首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium-dependent protein kinases (CDPKs) belong to a unique family of enzymes containing a single polypeptide chain with a kinase domain at the amino terminus and a putative calcium-binding EF hands structure at the carboxyl terminus. From Arabidopsis thaliana, we have cloned three distinct cDNA sequences encoding CDPKs, which were designated as atcdpk6, atcdpk9 and atcdpk19. The full-length cDNA sequences for atcdpk6, atcdpk9 and atcdpk19 encode proteins with a molecular weight of 59343, 55376 and 59947, respectively. Recombinant atCDPK6 and atCDPK9 proteins were fully active as kinases whose activities were induced by Ca2+. Biochemical studies suggested the presence of an autoinhibitory domain in the junction between the kinase domain and the EF hands structure. Serial deletion of the four EF hands of atCDPK6 demonstrated that the integrity of the four EF hands was crucial to the Ca2+ response. All the three atcdpk genes were ubiquitously expressed in the plant as demonstrated by RNA gel blot experiments. Comparison of the genomic sequences suggested that the three cdpk genes have evolved differently. Using antibodies against atCDPK6 and atCDPK9 for immunohistochemical experiments, CDPKs were found to be expressed in specific cell types in a temporally and developmentally regulated manner.  相似文献   

2.
Cellular signaling through protein tyrosine phosphorylation is well established in mammalian cells. Although lacking the classic tyrosine kinases present in humans, plants have a tyrosine phospho-proteome that rivals human cells. Here we report a novel plant tyrosine phosphatase from Arabidopsis thaliana (AtRLPH2) that, surprisingly, has the sequence hallmarks of a phospho-serine/threonine phosphatase belonging to the PPP family. Rhizobiales/Rhodobacterales/Rhodospirillaceae-like phosphatases (RLPHs) are conserved in plants and several other eukaryotes, but not in animals. We demonstrate that AtRLPH2 is localized to the plant cell cytosol, is resistant to the classic serine/threonine phosphatase inhibitors okadaic acid and microcystin, but is inhibited by the tyrosine phosphatase inhibitor orthovanadate and is particularly sensitive to inhibition by the adenylates, ATP and ADP. AtRLPH2 displays remarkable selectivity toward tyrosine-phosphorylated peptides versus serine/threonine phospho-peptides and readily dephosphorylates a classic tyrosine phosphatase protein substrate, suggesting that in vivo it is a tyrosine phosphatase. To date, only one other tyrosine phosphatase is known in plants; thus AtRLPH2 represents one of the missing pieces in the plant tyrosine phosphatase repertoire and supports the concept of protein tyrosine phosphorylation as a key regulatory event in plants.  相似文献   

3.
We report here the isolation of the Arabidopsis thaliana gene AtK-1. The predicted protein sequence of AtK-1 show 70% identity to the Arabidopsis ASK and alfalfa MsK kinases that are homologs of the Drosophila shaggy and rat GSK-3 serine/threonine protein kinases playing an important role in signal transduction processes in animals. Northern analysis of different organs revealed exclusive expression in inflorescences suggesting an involvement of the AtK-1 kinase in reproduction-specific processes.  相似文献   

4.
The round-spotted pufferfishTetraodon fluviatilis has a genome size of 380 Mb which is slightly smaller than that of another pufferfish,Fugu rubripes rubripes (Fugu). Due to their compact genome and small introns, both pufferfishes have been proposed as model organisms for genome studies. In this study, we have used genomic DNA as template to perform PCR to screen for protein kinase (pk) genes. Forty-oneT. fluviatilis pk genes encoding 7 receptor tyrosine kinases, 14 nonreceptor tyrosine kinases, 16 serine/threonine kinases, 1 dual kinase and 3 novel kinases have been identified. The success of this approach depends on the size and location of the introns. Most of the identifiedpk gene fragments contain introns, ranging from 71 to 300 bp, with an average of 120 bp. It is noteworthy that the intron/exon boundaries of certain genes which belong to the same family are identical. We also analyzed by specific RT-PCR primers the expression profile of those 3 novel genes as well as some selectedpk genes in a variety of tissues. We found thaterbB3,pku , mrk, CaMK I,CaMKII, and two novel kinase genes (133 and 3–26) are expressed in all tissues examined. However, the novel clone 146 is strongly expressed in the brain and weakly in the intestine, kidney and heart.  相似文献   

5.
6.
Activation of signal transduction pathways in response to serum complement in Naegleria fowleri amebae was investigated. We examined the activation of protein kinases and changes in the phosphorylation state of proteins in N. fowleri stimulated by normal human serum (NHS). To determine differences in phosphorylation of proteins when amebae were exposed to NHS or heat inactivated serum (HIS) lacking complement, amebae were labeled with [32P] orthophosphate. An increase in phosphorylation of relatively low molecular weight proteins was noted in N. fowleri incubated in NHS with a concomitant decrease in phosphorylation of high molecular mass polypeptides. To investigate whether serine/threonine or tyrosine kinases were stimulated by NHS, amebae were treated with protein kinase inhibitors H7, staurosporine or genistein, prior to serum exposure and examined for susceptibility to complement. Treatment with each of these inhibitors resulted in increased complement lysis. Incubation of N. fowleri with genistein specifically inhibited tyrosine phosphorylation of proteins stimulated by NHS. A tyrosine kinase activity assay using exogenous polyGlu-Tyr substrate demonstrated differential activation of tyrosine kinases in amebae treated with NHS when compared to treatment with HIS. The results suggest that activation of protein kinases and subsequent protein phosphorylation are important in mediating complement resistance in N. fowleri.  相似文献   

7.
8.
Receptor-like kinases (RLK) comprise a large gene family within the Arabidopsis genome and play important roles in plant growth and development as well as in hormone and stress responses. Here we report that a leucine-rich repeat receptor-like kinase (LRR-RLK), RECEPTOR-LIKE PROTEIN KINASE2 (RPK2), is a key regulator of anther development in Arabidopsis. Two RPK2 T-DNA insertional mutants (rpk2-1 and rpk2-2) displayed enhanced shoot growth and male sterility due to defects in anther dehiscence and pollen maturation. The rpk2 anthers only developed three cell layers surrounding the male gametophyte: the middle layer was not differentiated from inner secondary parietal cells. Pollen mother cells in rpk2 anthers could undergo meiosis, but subsequent differentiation of microspores was inhibited by tapetum hypertrophy, with most resulting pollen grains exhibiting highly aggregated morphologies. The presence of tetrads and microspores in individual anthers was observed during microspore formation, indicating that the developmental homeostasis of rpk2 anther locules was disrupted. Anther locules were finally crushed without stomium breakage, a phenomenon that was possibly caused by inadequate thickening and lignification of the endothecium. Microarray analyses revealed that many genes encoding metabolic enzymes, including those involved in cell wall metabolism and lignin biosynthesis, were downregulated throughout anther development in rpk2 mutants. RPK2 mRNA was abundant in the tapetum of wild-type anthers during microspore maturation. These results suggest that RPK2 controls tapetal cell fate by triggering subsequent tapetum degradation, and that mutating RPK2 impairs normal pollen maturation and anther dehiscence due to disruption of key metabolic pathways.  相似文献   

9.
梁昌镛 《生命科学》2013,(11):1059-1064
丝氨酸/苏氨酸激酶存在于所有已知的疱疹病毒中,它们具有多种功能,参与病毒感染的整个过程,尤其是病毒与机体的相互作用。主要阐述了两类保守的疱疹病毒丝氨酸/苏氨酸激酶(单纯疱疹病毒HSV的ULl3激酶和US3激酶)在病毒感染过程的重要作用。两者都参与调控细胞和病毒基因的表达,介导病毒衣壳出核以及免疫逃避。虽然这些激酶对病毒在体外培养细胞中复制的影响各不相同,但是对于病毒的毒力非常重要,因此,可用作抗病毒药物设计的靶位。  相似文献   

10.
This review summarizes the evolution of ideas concerning insulin signal transduction, the current information on protein ser/thr kinase cascades as signalling intermediates, and their status as participants in insulin regulation of energy metabolism. Best characterized is the Ras-MAPK pathway, whose input is crucial to cell fate decisions, but relatively dispensable in metabolic regulation. By contrast the effectors downstream of PI-3 kinase, although less well elucidated, include elements indispensable for the insulin regulation of glucose transport, glycogen and cAMP metabolism. Considerable information has accrued on PKB/cAkt, a protein kinase that interacts directly with Ptd Ins 3OH phosphorylated lipids, as well as some of the elements further downstream, such as glycogen synthase kinase-3 and the p70 S6 kinase. Finally, some information implicates other erk pathways (e.g. such as the SAPK/JNK pathway) and Nck/cdc42-regulated PAKs (homologs of the yeast Ste 20) as participants in the cellular response to insulin. Thus insulin recruits a broad array of protein (ser/thr) kinases in its target cells to effectuate its characteristic anabolic and anticatabolic programs.  相似文献   

11.
12.
Pyruvate, orthophosphate dikinase (PPDK) is a ubiquitous, low-abundance metabolic enzyme of undetermined function in C3 plants. Its activity in C3 chloroplasts is light-regulated via reversible phosphorylation of an active-site Thr residue by the PPDK regulatory protein (RP), a most unusual bifunctional protein kinase (PK)/protein phosphatase (PP). In this paper we document the molecular cloning and functional analysis of the two unique C3 RPs in Arabidopsis thaliana . The first of these, AtRP1 , encodes a typical chloroplast-targeted, bifunctional C4-like RP. The second RP gene, AtRP2 , encodes a monofunctional polypeptide that possesses in vitro RP-like PK activity but lacks PP activity, and is localized in the cytosol. Notably, the deduced primary structures of these two highly homologous polypeptides are devoid of any canonical subdomain structure that unifies all known eukaryotic and prokaryotic Ser/Thr PKs into one of three superfamilies, despite the direct demonstration that AtRP1 is functionally a member of this group. Instead, these C3 RPs and the related C4 plant homologues encode a conserved, centrally positioned, approximately 260-residue sequence currently described as the ' d omain of u nknown f unction 299' (DUF 299). We propose that vascular plant RPs form a unique protein kinase family now designated as the DUF 299 gene family.  相似文献   

13.
The completion of the Arabidopsis thaliana genome has revealed that there are nine members of the Pht1 family of phosphate transporters in this species. As a step towards identifying the role of this gene family in phosphorus nutrition, we have isolated the promoter regions from each of these genes, and fused them to the reporter genes beta-glucuronidase and/or green fluorescent protein. These chimeric genes have been introduced into A. thaliana, and reporter gene expression has been assayed in plants grown in soil containing high and low concentrations of inorganic phosphate (Pi). Four of these promoters were found to direct reporter gene expression in the root epidermis, and were induced under conditions of phosphate deprivation in a manner similar to previously characterised Pht1 genes. Other members of this family, however, showed expression in a range of shoot tissues and in pollen grains, which was confirmed by RT-PCR. We also provide evidence that the root epidermally expressed genes are expressed most strongly in trichoblasts, the primary sites for uptake of Pi. These results suggest that this gene family plays a wider role in phosphate uptake and remobilisation throughout the plant than was previously believed.  相似文献   

14.
A cDNA clone encoding a monofunctional aspartate kinase (AK, ATP:L-aspartate 4-phosphotransferase, EC 2.7.2.4) has been isolated from an Arabidopsis thaliana cell suspension cDNA library using a homologous PCR fragment as hybridizing probe. Amplification of the PCR fragment was done using a degenerate primer designed from a conserved region between bacterial monofunctional AK sequences and a primer identical to a region of the A. thaliana bifunctional aspartate kinase-homoserine dehydrogenase (AK-HSDH). By comparing the deduced amino acid sequence of the fragment with the bacterial and yeast corresponding gene products, the highest identity score was found with the Escherichia coli AKIII enzyme that is feedback-inhibited by lysine (encoded by lysC). The absence of HSDH-encoding sequence at the COOH end of the peptide further implies that this new cDNA is a plant lysC homologue. The presence of two homologous genes in A. thaliana is supported by PCR product sequences, Southern blot analysis and by the independent cloning of the corresponding second cDNA (see Tang et al., Plant Molecular Biology 34, pp. 287–294 [this issue]). This work is the first report of cloning a plant putative lysine-sensitive monofunctional AK cDNA. The presence of at least two genes is discussed in relation to possible different physiological roles of their respective product.  相似文献   

15.
16.
Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases that are activated in response to a variety of stimuli. Here we report the isolation of an alfalfa cDNA encoding a functional MAP kinase, termedMMK2. The predicted amino acid sequence ofMMK2 shares 65% identity with a previously identified alfalfa MAP kinase, termedMMK1. Both alfalfa cDNA clones encode functional kinases when expressed in bacteria, undergoing autophosphorylation and activation to phosphorylate myelin basic protein in vitro. However, only MMK2 was able to phosphorylate a 39 kDa protein from the detergent-resistant cytoskeleton of carrot cells. The distinctiveness ofMMK2 was further shown by complementation analysis of three different MAP kinase-dependent yeast pathways; this revealed a highly specific replacement of the yeastMPK1 (SLT2) kinase byMMK2, which was found to be dependent on activation by the upstream regulators of the pathway. These results establish the existence of MAP kinases with different characteristics in higher plants, suggesting the possibility that they could mediate different cellular responses.  相似文献   

17.
2,4-dichlorophenoxyacetic acid (2,4-D), a chemical analogue of indole-3-acetic acid (IAA), is widely used as a growth regulator and exogenous source of auxin. Because 2,4-D evokes physiological and molecular responses similar to those evoked by IAA, it is believed that they share a common response pathway. Here, we show that a mutant, antiauxin resistant1 (aar1), identified in a screen for resistance to the anti-auxin p-chlorophenoxy-isobutyric acid (PCIB), is resistant to 2,4-D, yet nevertheless responds like the wild-type to IAA and 1-napthaleneacetic acid in root elongation and lateral root induction assays. That the aar1 mutation alters 2,4-D responsiveness specifically was confirmed by analysis of GUS expression in the DR5:GUS and HS:AXR3NT-GUS backgrounds, as well as by real-time PCR quantification of IAA11 expression. The two characterized aar1 alleles both harbor multi-gene deletions; however, 2,4-D responsiveness was restored by transformation with one of the genes missing in both alleles, and the 2,4-D-resistant phenotype was reproduced by decreasing the expression of the same gene in the wild-type using an RNAi construct. The gene encodes a small, acidic protein (SMAP1) with unknown function and present in plants, animals and invertebrates but not in fungi or prokaryotes. Taken together, these results suggest that SMAP1 is a regulatory component that mediates responses to 2,4-D, and that responses to 2,4-D and IAA are partially distinct.  相似文献   

18.
近年来,蛋白激酶研究进展较快,本文综述蛋白激酶的种类、结构、细胞定位,讨论几种植物蛋白激酶及其与信号转导的关系。  相似文献   

19.
Mitogen-activated protein (MAP) kinase kinase (MAPKK) is a recently characterized activator of MAP kinase (MAPK), and is considered to be regulated by a protooncogene product c-Raf-1. It is, however, unclear whether the signals originating from c-Raf-1 utilize this phosphorylation cascade to lead to oncogenesis. To clarify this point, we isolated rat MAPKK cDNAs, and identified two distinct cDNAs encoding MAPKK and a highly related kinase, both with molecular weights of 5 kDa (MEK1 and MEK2). Genomic Southern blot analyses suggested that MAPKK. may form a large gene family.  相似文献   

20.
We previously identified a 70-kDa serine/threonine protein kinase (MbK or PknD) from Mycobacterium tuberculosis Erdman containing a transmembrane domain and bearing a 270-amino acid N-terminal kinase domain. With the use of a polyclonal serum, Mbk has now been identified by Western blotting in protein extracts from M. tuberculosis and confirmed to be localised in the envelope. An identical mbk gene has been found by sequencing different M. tuberculosis and M. africanum strains. Surprisingly, in two virulent M. bovis strains and four different strains of M. bovis BCG, an additional adenine after position 829 of the open reading frame was found that produces a frame shift resulting in a predicted truncated, presumably free cytoplasmic protein, encoding only the N-terminal 30-kDa Mbk kinase domain. This sequence polymorphism has been confirmed by Western blot analysis of M. bovis BCG protein extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号