-1 secretion by human monocytes   总被引:3,自引:0,他引:3  
Bacterial products are potent stimulators of TNF and IL-1 release, however, the factors that regulate cytokine secretion in the absence of bacterial products are not well defined. P48 is a cytokine recently identified in the supernatant of the human null cell leukemia cell line Reh, which induces differentiation and cytolytic activity in HL-60 cells. P48 has been purified to homogeneity and is distinct from TNF-alpha TNF-beta, IFN-gamma, IL-6, and macrophage CSF. In the present study we examined the ability of P48 to stimulate cytokine release by human peripheral blood monocytes. P48 stimulated the secretion of TNF and IL-1 in a dose-dependent manner. Priming the monocytes with IFN-gamma enhanced P48-induced cytokine release but was not a requirement for secretion. Cytokine secretion was in response to P48 and was not caused by endotoxin contamination. The cytokine-inducing activity of P48 was extremely sensitive to heat treatment but could not be eliminated by using polymyxin B. Polyclonal antisera to P48 completely blocked the cytokine-inducing activity. P48 may be an important new member of the cytokine network involved in the regulation of cytokine secretion by monocytes.  相似文献   

12.
Skin is an important site of estrogen production in men. Although the aromatase complex in these cells appears to be similar to that of other human cells, the regulation of aromatase by glucocorticoids in cultured human skin fibroblasts is unique. We examined aromatase activity in microsomal-enriched fractions of cultured human skin fibroblasts in order to characterize better the factors that regulate the aromatase in these cells. The optimum pH for aromatase activity in microsomal preparations ranged between 7.0 and 7.5. When androstenedione was the substrate, the mean Vmax was 0.58 pmol/mg protein/h (range: 0.09-1.26 pmol/mg protein/h) and the mean Km was 27 nM (range: 9-50 nM). When aromatase activity was determined as a function of NADPH concentration, the mean Vmax was 0.39 pmol/mg protein/h (range 0.11-0.82 pmol/mg protein/h) and the mean Km was 180 microM (range: 86-300 microM). For skin fibroblasts exposed to DEX, aromatase activity in isolated microsomes and intact cells was stimulated demonstrating a typical time course with peak levels at 14h and a decline toward baseline with prolonged (48-60 h) exposure. Cytosol from DEX-stimulated cells did not stimulate the aromatase activity in microsomal-enriched preparations from untreated cells. In addition, cytosol from cells incubated with DEX for a prolonged period (60 h) did not inhibit the higher aromatase activity of microsomes from cells incubated with DEX for only 14 h. We previously demonstrated that skin fibroblasts incubated with DEX and CHX produced a superinduction phenomenon for aromatase activity. This superinduction of enzyme activity also occurred in the microsomal-enriched fraction and was unaffected by the cytosol of these cells. These studies exclude the possibility that the unique effects of DEX on the aromatase in human skin fibroblasts are due to the production of either inhibitory or stimulatory soluble factors within cytosol.  相似文献   

13.
14.
The increase in local oestrogen production seen in oestrogen receptor positive (ER+) breast cancers is driven by increased activity of the aromatase enzyme. CYP19A1, the encoding gene for aromatase, is often overexpressed in the oestrogen-producing cells of the breast adipose fibroblasts (BAFs) surrounding an ER+ tumour, and the molecular processes underlying this upregulation is important in the development of breast-specific aromatase inhibitors for breast cancer therapy. Prostaglandin E2 (PGE2), a factor secreted by tumours, is known to stimulate CYP19A1 expression in human BAFs. The hormonal regulation of this process has been examined; however, what is less well understood is the emerging role of epigenetic mechanisms and how they modulate PGE2 signalling. This present study characterises the epigenetic processes underlying expression of the prostanoid receptor EP2 in the context of ER+ breast cancer. Sodium bisulphite sequencing of CpG methylation within the promoter region of EP2 revealed that an inverse correlation existed between methylation levels and relative EP2 expression in breast cancer cell lines MDA-MB-231, MCF7 and MCF10A but not in HS578t and T47D. Inhibition of DNA methylation with 5-aza-2'-deoxycytidine (5aza) and histone deacetylation with Trichostatin A (TSA) resulted in upregulation of EP2 mRNA in all cell lines with varying influences of each epigenetic process observed. Expression of EP2 was detected in human BAFs despite a natively methylated promoter, and this expression was further increased upon 5aza treatment. An examination of 3 triple negative, 3 ductal carcinoma in situ and 3 invasive ductal carcinoma samples revealed that there was no change in EP2 promoter methylation status between normal and cancer associated stroma, despite observed differences in relative mRNA levels. Although EP2 methylation status is inversely correlated to expression levels in established breast cancer cell lines, we could not identify that such a correlation existed in tumour-associated stroma cells.  相似文献   

15.
 Paclitaxel or Taxol has attracted a great deal of attention in recent years because of its immense success as a chemotherapeutic agent for numerous types of cancer. It is known that paclitaxel stabilizes microtubules, and this characteristic is the presumed primary mechanism for its antitumor activity. Recently, however, paclitaxel’s ability to regulate gene expression, particularly in the murine system, has been reported by several groups. Here, we present research examining paclitaxel’s ability to alter expression of the interleukin-1β (IL-1β) and IL-8 cytokines in primary human monocytes, T lymphocytes, and four human breast cancer cell lines: MCF-7, ZR-75-1, MDA-MB-468, and MDA-MB-231. This report shows for the first time that treatment with 5–50 μM paclitaxel increases steady-state levels of IL-1β mRNA in unprimed human monocytes, MCF-7, and ZR-75-1 cells. Monocytes from eight donors in 16 experiments showed increased IL-1β secretion upon treatment; however, the increase in IL-1β production by monocytes was predicated on culturing in the absence of fetal bovine serum or in the presence of autologous human serum. In contrast to the IL-1β results, paclitaxel did not have significant effects on IL-8 expression by monocytes, T lymphocytes, or the breast cancer cells. These data show a specific effect of paclitaxel on cytokine synthesis by both immune cells and cancer cells. Received: 8 September 1997 / Accepted: 26 November 1997  相似文献   

16.
Estrogens produced within breast tumors may play a pivotal role in growth stimulation of the breast cancer cells. However, it is elusive whether the epithelial breast cancer cells themselves synthesize estrogens, or whether the surrounding tumor stromal cells synthesize and supply the cancer cells with estrogen. The aromatase enzyme catalyzes the estrogen production, aromatizing circulating androgens into estrogens. The aim of this study was to investigate aromatase expression and function in a model system of human breast cancer, using the estrogen responsive human MCF-7 breast cancer cell line. Cells were cultured in a low estrogen milieu and treated with estrogens, aromatizable androgens or non-aromatizable androgens. Cell proliferation, expression of estrogen-regulated proteins and aromatase activity were investigated. The MCF-7 cell line was observed to express sufficient aromatase enzyme activity in order to aromatize the androgen testosterone, resulting in a significant cell growth stimulation. The testosterone-mediated growth effect was completely inhibited by the aromatase inhibitors letrozole and 4-hydroxy-androstenedione. Expression studies of estrogen-regulated proteins confirmed that testosterone was aromatized to estrogen in the MCF-7 cells. Thus, the results indicate that epithelial breast cancer cells possess the ability to aromatize circulating androgens to estrogens.  相似文献   

17.
An important feature of the pharmacological profile of aromatase inhibitors is the ability of the various inhibitors to inhibit intracellular aromatase. It is now well documented that a large proportion of breast tumors express their own aromatase. This intratumoral aromatase produces estrogen in situ and therefore may contribute significantly to the amount of estrogen to which the cell is exposed. Thus it is not only important that aromatase inhibitors potently inhibit the peripheral production of estrogen and eliminate the external supply of estrogen to the tumor cell, but that they in addition potently inhibit intratumoral aromatase and prevent the tumor cell from making its own estrogen within the cell. To study the inhibition of intracellular aromatase we have compared the aromatase-inhibiting potency of the non-steroidal aromatase inhibitors, letrozole, anastrozole and fadrozole in a variety of model cellular endocrine and tumor systems which contain aromatase. We have used hamsters ovarian tissue fragments, adipose tissue fibroblasts from normal human breast, the MCF-7Ca human breast cancer cell line transfected with the human aromatase gene and the JEG-3 human choriocarcinoma cell line. Although letrozole and anastrozole are approximately equipotent in a cell-free aromatase system (human placental microsomes), letrozole is consistently 10–30 times more potent than anastrozole in inhibiting intracellular aromatase in intact rodent cells, normal human adipose fibroblasts and human cancer cell lines. Whether these differences between letrozole and anastrozole are seen in the clinical setting will have to await the results of clinical trials which are currently in progress.  相似文献   

18.
Three approaches have been taken to elucidate further the biological importance of intratumoural aromatase activity. (i) MCF7 and T47D hormone-dependent breast cancer cell lines both showed detectable aromatase activity in vitro. The up-regulation of this by TGF indicates the possible existence of an autocrine growth stimulatory loop involving aromatase. (ii) Both tamoxifen and cytotoxic chemotherapy caused the suppression of aromatase activity in breast carcinomas in vivo. Aromatase activity prior to treatment did not predict for clinical response to tamoxifen. (iii) Transfection of aromatase into MCF7 cells led to their growth being stimulated by low doses of androgens and this was inhibited by the aromatase inhibitor CGS 16949A.  相似文献   

19.
To investigate the mechanism of cyclosporine (Cs)-induced fibrous gingival enlargement, the indirect effects of Cs on fibroblast collagenolysis via the drug's effect on the synthesis of the fibroblast regulatory monokines interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF alpha) have been studied. Peripheral blood monocytes stimulated with lipopolysaccharide (LPS) for 48 h produced conditioned media (MCM-LPS) that contained 665 pg/ml IL-1 beta and 16 pg/ml TNF alpha and significantly (P less than 0.001) enhanced the collagenase activity of a fibroblast strain (GN 23) derived from a healthy individual with clinically normal gingiva. The concurrent addition of Cs (50, 100, or 150 ng/ml) with LPS to the monocytes (MCM-LPS-Cs) significantly diminished their ability to enhance GN 23 collagenase activity in a dose-dependent manner, with MCM-LPS-Cs (150 ng/ml) causing the greatest effect. Cs also significantly inhibited IL-1 beta and TNF alpha production. Although the greatest inhibition of both cytokines was at 50 ng/ml Cs, the corresponding MCM-LPS-Cs caused the least diminution (16%) of the collagenase stimulation caused by MCM-LPS (no Cs). This suggested that factor(s) other than or in addition to IL-1 beta and TNF alpha might be responsible for the stimulation of GN 23 collagenase activity. MCM-LPS depleted of IL-1 beta by affinity chromatography retained its stimulatory effect on GN 23 collagenolysis, and human recombinant IL-1 beta and TNF alpha, when tested alone or together at levels found in the stimulatory MCM-LPS and MCM-LPS-Cs, did not stimulate GN 23 collagenase activity as did the crude conditioned media. This evidence suggested that the conditioned media contained the complex mixture of cytokines necessary to stimulate collagenase activity of this fibroblast strain and that IL-1 beta and TNF alpha were not necessarily involved. Cs may alter the synthesis of other collagenase-stimulating cytokines, accounting for the diminished ability of Cs-treated monocytes to enhance collagenase activity of susceptible fibroblast strains. Decreased collagenase activity, therefore, resulting from Cs suppression of monokine production, may be an important factor in the development of fibrous gingival enlargement seen in some susceptible patients treated with Cs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号